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Abstract The availability of tools to diagnose Wireless Sensor Network (WSN)

failures is a key success factor for this type of networks as already demonstrated by

several long-running deployments. By nature, WSNs are resource-constrained,

fragile, complex to analyse, and failure-prone. Naturally, with the growing number

of installations, it is becoming fundamental to efficiently diagnose failures as soon

as possible, in order to deal with the underlying causes. In accordance with this,

from 2005 onwards, the offer of diagnostic tools has been increasing, as the other

base technologies (e.g. networking, operating system, localisation, synchronisation)

become reasonably stable. The purpose of this survey is to provide an overview of

existing post-deployment WSN diagnostic tools, by briefly presenting their func-

tionality, architecture and constraints, in order to enable a basic understating of each

tool. The survey also includes a multi-dimensional comparative analysis of the

various tools, based on a proposed classification scheme and evaluation criteria, as

well as an identification of the main open research issues. Although the number of

diagnostic tools is high and considerable work has been done in this area, we

conclude that there are still several challenges concerning post-deployment WSN
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diagnostic tools, regarding scope, flexibility, generality, mobility and security.

Moreover, there is a need for mature, native diagnostic-oriented functionality in

WSN platforms and operating systems.

Keywords Sensor networks � Sensor diagnosing � Testing and debugging �
Sensor failure � Embedded debugging

1 Introduction

As opposed to what happens in lab environments, real-life deployment of Wireless

Sensor Networks (WSN) brings out a whole range of problems that are difficult to

anticipate as a result of harsh environmental conditions, mechanical aggression,

communications interference, sensing interference, increased energy consumption,

and unexpected node mobility, among many other causes, either natural or

malicious.

Communication problems due to link failures, packet corruption or network

congestion are common in wireless networks and tend to manifest themselves more

frequently in fragile, resource-constrained, wireless multi-hop networks such as

WSNs. Although, in most cases, these problems can be mitigated by adequate

design and implementation, in the case of WSNs this may not be feasible. In

addition, design, implementation, and operation errors can become apparent in real

world operations and their effects can be further amplified by the use of incorrect/

incomplete models of the phenomenon whose behaviour is being monitored (for

instance, incorrect mobility models, inadequate maximum number of objects to

track, etc.).

Thus, as failures are unavoidable, it is important to diagnose them as quickly and

effectively as possible in order to deal with the underlying causes. In case the faults

are restricted to individual nodes, an execution log plus the internal state of the

faulty nodes can be enough. On the other hand, WSNs are distributed systems made

of cooperating nodes and, as a result, node faults can impact the behaviour of the

whole network, affecting services such as distributed sensing, communications,

localisation, and timing, or even have an impact on the global WSN energy

consumption. Consequently, in most cases, in order to diagnose a fault it is

necessary to analyse combined information from multiple nodes.

Evidence gathered from long running deployments [1] has shown the importance

of post-deployment WSNs diagnostic tools, due to the very fragile, complex and

failure-prone nature of this type of network. Nevertheless, diagnosing failures in

deployed WSNs is a difficult task because it implies analysing distributed behaviour

and, at the same time, using as little sensor node resources as possible to acquire the

relevant information (e.g., traffic traces, code execution, state, or events).

In later years, the research community has addressed this issue and several ideas

have been put forward. Some of these ideas have further been used in tools that were

made available to the community. This is a fast evolving field that is expected to

continue to be an important research area, not only because the visibility,

applicability, and deployment rate of WSNs is growing at a considerable rate, but
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also because the utility of the existing diagnostic tools is still limited. In spite of this,

several relevant contributions are available and, thus, it is fundamental to compile,

systematically analyse and describe them, so that the research community can better

assess the state-of-the-art and, based on it, develop the next generation of WSN

diagnostic tools.

The scope of this survey is on diagnostic tools for WSNs as a whole, which can

then be used in post deployment scenarios. This can be considered part of network

management [2], more specifically related to performance and fault management.

Nevertheless, in this survey we will not specifically address tools for diagnosing

several very narrow classes of problems, such as individual sensor faults, hardware

malfunction, or security-related anomalies. Examples of such tools are:

• faulty sensors—a recent survey [3] details common sensor faults in deployed

WSNs, reviews the fault detection literature, and presents a set of features useful

for detecting and diagnosing faults; [4] surveys the outlier detection techniques

applicable to WSNs;

• hardware malfunction—in [5] a low-energy software-based self-test technique to

enable a post-deployment node hardware test of CPU, RAM, flash and radio (i.e.

transmitted power, receiver sensitivity and adjacent/alternate channel rejection)

on an MSP430/CC2420 platform is described; in [6] a self-diagnosis mechanism

based on accelerometer readings is proposed in order to assess node damage

probability from external impact;

• security-related anomalies—these are surveyed in [7], where the types of

security attacks and detection techniques are identified and summarised.

Prior to WSN deployment, as part of the application development process,

several tools are useful in helping to create applications that behave according to

their respective requirements and specifications. Although these types of tools fall

outside the scope of this survey, it is useful to briefly mention some of them:

• Simulators (e.g. TOSSIM [8], COOJA [9], both specifically developed for WSN

simulation) are valuable tools for debugging and scalability assessment, saving

costs and allowing for great flexibility. Nevertheless, they are as good as the

models they support. Even carefully constructed models have limitations, as it is

extremely hard, if not unfeasible, to capture the frailty and sensitivity of WSN

nodes, especially when they are subject to real-life environmental conditions.

• Validation tools like KleeNet [10] target any WSN application bugs that result

from complex interactions of multiple nodes, non deterministic events, and

unpredictable inputs, via high-coverage testing supported on an application

execution of symbolic input; T-Check [11] aims at discovering errors in WSN

applications running on TinyOS (simulated in TOSSIM) by using random walks

and explicit state model checking.

• Hardware debuggers and emulators (e.g. AVR JTAG ICE [12], MSP430 FET

[13]) target the debugging of programs running on real hardware. By requiring

additional hardware, they are not practical to use on the field and they do not

scale. Also, they do not allow for easily understanding distributed behaviour.
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• Software emulators (e.g., MSPSIM [14], an instruction level emulator for

MSP430 microprocessors that also supports complete platforms) do not have the

cost and deployment impact of hardware emulators, but are also limited in their

capabilities to reproduce WSN field behaviour, even when integrated in

environments such as the ones presented in the next bullet.

• Integrated environments like EmStar [15], a tool to simulate/emulate hetero-

geneous systems with support for integration and interoperability between motes

and micro servers, which offers a unified set of tools to capture, view, and

analyze real-time debugging information from simulations, emulations, and

deployments; Avrora [16], a simulation, emulation, and analysis framework for

an Atmel/Mica2 platform; or COOJA/MSPSIM [17] that offers a heterogeneous

simulator/emulator environment that also enables interoperability testing and

power profiling.

• Test-beds enable developers to run WSN applications in real hardware and are the

closest to reality as one can get in a lab. Most are private, but there are publicly

available ones that enable WSN application evaluation by allowing the uploading

of executable code and retrieval of results (e.g. MoteLab [18], 190 nodes, Harvard

University; Kansei [19], 210 nodes, Ohio State University; Indryia [20], 127

nodes, University of Singapore; and TWIST [21], 204 nodes, TUBerlin).

Given the specific scope of this survey—post-deployment WSN diagnostic

tools—two things should be highlighted: on one side, this text is not intended to

replace existing surveys on WSNs and, on the other side, to the best of the authors’

knowledge, it is the first systematic and comprehensive approach to post-

deployment WSN diagnostic tools in the literature. Therefore, it contributes to a

better understanding of the underlying key ideas, to a better knowledge of concrete

tools, their applicability and limitations, as well as to a clear view on the main trends

and research issues in the area. This is accomplished by identifying the types of

problems that justify the work in this area (Sect. 1), presenting a tool classification

proposal and defining a set of criteria that can be used to evaluate and compare the

various existing approaches (Sect. 2), describing a representative set of existing

tools, encompassing requirements, functionality, architectural choices, available

performance data, and a list of pros and cons (Sect. 3), presenting a comparative

assessment of each of the presented tools based on the developed criteria (Sect. 4)

and, last but not least, identifying open research challenges (Sect. 5). Conclusions

and directions for further work are presented in Sect. 6.

2 Classification and Evaluation Criteria

Tools that assist in the diagnosis of WSN failures are important assets. Before we

proceed to review a representative set of the available tools for debugging deployed

WSNs, it is essential to classify them, so that this classification can serve as a

framework for their subsequent evaluation.

There are several classification schemes in the literature, normally proposed in

papers presenting a specific tool. Consequently, none of these schemes is

comprehensive and/or general enough, their scope being limited to a specific area
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addressed by a relatively small number of tools. In [22], debugging solutions are

categorized into source-level debugging, query-level debugging, and decision-tree

debugging, but this classification has become out-dated with the introduction of new

machine learning techniques. Ref. [23] groups tools into active monitoring or

passive (sniffer-based) monitoring, but this classification is too general. Ref. [24]

classifies tools into watchers (making using of external hardware), loggers, and

interactive ones, based on how each node contributes to the diagnosing process. It is

a useful approach, but it does not prevent some border problems as some tools

operate in several of these modes. Ref. [25] groups tools into automatic debugging,

network visibility, and pre-deployment coverage analysis, which, although it is a

possible approach, it is not comprehensive enough.

Looking at the various classification schemes, it is apparent that there is

increasing difficulty in grouping tools based on any single criteria. This is due to the

fact that the scope of the available tools is becoming larger, as they support multiple

operating modes, automation levels, network visibility and resource usage levels,

among many other features.

Having this in mind, we propose a multi-dimensional classification and

evaluation framework, based on three major vectors, according to Fig. 1:

architectural aspects, functional aspects and dynamic aspects. These are explained

in the following sub-sections.

Fig. 1 Classification and evaluation dimensions
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2.1 Architectural Aspects

Architectural options determine fundamental aspects of the tools’ behaviour,

functionality and usability. In what concerns architecture, the following aspects

have been considered: scope of analysis, collection triggering, forwarding

mechanisms, node participation and developer effort.

2.1.1 Scope of Analysis

Several strategies can be used in terms of scope of analysis. One possibility is to try

and diagnose problems looking at the WSN as a whole, by combining information

from multiples nodes. Typically, this is done at a management unit (MU), usually

connected to the sink, either by using simple rules based on collected information or

more sophisticated machine learning techniques to help diagnose the problems.

Another possibility is to rely on cooperation between nodes to diagnose problems in

a distributed way, possibly with some kind of traffic reduction by aggregation of

information at some nodes. Finally, another possibility is to monitor and debug

individual nodes’ behaviour, without considering information from others nodes. In

addition, diagnosing can either be performed online or offline (post-mortem).

2.1.2 Collection Triggering

Forwarding information to a management unit may imply high energy costs. In

order to minimize these costs there are two basic strategies that, in some cases, can

be combined: query-based—the user asks for specific information at run-time; or

event reporting—nodes report events in an unsolicited manner although, in some

cases, the user can configure the level and periodicity of the reporting. Reported

events can be diverse, ranging from low-level events (e.g., a code trace) to high-

level events (e.g., the result of a predicate evaluation). Flash-based logging is

typically used as a temporary solution before applying one of the previously

mentioned mechanisms. Nevertheless, it can also be used to save information that

will be manually collected at a later point in time.

2.1.3 Forwarding Mechanisms

The communication channel impacts WSN resource consumption and, ultimately,

its applications’ behaviour. In what concerns forwarding of information, some

strategies do not interfere with the global WSN by using dedicated sniffer nodes,

while others require a secondary communications channel on the monitored node.

The latter option leads to lower reliability and lower costs than the former, but has a

higher impact on energy consumption. In spite of this, it does not consume main

application bandwidth. Nevertheless, the most used approach is to use the node’s

main application communication channel, as this does not require any extra

hardware. The price to pay is the impact of the monitoring traffic on the node

resources. In what concerns the protocol stack, some approaches use the target

application network protocols, others work on top of MAC, and others use their own
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complete stack, and are thus lighter and/or more robust to failures of the main

application stack.

2.1.4 Node Participation

There are several approaches to WSN debugging in what concerns the nodes’

contribution to the process. They can be classified into:

• Node passive participation—all the monitoring is done by sniffer nodes, either

networked or stand-alone. This provides non-interference with the monitored

WSN at the expense of additional hardware, leads to a good understanding of

communication problems, but does not allow the detection of failures that do not

affect the transmitted data.

• Node logging—the application code is instrumented to log the desired

information. Specific techniques differ, depending on the developer effort, on

the consumed resources, on the intended robustness, and on the impact on the

WSN application. This approach has the advantage of giving access to the run-

time node status. The drawback is added resource consumption and the

dependence on the WSN operating condition.

• Node management (state modification, function calls, code debugging, code

updating)—in relation to the previous approach, this approach adds the options

to change state and to execute several operations on the node as, for instance,

running debugging code or updating it. This leads to greater management

flexibility, at the expense of more resources, primarily ROM and RAM, but also

bandwidth and energy, depending on the usage pattern.

2.1.5 Developer’s Effort

In what concerns the developer’s effort, three categories have been considered: (1)

Light—there is no need for code instrumentation and the management station

application is almost plug and play; (2) Medium—simple code instrumentation is

required and the management station application may require some configuration;

(3) High—complex code instrumentation is required and/or the management station

application requires the writing of scripts.

2.2 Functional Aspects

Functional aspects basically determine what can be done with the tool and with

what resources. The following aspects have been considered: supported function-

ality, collected information, application types, languages and platforms, and

required resources.

2.2.1 Supported Functionality

Each tool offers a set of functions. In this topic we identify the main functionality

and give information on the technique supporting it.
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2.2.2 Collected Information

The collected information is, in general, of a diverse nature, and can be restricted by

the way each node contributes to the management process. For instance, tools that

do not operate inside the node do not have access to the node status, such as the

energy level or memory usage.

2.2.3 Applications Types

The WSN application type has implications on the applicability of the tools. For

instance, tools that only rely on traffic information are dependent on the traffic

pattern and are limited by the scope of the collected information. Monitoring

applications frequently generate traffic, and this can be used to detect anomalies by

resorting to techniques that rely on traffic observation. Event driven applications

can be running for long periods of time without generating traffic, until some event

occurs. Nevertheless, diagnosing networks by just observing their traffic is not

enough because, for example, this does not allow the ability to easily

distinguishing a ‘‘no news’’ situation from a ‘‘malfunctioning node’’ situation.

Tools for query-driven applications depend on the application query pattern. If

enough traffic is generated, the same techniques that are applicable to monitoring

applications can be used. Otherwise, techniques that actively generate reports

should be employed.

2.2.4 Languages and Platforms

This topic identifies what are the tool’s supported node programming languages

(e.g. nesC, C), operating systems (e.g. TinyOS, Contiki, MantisOS, LiteOS,

freeRTOS), and platforms (e.g. MicaZ, TelosB, Iris).

2.2.5 Required Resources

Different tools can have different requirements in terms of the target sensor node

platform (e.g. on ROM/RAM, energy, bandwidth, CPU), management station

hardware, and other hardware (e.g. sniffer nodes).

2.3 Dynamic Aspects

A set of features determine the adaptability and applicability of a tool to different

conditions. These were grouped under the ‘dynamic aspects’ category and include

flexibility, extensibility, scalability, mobility support and heterogeneity.

Flexibility determines the ability to access state and/or execute code that was not

anticipated before the WSN deployment. This is important because sometimes it is

not easy to deploy additional debugging functionally on a running WSN.
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Extensibility is the feature that enables adding more capabilities to the tool’s

basic capability set. This not only enables coping with more types of problems but

also impacts the number of tools in the developer toolbox.

Scalability relates to the ability of the tool to support a bigger and more complex

WSN (i.e. more nodes, more traffic) and at the same time, not requiring

proportionally more resources, including human resources to analyse their outputs.

Mobility support provides the ability to deal with node mobility, which is an

essential feature in some WSNs.

Heterogeneity relates to the ability to support scenarios where there are nodes

with diverse hardware or software. This can range from minor software version

differences to differences in hardware.

3 Tool Description

Before presenting a comparative assessment of the various WSN diagnostic tools

according to the classification and evaluation criteria described in Sect. 2, in this

section we provide an overview of each tool’s functionality, requirements,

architectural choices, available performance data, positive aspects and drawbacks.

When deciding in what order to present and describe the tools, the option was to

group the tools in the following way:

• Traffic-based tools—these tools mostly operate on network traffic and try to

diagnose a failure by using data analysis techniques;

• Node state tools—these tools use on-node components that collect and output

each node’s information, or enable interactive node debugging, in order to help

the user analyse a failure;

• Global state tools—these tools combine information from multiple nodes to

discover and/or diagnose failures, usually by identifying an inconsistent or

invalid global state.

Inside each group we used the ascending publication year to help assess the tool

development context and evolution trends. Table 1 identifies the described tools and

the groups they belong to. Tools marked with a bold X are described in the Global

States Tools section. Note that this grouping is for the purpose of presentation only.

In addition, the table identifies the main purpose of each of the tools.

Before proceeding to the description of the tools, it should be noted that there are

tools/techniques related to the surveyed ones that will not be presented and

evaluated because these are tools for improving safe operations and not for

diagnosing. Examples of such tools are Safe TinyOS [26] and Interface Contracts

[27]. The former enforces type and memory safety at run time, supports safety break

reports, and protects TinyOS applications from array and pointer errors, detecting

them before they corrupt the memory. The latter checks proper interface use in

TinyOS applications by allowing to state pre/post conditions on component

interfaces use and reporting on their violations.
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Table 1 Tool grouping

Tool name Traffic-

based

Node

state

Global

state

Main purpose

Sympathy

[28]

X Failure detection (e.g., node crash, node reboot, no

neighbours, no route, bad path to node) and root cause

identification and localization

SNIF [29,

30]

X Detection of node problems (e.g. unexpected node reboot),

link problems (e.g. isolated node), path problems (e.g.

orphaned node) and global problems (e.g. partitioned

network)

SNTS [31] X Automatic failure analysis with focus on environment-

related problems, namely node connectivity,

communication errors, and sensing range

LiveNet

[23]

X Providing information on the dynamics of a WSN (enables

node traffic rate analysis, hotspot identification, network

topology discovery, and routing paths determination)

Nucleos

[33]

X Enabling access to each node’s internal state in order to

support monitoring of running applications. Can operate in

a query-based mode or in a node-generated event mode

EnviroLog

[34]

X Distributed tool, executing in WSN nodes and allowing to

record and replay asynchronous events, thus providing

repeatability of experimental testing

Marionette

[36]

X Enabling limited debugging of WSN applications, using a

management workstation. The tool has the capability to

call functions and read/write variables on a remote WSN

node

Clairvoyant

[37]

X Source-level debugger for WSNs that supports post-

deployment node debugging without requiring application

source code modification

NodeMD

[38]

X Managing WSN nodes in the presence of software faults (i.e.

stack overflow, deadlock, livelock, and application specific

faults)

L-SNMS

[40]

X Management tool that supports node configuration, status

querying, event reporting, and remote reprogramming

LIS [24] X Framework designed to enable the monitoring of WSN

applications execution, mainly providing execution trace

generation and state logging

Memento

[42]

X WSN failure detection and symptoms alerting service using

user provided failure detection functions

DT [35] X X X Debugging of WSN applications in a flexible and efficient

way. The tool features a declarative programming

language with which multiple debugging techniques can

be implemented

Dustminer

[44]

X X Detection and identification of failure root causes that result

from complex interactions between different components

(e.g., MAC performance problem). Based on machine-

learning techniques

MEGS [45] X Definition and further evaluation of assertions and

predicates, based on the collected WSN state, to pinpoint

the localization of anomalous behaviour (e.g. routing cycle

detection)
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3.1 Traffic Based Tools

3.1.1 Sympathy

The tool aims to provide failure detection and root cause identification and

localization. The main idea behind Sympathy [28] is that a properly working

monitoring WSN application should produce a continuous flow of data. When the

tool detects a node generating less traffic than is expected, a failure diagnostic is

triggered.

The tool’s architecture is based on a node component that answers sink queries

and also transmits metrics, and a set of sink components responsible for collecting

metrics, detecting failures, identifying their root causes, localizing their sources, and

notifying the user.

Metrics can be calculated at the sink from application traffic, from traffic

captured by a sniffer at the sink, or from the sink application itself. Optionally active

metrics can also be generated at the Sympathy node component, thus extending the

use of Sympathy beyond its main monitoring applications target.

Three groups of metrics are available: connectivity metrics that collect each node’s

routing table and neighbour list, as well as the sink neighbour list; flow metrics that

collect transmitted and received packet information for each application component at

each node and at the sink, in addition to the last timestamp at the sink; and node

metrics that include node uptime, node counters, and good and bad packet counters.

Using the collected metrics, Sympathy tries to identify the failure cause (e.g., node

crash, node reboot, no neighbours, no route, bad path to node), and to pinpoint its

source with the help of a decision tree, based on some heuristics and lessons learnt

from previous deployments. The tool distinguishes between three possible localized

sources for a node failure: self (the problem is in the node), path (the problem is a

failure in the path from the node to the sink), and sink (the problem is in the sink).

Sympathy also distinguishes between primary failures (localized on the node

itself) and secondary failures. Primary failures are highlighted since they cannot be

traced to any other cause and can potentially be the cause of other failures.

Table 1 continued

Tool name Traffic-

based

Node

state

Global

state

Main purpose

Wringer

[22, 46]

X Debugging, supported on predicates specification and

monitoring and the definition of actions that should be

taken when predicates are met

MDB [47] X Debugger for the MacroLab programming system that

targets the debugging of logical, configuration, and

synchronization errors

PDA [49,

50]

X X Failure detection (e.g. functional- and timing-related bugs)

and hinting to their causes. Enables to formulating

assertions in order to verify hypotheses about distributed

WSN state
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Evaluation results support the stated claim that Sympathy accurately detects

failures with low network overhead and low latency. There is a trade-off between

detection latency (time between failure injection and user notification by the

system) and accuracy (number of primary failures identification). The impact on

detection latency of running a different routing protocol, varying the traffic pattern,

or having multiple simultaneous failures is quite small.

In what concerns Sympathy’s overhead:

• the impact of increasing the active metric period (reducing the traffic) on the

detection latency depends on the failure type;

• the tool takes 47 bytes of RAM and 1,558 bytes of ROM; adding the ping-about

command increases the RAM usage to 97 bytes and the program memory to

1900 bytes;

• the system is extendable with more metrics.

Sympathy’s main advantages include the support for single-hop or multi-hop

tree-based routing, no need for modifications to the application code because it

collects the information from TinyOS (with the exception of traffic information

collection on the individual application components), the use of the same channel as

the node’s main application and, last but not least, a small impact on the target node

flash and RAM.

On the other hand, Sympathy was not developed for event-driven applications,

although it can support them with some resource waste, by explicitly querying a

node or by using active metrics. In addition, the support of new, user-defined

metrics requires node reprogramming.

3.1.2 SNIF

The main idea behind Sensor Network Inspection Framework (SNIF) [29, 30] is to

deploy a monitoring WSN in the same scenario as the monitored network. Each node

will have two radios, one to monitor the traffic and another one to forward the

information to a base station. In this way there will be no impact on the functioning of the

monitored network. According to the authors, with this technique it is possible to detect

node problems (e.g. unexpected node reboot), link problems (e.g. isolated node), path

problems (e.g. orphaned node) and global problems (e.g. partitioned network).

The system architecture is composed of four major blocks: radio listening, packet

decoding, data stream processing, and root cause analysis. These components

require the specification of several physical layer parameters, a packet description,

an operator graph for supporting data stream problem detection, and a decision tree

for primary problem identification.

The tool’s major advantage is the non-interference with the monitored WSN, as it

has no impact on the application code, it does not use sensor network resources,

inspection is separated from the application, and the tool deployment and removal

does not affect the functioning of the monitored network.

The disadvantages include the need for resource duplication—a new, separate

network is needed—and the fact that it does not detect problems that do not have

impact on the communications.
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3.1.3 SNTS

Sensor Network Troubleshooting Suite (SNTS) [31] performs automated failure

diagnoses in a WSN. The main idea is to collect traffic in a non-invasive way,

classify segments of this traffic as normal or abnormal using developer-provided

knowledge, and subsequently use machine-learning techniques to build a rule-based

model. The model is expressed as a set of conditions over metrics derived from the

captured traffic, and should correctly classify a high traffic percentage.

The tool’s architecture has two main components: data collection and data

analysis.

The collection component uses debugging nodes that passively collect the traffic

information and save it on local memory. At the end of the experiment these nodes

forward the information to a workstation for subsequent data analysis.

The data analysis component extracts the relevant information from the merged

logs received from the nodes, and further splits these data into segments. Each

segment will be classified as normal or anomalous using the user-provided decision

function. For each traffic group, metrics are generated and used for training a

machine-learning algorithm, so that it can infer the rules for segment classification.

The rules for classifying segments as anomalous should provide clues to help the

developer understand the failure causes.

As an example on how to use SNTS, the authors described its application to the

identification of an occasional duplication ID bug on EnviroTrack [32]. SNTS led to

the conclusion that the problem derived from design assumptions that did not apply

in the field (namely, 100 % sensory coverage and groups with more than one

member), and also helped in tuning the algorithm.

The following are the main SNTS advantages: it enables automatic failure

analysis with a focus on environment-related problems, namely node connectivity,

communication errors, and sensing range that impact distributed component

interaction; it does not depend on the monitored WSN node software, the only

requirements being a compatible sniffer radio, a packet description, and a decision

function; data collection and analysis components are independent from the

monitored WSN application and the tool is applicable to various scenarios;

deployment, use, and removal of the tool does not impact the monitored network.

The main disadvantages are the following: being an offline tool, with the aim of

avoiding interference with the WSN, it cannot be used as a continuous monitoring

solution; as it is sniffer-based, it requires the existence of traffic, which can be

difficult to obtain in query or event-based applications; as it requires sniffer nodes, it

leads to resource duplication; the tool was not designed to detect failures that do not

impact traffic in such a way that enables its classification into normal or anomalous.

3.1.4 LiveNet

The main objective of LiveNet [23] is to provide information on the dynamics of a

deployed WSN. Specifically, it enables node traffic rate analysis, hotspot

identification, network topology discovery, and routing paths determination.
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The tool uses sniffer nodes that are co-deployed with the monitored network.

These nodes record packet traces observed on the radio channel. Traces from all the

nodes are then collected and merged into a single trace that can be further analyzed.

The merging process is done offline, on a dedicated machine, due to its complexity

and high processing and storage requirements.

LiveNet enables the following types of analysis on the merged packet traces:

• Coverage—used to estimate the coverage of the LiveNet sniffers.

• Traffic rate and hotspot identification—allows to measure the traffic generated

by each node and to identify the nodes that are in the top list of packet origins or

destinations.

• Topology—used to discover the network topology.

• Routing path inference—a path inference algorithm was developed to determine

the most probable path between any two nodes at any given point in time.

The tool validation was done in an indoor testbed with 188 TmoteSky nodes, half

of them used as sniffers and the other half constituting the monitored network. It

was also done in an outdoor scenario simulating a bus accident where sensors read

victims’ vital signs data that were subsequently forwarded, through the WSN, to a

command post.

In the indoor testbed the measured results were the following:

• Sniffer reception rate—maximum 100 packets per second—100 % reception

ratio.

• Merge performance—between 301 s (for 2 traces) and 2,859 s (for 25 traces).

For a small number of traces to merge, the merging could be done in real-time

(each trace represents 1,000 s of packet data).

• Merge accuracy—0.14 % duplicate and 0.005 % out-of-order packets were

found in the merged trace.

• Coverage—90 % coverage was achieved with 27 sniffers. The coverage ratio

was topology-dependent.

• Topology reconstruction (in a scenario where 10 nodes forwarded data along a

spanning tree to a sink)—16 % of the links were discovered using unicast

packets. By using the neighbour table beacons, it was possible to discover 93 %

of the links.

• Path inference—in a scenario where 2 nodes communicated using a predefined

set of paths that changed every 300 s (used as ground truth), the algorithm

correctly identified these paths.

The disaster scenario evaluation provided information on how the tool behaved in

the field. Interesting results included: detecting a potential routing protocol bug that

manifested itself as a storm of corrupted routing maintenance packets; coverage

results were impacted by having mobile nodes; network topology was chaotic

because of node mobility/reboots; the repeaters were identified as hotspots; the path

inference algorithm identified most of the paths; it was possible to identify the

reasons (i.e. packet loss, node failures/reboots, query timeout) for having a 20 %

average data yield during the experiment.
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The ability to analyse routing, congestion, and topology problems is among the

main advantages of this tool. In addition, deployment and removal of the tool does

not impact the monitored network. The main disadvantages of the tool are the

following: the tool was not designed to pinpoint problems in real-time; it only works

on packets received by the TinyOS Active Messages Layer; it requires extra

hardware (sniffer nodes); and, last but not least, the tool was not designed to detect

problems that do not have impact on network traffic.

3.2 Node State Tools

3.2.1 Nucleos

The basic idea behind Nucleos [33] is to enable wireless access to each node’s

internal state (TinyOS nesC components data structures) in order to support

monitoring of running applications. Nucleos can operate in a query-based mode or

in a node-generated event mode.

The Nucleos network architecture was designed to support two different traffic

patterns, namely collection of WSN health data, and dissemination of management

commands and queries. The query and event subsystems can optionally utilize the

main application network component, thus saving memory at the expense of

reduced robustness.

In order to use the query functionality, the application developer has to choose

which attributes (e.g. variables) to export. These will be the ones that can be queried

when the system is running. For each of these attributes, the developer has to write a

piece of code that will read and provide the attribute value to the Nucleos runtime

query system that will further send it to the base station as the result of a specific

query.

The aim of the event logging functionality is to give the developer the means to

insert debugging calls in the application code. When the developer wants to retrieve

the event log he/she should send a remote playback command to the node set he/she

wants to read from. The system supports additional features, such as controlling the

remote playback traffic flow, enabling real-time retrieval, or retrieving messages

from specific components.

Based on the communication, query, and event logging subsystems, a set of

management components were developed to support node identification, remote

sleep/wakeup, physical parameters access, task queue statistics tracking, reboot

cause identification and statistics, an instrumented radio stack that exposes a rich set

of queryable counters, and node binding mechanisms to limit the propagation of

commands and data.

Information on the ROM usage is not available in the literature, and details on

RAM consumption depend on the chosen configuration. For instance, support for 4

active queries, separate buffers for a basic identification scheme and the input part

of the event system, several instrumented components, the full Nucleos components,

and the null application, account for 1,281 bytes.

The instrumented network stack, in conjunction with the radio duty-cycle control,

can provide real-time data to estimate energy consumption and assist in failure
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prediction. In addition, the scheduler/sensors drivers’ instrumentation allows an

estimation of CPU and sensor energy consumption. Moreover, persistent data

logging can be valuable for post-mortem analysis. Finally, multiple-root data

collection, in conjunction with epidemic dissemination, can help constructing a

reliable network at deployment time.

Nucleos’ main advantages are the following: it can be used with any WSN

application type; it is highly flexible in what concerns query and event functionality,

providing a set of useful management functions; communications do not depend on

the WSN application network protocols, although the developer has the option to

use them, thus trading ROM/RAM for reliability; it uses the same communication

hardware as the WSN main application.

Nucleos’ main disadvantages include: no support for combining and analysing

information concerning multiple attributes and/or nodes; the developer has to state

at compile time what are the exported attributes and also write their respective

support functions; it requires instrumenting the source code with the logging calls;

to support detection of new kinds of failures complete node reprogramming is

required.

3.2.2 EnviroLog

EnviroLog [34] is a distributed tool that executes in WSN nodes and allows

recording and replaying asynchronous events, thus providing repeatability of

experimental testing. The tool also enables to record state. The motivation behind

EnviroLog was to build a tool for simplifying system evaluation, tuning, and

comparability, when working with real deployment data.

The system design is based on the assumption that application data is transferred

from producer modules to consumer modules via function calls only, as is the case

of TinyOS, the tool’s host operating system. In this way, event recording is done by

logging all the corresponding function calls in the local memory. When replaying,

the consumer modules receive the previously logged data. Record and replay are

distributed operations under the control of the developer that activates/deactivates

them by sending commands from a workstation-based application.

EnviroLog’s architecture is based on three main blocks:

• Preprocessor—supports the specification of the asynchronous events that the

developer wants to record/replay, and the variables he/she wants to record/

output; this is simply done by introducing special comment instructions (called

annotations) in the nesC application code.

• Record and replay—receives control commands (i.e. record, replay, retrieve)

from the developer via the stage controller; provides the record function that is

introduced in the code by the pre-processor to record events and variables in

memory; during the replay mode, reads the memory and issues the events in

their original time sequence.

• Stage Controller—enables the communication between the developer on a

workstation and the record and replay modules inside the WSN nodes. The

available commands enable recording, replaying, and retrieving variables. These
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commands can be started, paused, or stopped. In case of retrieval operations, it is

possible to specify the node/variable the developer wants. Replay can be done at

different speeds.

EnviroLog was validated in Mica2 and XSM hardware platforms, using TinyOS

1.x. A set of benchmarks using standard TinyOS applications was done with the aim

of determining the maximum recording period, showing that it supported a 90-min

recording with a 10 Hz sampling rate, and 100 % success rate. The overhead impact

on the application runtime behaviour was found to be minimal (0.4 ms delay), and

replay accuracy was found to have a small average difference from the ground truth

(less than 1 ms). According to [35], the required resources are 15,160 bytes of flash

memory and 809 bytes of RAM when using EnviroLog to record/replay a read

sensor event in the OscilloscopeRF application.

The effectiveness of EnviroLog was demonstrated by using it in conjunction with

a surveillance system called Vigilnet, in a 37-node WSN. The record and replay

operations were shown to be effective when capturing and reproducing the

trajectories and velocities of the targets (people and vehicles). The replay

functionality enabled the optimisation of the tracking algorithm without requiring

the repetition of the experiments. The retrieval functionality was used to determine

the nodes’ energy status, in order to decide on node maintenance. By changing the

replaying velocity, the algorithm was tested while detecting targets at different

speeds.

By enabling the capture of asynchronous events in real scenarios and replay them

when needed, EnviroLog eases system evaluation, tuning and comparability. Low or

high-level events, at any application layer, can trigger event recording. EnviroLog is

easy to use, does not depend on the type of application (although it targets event-

based applications), and does not require extra hardware.

The main EnviroLog disadvantages are the following: changing the record/replay

configuration requires application code instrumentation, which implies having

access to the nodes. In addition, it is specific to TinyOS 1.x on Mica2, or compatible

motes.

3.2.3 Marionette

Marionette [36] enables limited debugging of TinyOS-based WSN applications,

using a management workstation.

The tool has the capability to call functions and read/write variables on a remote

WSN node. To use this functionality, all the developer has to do is to ‘‘tag’’ the

functions that will be remotely callable in the application source code, and deploy

the application on the WSN. One of the provided diagnosing applications is a

remote terminal, through which the user has access to the objects that constitute the

running application and the possibility to execute remote code, change variables,

and display application information.

More sophisticated tasks such as traffic monitoring, routing algorithm stress

testing, and application fine-tuning, can be done by writing small scripts in Python

that will be executed at the management station. In these scripts, remote node
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functions and variables are accessible using almost the same nesC object syntax.

Individual nodes or the entire network can be addressed.

As a development tool, Marionette enables the developer to decide on how much

of the application will stay on the nodes and how much of it will stay on the

management station side. Moreover, this decision can be changed over the

development cycle. This allows, for instance, for better testing of the algorithms in

an initial development stage and, at a latter stage, to achieve an adequate balance

between efficiency (communications’ costs) and visibility (access to state) by

moving more functionally to the node part of the application.

Marionette’s functionality is implemented on a simplified embedded remote

procedure call architecture that consumes less than 4 KB of ROM and 153 bytes of

RAM. This includes all the supported mechanisms and a minimal set of function

calls. Variable read/write functionality does not increase these numbers, although

additional tags to enable more functions to be remotely called will increase the used

memory in an amount of 100 ROM bytes per remotely accessible function.

Marionette’s simplified remote procedure call server uses native data types for

network data transmission, native functions definition as interface definitions, does

not support threading or queuing, and is added to the target application code. Also

added to the target application code is a component that provides the ability to read/

write in any memory address. Two communication modes are available, namely

local communication and multi-hop, using Drip for query dissemination and Drain

to retrieve the answers.

In order to evaluate Marionette, two different perspectives were selected. The

first one was to analyze the impact on the application code sizes of several

applications. The second approach was to show how simple Python scripts enabled

the creation of new functionality for a WSN without requiring node reprogramming.

In the first case, evidence was presented supporting the claim that Marionette leads

to smaller code size than the one that would be needed to develop code to access the

variables/functions, although these savings are not clearly documented.

The main Marionette advantages include: ease of access to node variables, as this

does not require developer source code modification; simple remote code execution,

just requiring the addition of a ‘‘@rpc’’ tag to the interfaces/functions one wants to

access; easy application development, allowing the developer to freely decide about

the application architecture; script-based applications can use information from

various nodes; it does not depend on the type of WSN application; functionality can

be added to an already deployed WSN application by scripting on the management

station side, using remote access capabilities; multi-hop or single-hop in-band

communications; availability for TinyOS 2.x.

The main Marionette limitations are related to the heavy use of communica-

tions, leading to an increase in energy consumption, impact on the network

algorithm performance, and latency and packet loss effects on the application. In

addition, Marionette is not a full debugging solution, as it does not support

breakpoints, watches and traces. Moreover, variable read/write is only done in a

task context, and the set of the functions that can be remotely called is fixed at

compile time.
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3.2.4 Clairvoyant

Clairvoyant [37] is a source-level debugger for WSNs that supports post-

deployment node debugging without requiring application source code modifica-

tion, something made possible by the use of dynamic binary code instrumentation.

A developer can perform node debugging by issuing appropriate commands

through a terminal window, in Gnu Debugger style. These commands are sent using

the main application communication channel. Besides supporting the usual debug

commands like break, step, watch, and backtrace, and more specific commands that

enable reading RAM/flash memory and analysing/call interrupts, it also supports

network-wide commands (e.g., gstop, gcontinue, gdetach, greset and gbreak) in

order to simplify the issue of sending multiple single commands and, at the same

time, providing a way to synchronise nodes. The system also supports command

logging, by allowing the definition of points in the code where variables can be

logged (if some condition is verified) to the LEDs, RAM, flash, or radio.

The system architecture is based on a host side component and a component

running in the target node.

The host side component supports several debugging units. Each unit reuses Gnu

Debugger (GBD) as much as possible for the basic commands, supporting specific

commands on a component called Clairvoyant DeBugger (CDB). The developer

communicates with the debugger via a terminal interface, much like GDB.

Visualization components can be used in order to graphically display the debug

information that is forwarded from the sensor network.

Node side components are based on a command interpreter and multiple command

executors. They are compiled and loaded in the boot sector of the nodes. After the boot

process, this code loads the application and transfers control to it, but it also interfaces

with the radio stack in order to detect user debug commands and to communicate.

The current version of Clairvoyant works on a Mica2 (TinyOS) platform and

requires 32 KB of flash and 1 KB of RAM. The following summarizes the

performance evaluation results:

• Execution speed is impacted only when executing the watch and cond debug

commands. Log commands have a diverse impact, with LEDs and RAM being

the ones with less impact.

• The impact on radio communication seems to be acceptable if the user refrains

from using too many network-wide commands.

• Dynamic binary code instrumentation puts pressure on the nodes’ life due to the

fact that there are limits to the number of times the flash can be reprogrammed.

Commands like watch and step can, if not carefully used, have great impact on

the flash life.

• Clock and Timer consistency—clock consistency is preserved for most of the

debugger commands; for fast logging commands, clock consistency is traded by

reduced delay in the execution of these commands.

In [37], the authors describe how the debugger was used in identifying stack

overflow and deadlock situations that occurred in a previous version of TinyOS 1.x

code.
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The main advantages of Clairvoyant include the availability of powerful

debugging commands that are easy to learn and use and do not require application

source code modification, the use of the same channel as the nodes’ application for

debug communication, and a minimal impact on node performance.

Clairvoyant’s main disadvantages are the 32 KB program memory requirement

that limits its applicability, the negative impact on the nodes hardware lifetime if

there is heavy use of the cond and watch commands, and the requirement for the

application to use a low-level stack similar to Clairvoyant and not turn off/sleep the

radio in a way that disables the debugging option.

3.2.5 NodeMD

This tool [38] aims at managing WSN nodes in the presence of software faults. In

order to accomplish its goal, the tool implements mechanisms to detect faults before

they disable the system; logs predefined events to help in remote debugging;

informs the user about faults; and provides a remote debugging mode after putting

the system in a stable state.

The system was developed to be used in conjunction with the multithreading

Mantis operating system. This guided the authors to focus on stack overflow,

deadlock, livelock, and application specific faults. The system architecture

comprises three main subsystems—fault detection, fault notification, and fault

diagnosis—succinctly described below.

3.2.5.1 Fault Detection Monitoring the system’s health can be accomplished in

various ways depending on the fault type.

Stack overflow detection is done by automatically instrumenting the source code

with code that checks stack overflow at the entry point of the application and

operating system functions.

Deadlock and livelock detection make use of a thread checkpoint mechanism.

The basic idea is that in WSN applications the developer has an estimate of a thread

execution period. This information is then provided in the application code and the

checkpoint mechanism periodically checks each thread condition considering this

estimate plus some tolerance.

Application specific faults are supported by the inclusion of an assertion

mechanism that the developer can use in order to enable the system to test specific

conditions.

3.2.5.2 Fault Notification The system keeps an execution trace of specific system

events such as context switches, procedure call and return, hardware interrupts,

thread blocks and unblocks, software timer set and unset, thread sleep/wakeup

behaviour, and threads creation and exiting. Custom application events can also be

defined in order to provide the manager an image of the node execution history.

When a fault is detected the tool freezes the system in order to preserve the state,

and only reinitializes the specific software components required to support the

notification and diagnosis mechanisms. After that, the system administrator is
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notified, error cause and event trace are sent, and the system enters a standby mode

waiting for the administrator’s instructions.

3.2.5.3 Fault Diagnosis In debug mode, the administrator can send commands to

obtain additional details (such as system parameters not previously sent, memory

dump), fine-tuning the monitoring parameters and restarting the node with the

objective of replicating the error and obtaining more information.

The tool’s effectiveness was validated in experiments that created stack overflow,

deadlock, and livelock conditions. The authors also identified a legacy bug in

Mantis by analysing NodeMD-generated traces. In what concerns the impact on

ROM and RAM requirements (MicaZ/Mantis platform), the system was evaluated

using two different applications, namely blink_led, and FireWxNet [39]. The latter

is a relatively complex application that monitors weather conditions in wildfire-

prone scenarios. The impact of adding NodeMD to the above applications was an

addition of 3,556 and 4,266 bytes of ROM for blink_led and FireWxNet,

respectively. There was also an increase of 302 and 292 bytes in RAM usage by

blink_led and FireWxNet, respectively.

The log operations are claimed to take between 43 and 79 cycles, values that the

authors think are unlikely to change the program execution order; the same applies

to the stack overflow detection code. The authors also claim that the majority of

WSN applications have abundance of free CPU cycles, so that frequent checking

procedures will not affect the overall application timing. Due to the low impact on

normal program execution and memory use, the authors claim the tool should not

have a substantial impact on battery life. Nevertheless, debugging sessions add on

energy expenditure, depending on their duration and communications use.

The following stand out as main advantages of the tool: automation of stack

overflow detection, simple mechanism to enable livelock/deadlock detection,

independence from the type of applications, good debugging capabilities, and in-

band communications.

The main disadvantages/limitations of the tool are its orientation to software

faults only, thread-based deadlock and livelock detection only, the lack of detailed

information on energy and CPU impact, and the fact that the tool is only supported

on Mantis.

3.2.6 L-SNMS

Lightweight Sensor Network Management System (L-SNMS) [40] was developed

as a management tool to support node configuration, status querying, event

reporting, and remote reprogramming.

L-SNMS is organized around three main components, namely: a remote

procedure call mechanism based on Marionette [36] that enables to call

configuration functions on the node and to get/set status parameters; a specifi-

cally-developed run-time event report mechanism; and a node reprogramming

component supported on Deluge [41].
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The run-time configurable event report mechanism is based on a node component

that offers the developer two interfaces: EventReport and EventConfig. The

EventReport interface offers a command that enables the developer to report an

event (namely, a self-describing string with variable references, like in a printf) and

assign a type and priority to it. The EventConfig interface enables run-time changes

to event priorities via the remote procedure call mechanism.

In addition to node event reporting and node reprogramming functionality,

L-SNMS major difference with respect to Marionette is that, while Marionette

offers a scripting language environment to enable interaction with the sensor

network, L-SNMS offers a JAVA-based graphical management application that

simplifies management work. The management application tools include topology

display, real-time event display and configuration, remote parameter query and

changing, remote procedure call, remote node reprogramming, and a sink-based

sniffer that records communication between the nodes.

The authors state that L-SNMS was tested in a real field experiment to monitor

volcano activity, where it was used to monitor/control the network status and to enable

geologists to adjust the network focus on certain data types or specifically interesting

volcano spots. ROM and RAM requirements for L-SNMS, in the volcano scenario,

were 2,924 and 588 bytes, respectively, using MicaZ motes and TinyOS 1.x.

L-SNMS’s main advantages are: the graphical management application; a

simplified mechanism to enable remote function call (just requiring a ‘‘@rpc’’ tag at

the interfaces/functions); no need to produce code to access functions or variables; it

does not depend on the type of applications; its very good debugging capability; the

support for multi-hop or single-hop in-band communications.

On the other side, L-SNMS’s disadvantages are the following: by heavily relying

on wireless communications, more traffic is generated to support remote access to

variables and functions, with an impact on energy consumption and on network

algorithm performance; although event reporting is tuneable in terms of priority and

event type, it is not optimized; variable read/write operations can only be performed

in task context; the developer has, at compile time, to state what functions will be

remotely callable.

3.2.7 LIS

Log Instrumentation Specification (LIS) [24] is a framework designed to enable the

monitoring of WSN’s applications execution, mainly providing execution trace

generation and state logging.

The LIS architecture relies on a PC-based instrumentation engine that modifies

the WSN application source code in order to include logging statements, and on a

runtime logging module located at the nodes.

In order to use LIS, a developer has to produce an LIS script using a declarative

language, describing the logging mechanisms to deploy and their location in the

WSN application source code. After that, an instrumentation engine parses the

source code and the LIS script and, as a result, produces application source code

instrumented with LIS logging function calls. Also added to the code that executes
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on the node is an LIS support runtime library that supports the node logging

function calls and the log data storage and retrieving functionality.

During runtime, execution traces and state are saved on local memory and can

also be sent to the sink node using either the Collection Tree Protocol (CTP) or the

TinyOS AMSend interface. When the packets arrive at the sink node they can be

parsed using a generic LIS parser and the LIS script information to produce

meaningful information.

The authors claim the LIS language can be used directly or as an intermediate

language supporting reusable high-level tasks definitions. The three uses of high-

level tasks are:

• Region of Interest (ROI) Call Trace Monitoring The developer can specify a

ROI (e.g. one TinyOS subsystem) and the system generates the corresponding

LIS script that will create a log of the function calls inside the subsystem;

• System Health Monitoring An LIS script that collects information on the WSN

health status can be built; e.g. such a script was created to help diagnose CTP

problems by collecting protocol execution traces and state;

• Problem solving Using LIS to do some high-level debugging by writing small

scripts that help pinpoint problems. Even if the problem is not precisely

identified, narrowing the region will help when doing source code debugging.

The system was evaluated on TinyOS 2.1 (MicaZ and TelosB) and detailed

statistics on program and RAM memory usage were provided. In the case of the

MicaZ node, using the CTP protocol, the system consumed 1,798 bytes of program

memory and 394 bytes of RAM. This amount did not include 14 bytes for each

logging call. Each logging function call consumed CPU cycles and introduced

latency. This should be taken into account when logging in time-critical systems.

Nevertheless, the authors claim the system enabled them to diagnose timing

problems in the CC2420 radio stack.

LIS’ advantages are the following: flexible and powerful logging supported by

easy-to-develop LIS scripts; it can be used to build more sophisticated analysis

systems; developers are not required to modify the application source code; LIS

communication uses the same channel as the node main application; a small impact

on target applications (small latency and light use of flash and RAM memory);

portability, as it is not restricted to applications written in nesC language (it supports

any C language based application because it is applied after nesC to C pre-

processing is done). The disadvantages include the need for scripting, and requiring

node reprogramming whenever new logging functionality is needed.

3.3 Global State Tools

3.3.1 Memento

The goal of Memento [42] is to provide an efficient WSN failure detection and

symptoms alerting service.
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Network health status is represented as a collection of status bitmaps. Each status

bitmap describes the state of all WSN nodes in respect to a health condition (e.g.

node being alive, low energy, congestion, etc.).

Memento is architected around two main components: a distributed failure

detector and an efficient communication protocol to deliver state summaries.

At each node, a specific code is running in order to individually monitor the

node’s health. If a health condition change is detected, the local copy of the status

bitmap for that condition will change in the bit position corresponding to the node.

The used control delivery mechanism is based on the aggregation, at each parent

node, of the child local status bitmaps. The aggregation operator is just a simple

bitwise OR. In this way, each status bitmap sent in the direction of the sink

summarizes the status of the sub-tree starting at and including the node. This

mechanism is repeated periodically. By using caching mechanisms at parent nodes

that enable child nodes to refrain from transmitting whenever no health condition

has changed, the aggregation mechanism is reported to achieve an 80–90 %

bandwidth reduction when compared to standard data collection methods.

The system was implemented on a Mica2/TinyOS platform and tested in a

network with 55 nodes. The application protocol was the one used by Memento for

reporting the state. In [42] it is reported that the system consumes 400 bytes of

RAM.

Memento’s advantages include no restrictions on the application type, use of

multi-hop tree-based routing with node traffic aggregation and optimization, use of

the same communication channel as the nodes’ main application, and packet-loss-

resilient node failure detection.

As main disadvantages, Memento requires the development of the node failure

detection functions needed for health condition diagnosis, meaning that detection of

new kinds of failures require node reprogramming. No information is available on

the impact of detection functions and of the aggregation mechanism on program

memory usage.

3.3.2 DT

Declarative Tracepoints (DT) [35] was designed to support the debugging of WSN

applications in a flexible and efficient way. The tool features a declarative

programming language with which multiple debugging techniques can be imple-

mented. For example, the tool can be programmed to offer the core functionality of

StackGuard [43], Sympathy, EnviroLog, and NodeMD. In addition, DT supports node

loading/unloading of debugging engines, each one supporting a debugging technique,

enabling the developer to select, at runtime, the debugging technique to use.

DT’s architecture includes workstation components to generate each debugging

engine (called a tracepoint engine), in order to interact with the nodes and to

interpret the traces they generate. On the node side, each tracepoint engine is

responsible for supporting a debugging technique.

In order to use DT, a developer has to write a script using the DT-specific

TraceSQL declarative language, with the objective of problem debugging. The

script can contain configuration statements, variable declarations, use built-in
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functions and at least a tracepoint declaration. It is targeted at investigating a

possible cause of the problem. A tracepoint declaration specifies the place on the

application code where to introduce the tracepoint, the action it should accomplish,

and an optional condition predicate that enables the conditional execution of the

tracepoint action.

A Python-based compiler receives the DT script and the WSN application source

code as input and generates a tracepoint engine in C language that will be further

compiled and sent to a node to be loaded. The traces generated by the tracepoints

are collected, parsed by a trace interpreter at the workstation, and finally outputted

for further analysis.

The efficiency of DT was measured according to the following perspectives: time

to discover a bug, effort to code a debug technique, flash and RAM consumption,

and CPU consumption.

Time to discover a bug The authors evaluated the tool effectiveness for detecting

two known bugs in an outdated version of the LiteOS operating system. By applying

DT to this version, they concluded that DT was able to detect the bugs in a very

short period, ranging from a few hours to 1 day. They also identified new bugs.

Effort to code a debug technique Implementing EnviroLog and NodeMD major

functionalities, using DT, enabled the authors to compare the original versions with

the new ones. Recreating these tools in DT required more work than using the

original versions, due to the fact that each tool’s functionality had to be expressed as

a small program; nevertheless, the authors claim it is a small price to pay for having

a flexible tool.

Flash and RAM consumption Comparing EnviroLog and NodeMD original

versions with the same functionality in DT is difficult because, on one side, the

paper0s results show DT as more efficient but, on the other side, LiteOS is a

multithreading operating system supporting dynamic loading, flash storage and

logging mechanism (something quite different from plain TinyOS) and all this

functionality is used by DT. The maximum values reported were a consumption of

3 % flash and 10 % RAM on a LiteOS/MicaZ platform. The external flash

consumption, when used to save logs, depends on the amount of logging activity.

CPU consumption This is related to the number of tracepoints and their

associated actions. For tracepoints with no actions or read/write memory actions, the

CPU consumption will be no more than 12 % (in the evaluated scenario with 15

tracepoints). When using file operations on the tracepoint actions (requiring read/

write in external flash) the overhead can scale up to 70 %.

DT’s main advantages are: it does not depend on the type of application; it does

not require application source code modification; it provides flexible development

of debugging engines in order to support various debugging techniques; the

debugging engines can be loaded/unloaded during runtime; it does not require extra

hardware.

DT’s main disadvantages are: it requires scripting; porting DT to platforms other

than LiteOS/MicaZ may be complex as DT requires multithreading, runtime binary

code loading, a flash based file system, and several console commands that facilitate

the access to data on the node.
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3.3.3 Dustminer

Dustminer [44] is aimed at detecting failures that result from complex interactions

between different components. These failures include the ones that do not manifest

themselves in any single component and, thus, would not be detected by analysing

their individual state. The approach taken by the tool is to record events in log

sessions and, in a second phase, to single out sequences of events that could expose

the failure reasons, using machine-learning techniques.

Dustminer uses a modular architecture based on three independent layers, namely

collection front-ends, data processing middleware, and data analysis back-ends.

This flexibility allows addressing various applications and platforms by enabling the

developer to use the most adequate combination of collection mechanisms (e.g.,

packet sniffers, node internal logging, simulation based logging) and data analysis

back-ends (e.g., one or more data analysis algorithms, a visualization tool) in order

to analyze the failures and identify their root causes.

In what concerns the flexibility to choose the front-end, there are implicit

tradeoffs between visibility (inside node logging) and non-interference (passive

sniffers), and also between reality (real hardware) and cost (simulators).

The front-end generated log files are sent to the data processing middleware,

where the first step is to convert them into a generic data format with the help of a

user-supplied format template. The next step is to parse this raw data and extract the

meaningful events, using developer-supplied application-specific event descriptions.

At this point, each log has been transformed into a sequence of events that must be

labelled as ‘‘bad’’ or ‘‘good’’ through a user-provided software module that decides

on which label to assign. The final operations carried on by the data processing

middleware are converting the labelled sequences of events into the formats

required by the data analysis tools used in the data analysis back-end.

The data analysis back-end can use any of several algorithms to identify the

causes of failures. In [44] the authors adapted a frequently used discriminative

pattern mining algorithm to extracting the sequences of events that led to failures.

The system was evaluated by testing its effectiveness in identifying a LiteOS

kernel bug and in discovering a performance degradation problem in a new MAC

protocol for TinyOS. In both cases, the tool helped to discover the failure root

causes.

Dustminer’s support for debugging the MAC problem introduced an overhead of

14,670 bytes of program memory (including TinyOS BlockRead and BlockWrite

functions) and 830 bytes of RAM. Each log function added between one line of

code and n ? 1 lines of code (for an event with n parameters). The time required for

the analysis was *6 min in a 2.53 GHz/512 MB RAM machine. The maximum

impact of the logging mechanism on the MAC throughput was under 2 %.

The main advantages of Dustminer are its ability to work on various platforms

and application types using appropriate collection mechanisms and data analysis

algorithms, the ability to trade-off between visibility/non-interference and reality/

cost, and the fact that it can be used to debug an already deployed WSN.

On the other hand, the main disadvantages are: being an offline tool, it cannot be

used as a monitor; the inability to pinpoint the bugs’ location in the application
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code; it requires the developer to write the module that labels logged data as ‘‘bad’’

or ‘‘good’’.

3.3.4 MEGS

The authors of Monitored External Global State (MEGS) [45] claim that the tool can

re-create the global state of a WSN using the debug output sent via a side channel to

a workstation by the WSN nodes.

The tool’s architecture is based on a node component that outputs the value of

variables and information on the reached assertion points. All this information is

processed in a workstation in order to generate global performance metrics and to

detect invalid WSN state.

In order to support the debug generation, the developer has to instrument the

nodes with code that sends the value of specific variables, at least when they change

values, via a side channel. These variables are chosen according to the problem

being diagnosed.

The tool enables the definition of assertions and predicates (written in JAVA) that

are evaluated at the workstation against the re-created WSN state, in order to

pinpoint the localization of the anomalous behaviour. For each variable being

observed in a node, there is a mirror variable in the workstation.

MEGS can use the collected values to create graphics of aggregate values over

time, e.g. to know the average hop count to the sink over time. If the user defines a

predicate over the global state, he/she can know when it is true and for how long.

Finally, the system allows the definition of assertions that use variables from various

nodes and are triggered at defined positions in the application code.

The tool was tested with TOSSIM and also in a testbed. The test case selected to

evaluate the tool was routing cycle detection on the TinyOS 1.x MintRoute

algorithm.

MEGS’ main advantage is the minimal impact on the main application, due to the

fact that it uses side-channel communication. The downside of this low impact is

radio hardware duplication or restrained mobility if using serial cables between

nodes and the workstation. An additional negative aspect is the need for node source

code instrumentation and for writing JAVA code in order to support predicate/

assertion evaluation. The authors additionally identify the impact of node

synchronization mechanism limitations.

3.3.5 Wringer

Wringer [22, 46] is a lightweight, TinyOS 2-based, rapid-prototyping framework for

WSNs that focuses on ‘‘predicate-oriented debugging’’. The system enables the

specification and monitoring of predicates (i.e., conditions based on a local or

distributed system state) and the definition of actions that should be taken when the

predicates are met.

Wringer is based on a lightweight Scheme programming language interpreter

located at each node, working as a separate application with its own memory, code

management and, at least, requiring access to the MAC layer. If the application
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already uses a routing protocol and a data dissemination protocol, it will be used.

Otherwise, this functionality can be defined in Wringer.

The tool is organized around three building blocks, that are used to support the

predicate evaluation functionality: primitives, which can be native or dynamically

loaded, and are triggered by certain events; variables, which maintain the nodes’

state and may be used by primitives (by parsing application code, Wringer knows

how to access the variables in runtime); and triggers, which may be fired on variable

value changes, packet reception, timeouts, or function calls.

Node predicate evaluation begins when a trigger fires. The condition verifier is

then invoked in order to evaluate the Boolean expression representing the predicate.

If the condition is met, the data processor will perform some local processing and/or

packet transmission.

Wringer is a proposal that offers local and network-wide debugging facilities

supported on a predicate paradigm. In the network-wide case, it is not clear from

[46] how the system supports distributed predicates or the ‘‘collaborative logging’’

service that enables a node to replicate other node’s state.

Wringer’s advantages include not requiring application code modification, using

the same communication channel as the WSN application, and ease of specification

of predicates describing network state conditions that can be deployed during WSN

operation. The main disadvantages are related to the fact that it is an unfinished tool

with an unknown impact on node resources, node synchronization and message loss,

and lack of a predicate library to help in identifying classes of problems.

3.3.6 MDB

Macrodebugging (MDB) [47] is a post-mortem debugger for the MacroLab

programming system [48]. MacroLab provides a Matlab-based vector syntax

language where all the node information is presented to the user in vector form and

the user can use the standard set of Matlab vector operations to develop a macro-

program.

Macro-programs are programs that are made using high-level programming

abstractions. The need for MDB derives from the fact that although available

macro-programming tools simplify program creation, they do not make debugging

easier as one still has to debug at the node level. MDB targets the debugging of

logical, configuration and synchronization errors.

The MacroLab system compiles a macro-program written in its high-level

language down to micro-programs in the nesC language that will be further

compiled and run at individual nodes. System state recreation in MDB is supported

by logging data traces to node memory. Node logging functionality is automatically

added by the MacroLab compiler. After program execution, the logs can be

retrieved using TinyOS CTP in order to enable further offline debugging.

When a macro-program is running, probably not all the nodes are executing the

same code at the same time. To cope with this, MDB offers two distinct ways of

visualizing the WSN state: logical views that allow the user to see a distributed state

at a specific macro-program operation; and temporal views that allow the user to

view the distributed state at a specific point in time. These views are the very basis
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of the system, supporting common debugging commands such as breakpoint, step,

continue (in the logical view interface), as well as jump and step (in the temporal

view interface).

In addition to state views, MDB also provides historical search and hypothetical

changes functionality. These do not require code deployment, as they operate on

previously collected system state.

The historical search allows the user to specify complex queries over the

distributed system state history. This can, for instance, be used to investigate the

occurrence of bugs or to analyze the distributed system state data over time.

Hypothetical changes simulate the impact of program modifications that can be

useful, for instance, to verify if a code modification can correct a specific bug.

Hypothetical changes can also enable testing the impact of adding processing and

data synchronization primitives to a macro-program.

Logging data has an impact on energy consumption. However, removing the

logging code from production systems can open the door to heisenbugs. The found

solution was to use MDB Lite, which does not log state but preserves memory use

pattern and program timing.

The tool’s evaluation—carried out for common WSN applications such as Surge,

OTA, and Acoustic Monitoring—proved that logging data is more efficient than

logging events. This was done by comparing the number of interrupts generated per

100 data states written to flash. The result was that the number of data state update

interrupts was lower than logging event interrupts, the difference being between

14–32 times less interrupts.

In what concerns resource consumption, the maximum RAM requirement was

304 bytes (OTA). The TelosB 1 MB flash enabled logging a maximum of 9 h

(Surge) and a minimum of 1 h (OTA). The impact of the logging code on CPU

execution time was less than 0.5 %. Energy consumption increased by 30 % when

using MDB with OTA in a low-power-listening 1-s interval configuration. When

MDB Lite was used in the same configuration, this overhead was 0.9 %. Finally, the

authors do not provide statistics on MDB’s impact on program size.

As main advantages of MDB, the authors refer its ability to perform debugging at

a very high-level with no need for code instrumentation nor constraints on the

application type. It also does not require extra hardware. On the other hand, the

disadvantages include the fact that it is a post mortem debugger, it is restricted to

applications written in MacroLab, and it lacks information on flash memory

overhead.

3.3.7 PDA

The goal of Passive Distributed Assertions (PDA) [49, 50] is to aid in failure

detection and in providing hints on their causes. PDA enables one to formulate

assertions in a declarative language in order to verify hypotheses about the

distributed WSN state.

Assertions are evaluated at a backend, using state information previously

outputted by the nodes. To support the output of node state information, at each
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node there is a runtime module that outputs assertions information and attribute

values periodically or when there is any change.

In order to use PDA, the developer has to insert the distributed assertions to be

evaluated in the application source code. An assertion takes the form of a Boolean

expression over node attributes (e.g. local node variables or attributes in other

nodes) that is evaluated when the program flow reaches it. If the assertion fails, the

developer is notified and has access to the assertion source code location and to the

corresponding attribute values.

In order to collect the information outputted by the nodes, the tool supports

several strategies: in-band sending of information, logging at each node, logging at

sniffer nodes, using a wireless sniffer network, using a wireless testbed, and having

a wired testbed. Coming from the former to the latter, there is a decrease in

interference with the sensor network application, at the expense of an increase in the

complexity of the collection infrastructure. Some of these strategies are more

appropriate to be used during development and others are more appropriate for field

use.

Two important aspects addressed by the tool are trace synchronization

(implemented in a way that avoids the WSN nodes to be synchronized) and

dealing with inaccurate traces (allowing assertions to be in various stages and have a

final result of success, failure or unknown). Further analysis on the assertion results

can be done by inspecting the values of the attributes and their states at evaluation

time.

The tool was tested in a scenario where it was used during the complete life cycle

of a specially developed tracking application. The application ran on a WSN with 8

BTnodes equipped with a CC1000 radio. Other 2 BTnodes formed a sniffer network

using a Bluetooth radio to forward the information to the backend. The authors

concluded that the periodic attribute update messages and two specific assertions

accounted for the majority of the outputted traffic, which averaged 3.6 bytes per

second.

Concerning PDA’s accuracy, around 10 % of the assertions were not decidable

due to the loss of attribute update messages. This, in turn, related to the used trace

collection mechanism. As a consequence of this level of accuracy, the authors

identified the possibility of missing transient or sporadic problems.

The authors claim that PDA can be useful in identifying functional- and timing-

related bugs. PDA’s main advantages are its ability to perform failure detection and

cause identification with the possibility to trade between visibility and required

infrastructure (the balance can be changed during application development), and its

independence from the application type.

On the other hand, the tool has some drawbacks and limitations: it requires the

developer to insert assertions into the application code and to state what attributes

should be outputted; failure detection is critically dependent on the correctness and

completeness of the assertions that largely depend on the skill of the developer;

node reprogramming is required to change and/or update assertions; the tool does

not allow the analysis of system state evolution over time. In addition, PDA

scalability issues are related to the number of nodes on the network (impact on the

sniffer network), the update frequency of assertions and attributes (impact on the
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sniffer network and on node resources), as well as the number of nodes involved in

an assertion (the number of non-decidable assertions increases with the number of

nodes involved). Finally, the impact on node resources is not documented, being

bound between pure sniffer solutions and solutions exclusively based on node

resources.

4 Comparative Assessment

In order to endow the reader with an overall view of the WSN diagnostic tools

presented in Sect. 3, in this section a tabular comparison is presented, using the three

major classification vectors proposed in Sect. 2: architectural aspects, functional

aspects, and dynamic aspects. In the tool comparison tables we maintained the

ordering used in the tool summaries: traffic-based tools, node state tools, and global

state tools. In the tables the tools groups are differentiated by the light gray

background. The information contained in the tables is derived from the tool

description papers referred to in Sect. 3. The section ends with some overall

considerations on the approach taken by some of the more representative tools and

on their scope.

4.1 Architectural Aspects

Table 2 presents the comparative assessment of the various tools from the points of

view of the following architectural aspects: scope of analysis, collection triggering,

forwarding mechanisms, node participation and developer effort.

4.2 Functional Aspects

Table 3 presents the comparative assessment of the various tools, from the

functional aspects’ points of view, namely, supported functionality, collected

information, application types, languages, OSs and platforms, and required

resources. In addition, a column was added, providing information on the tools’

availability. Whenever there is no information on a certain characteristic, NI is used

in the table.

4.3 Dynamic Aspects

Table 4 presents the comparative assessment of the various tools, from the dynamic

aspects points of view, namely flexibility, extensibility, scalability, mobility and

heterogeneity. Whenever there is no information on a certain characteristic, NI is

used in the table. If the characteristic is not applicable, NA is used.

Concerning scalability, the tools were marked with ‘‘NO(1)’’ if the used

diagnostic mechanisms primarily target the internal debugging of individual nodes.

These tools can be used on a network-wide basis (e.g., as is the case of Marionette

and Nucleos in the Trio experiment) but this requires considerable effort in order to
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analyse the results and derive a global perspective. In the case of LIS, the tool

supports the generation of scripts that can be used for network-wide diagnostics.

Concerning mobility, tools marked as ‘‘YES(1)’’ can be used in mobile node

scenarios as they have the option of using the WSN main application communi-

cation protocol for their communication needs. Tools marked as ‘‘YES(2)’’ operate

in sniffer mode and any mobility support is conditioned by the sniffers radio range.

Concerning heterogeneity, tools marked as ‘‘YES(1)’’ have the ability to retrieve

an XML file describing the component structures used on specific nodes. The tools

marked with ‘‘YES(2)’’ can work on a sniffer mode and, in this way, work with a

variety of nodes as long as their internal aspects are not visible to the outside.

4.4 Overall Comments

The majority of the presented tools were developed for TinyOS 1.x. and were not

ported to TinyOS 2.x. Tools for other WSN operating systems are uncommon,

which is not surprising considering that TinyOS was the cornerstone in supporting

research in WSNs.

Tools that are based on specifically developed components that run on the nodes

are inherently dependent on the platform/OS. The approach followed by LIS—C

code instrumentation—was a significant step in increasing the tools’ generality by

not requiring programs to be written in nesC. Also tools that decouple collecting

from analysing, such as PDA and Dustminer, potentially increase generality.

Table 4 Tool comparison according to the various dynamic aspects
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Marionette and DT cover more use cases by supporting scripting languages. Sniffer-

based tools are less dependent on the platform/OS, but the failure space they can

diagnose is limited by the information that can be extracted from traffic. In addition,

they require more equipment and deployment work.

Mobility is not explicitly covered in the documentation of most of the tools. One

can assume that in the cases where the monitoring data is forwarded with the

support of the main applications network protocols, the tools will accommodate the

node mobility patterns.

In the following sub-sections, some comments specific to the tools in each of the

groups used for presentation—traffic-based tools, node state tools, and global state

tools—are provided.

4.4.1 Traffic-Based Tools

Most traffic-based tools use machine-learning algorithms for analyzing packet

traces, in order to support automatic network-related failure detection and diagnosis.

Due to their traffic-based nature, they are essentially applicable to monitoring

applications.

Sniffer-based tools can support higher platform diversity and do not have an

impact on WSN node resources. It can be said that these tools trade non-interference

and independence from the monitored WSN for the extra hardware required by

sniffer mechanisms. In addition, as these tools do not interfere with the nodes, they

can easily be used on already deployed WSNs.

Traffic-based tools have good scalability potential. Regarding mobility, it is

conditioned by the sniffer nodes coverage. These tools usually have good support

for heterogeneity, as long as the various platforms under study do not impact the

packet traces. By not requiring node code modification, there is not much work on

the developer side in order to configure these tools.

4.4.2 Node State Tools

Node state tools use on-node components that collect and output per node

information, such as state, code or event traces. Some of these tools also enable

interactive node debugging, in order to help the user analyse a failure. The majority

of node state tools can support some level of node management functionality. By

supporting their functionality on on-node components, they can be used in all types

of applications, although they usually target TinyOS-based applications, the

exception being NodeMD.

Node resource consumption is a concern that implies using as little ROM/RAM,

processing, and communications as possible. ROM/RAM usage by the tools in this

group is quite different from tools like Clairvoyant that requires 32 KB ROM

(restricting its use to platforms with such resources), or, on the opposite side,

Marionette that requires a minimum of 1 KB ROM.

When debugging time-sensitive code sections, special care should be taken. This

is the case of Clairvoyant and LIS that try to minimise the impact of their own code

latency in the debugging of time-critical code sections.
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Node state tools that support interactive node debugging are quite flexible,

typically enabling access to state information and code execution not anticipated

before the WSN deployment. In general, these tools allow adding more capabilities

to the basic set. Scalability is normally limited, mostly because they do not support

automated debugging. Mobility is typically supported or dependent on the used

information forwarding mechanisms. Roughly half the tools can use the WSN

application protocols, and the other half makes use of their own protocol stack. The

used approach is determined by the trade-off between robustness and ROM/RAM

resources. Most of the tools do not cope with platform diversity.

The effort required to prepare the tools in this group is, in general, medium. The

majority of the tools do not require the writing of node code, the exceptions being

Nucleos and partly NodeMD. Nevertheless, some of them require the user to insert

simple, special comments in the source code. LIS and Marionette offer server side

scripting capabilities.

4.4.3 Global State Tools

Global state tools combine information from multiple nodes in order to discover and

diagnose failures, using a variety of techniques that try to identify an inconsistent or

invalid global state. For instance, PDA, Wringer and MEGS use assertions or

predicates over the global state. DT and Dustminer operate off-line over event/state

traces, and MDB operates off-line over data traces. These tools have no restrictions

on the application type, but mostly only support TinyOS. DT supports LiteOS, and

Dustminer supports TinyOS and LiteOS. With the exceptions of DT and Dustminer,

there is not much information on ROM/RAM usage.

In general, these tools are extensible and scalable, mobility support is dependent

on the tool configuration or on the sniffer’s range, and they have limited

heterogeneity support. None of the presented tools in this group is publicly available

for download.

Most global state tools do the analyses on a separate workstation. In the cases of

DT, Dustminer, and MDB the analysis is done off-line due to the necessary CPU

resources. In these cases, traces are saved in the nodes’ flash and collected after the

test finishes. As in the case of node state tools, the required preparation effort to use

the tools is, in general, not high.

5 Research Challenges

The overall view of the WSN diagnostic tools presented in Sect. 3 and their

comparative assessment provided in Sect. 4 clearly point to the fact that

considerable effort has been done in order to develop diagnostic tools that are as

easy-to-use and as general as possible. Nevertheless, the carried out analysis also

points to the fact that although some of the more recent tools go in that direction,

there is still a long way to go.

In general, the use of the presented tools outside the environments for which they

were developed has been residual or even null due to several reasons. These include
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lack of maturity, not being part of the most common operating systems and/or

software packages, or in several cases, simply not being available at all.

Nevertheless, the most important reasons have to do with the need for additional

research addressing several key aspects of any effective post-deployment diagnostic

tool. This section identifies these key research challenges, again using the three

major classification vectors proposed in Sect. 2, namely, architectural aspects,

functional aspects and dynamic aspects.

5.1 Architectural Aspects

With the exception of traffic-based tools, most WSN post-deployment diagnostic

tools require a significant effort in terms of both configuration and use. Even in the

cases for which the configuration effort is not high—such as in the cases of

Clairvoyant and MDB—the user has to perform a step-by-step diagnosis.

Thus, in what concerns architectural aspects, the challenge is to conceive and

develop tools for which configuration and use are simplified. One possible way

forward would be to include scripting languages in the tools and/or provide sets of

scripts to perform a variety of diagnostic actions, in line with what is already done in

the case of the DT, although without its limitations in terms of operating systems

and offline operation.

5.2 Functional Aspects

Most tools have been developed for the TinyOS operating system and many of those

do not work with version 2 of TinyOS. Tools for other operating systems are scarce.

Some examples are NodeMD (for MantisOS) and DT (for LiteOS). The only tool

supporting two operating systems is Dustminer.

Portability of most tools is hampered by the fact that they use specific

programming languages, such as nesC. The approach followed by LIS—i.e., C code

instrumentation—is a good step towards portability.

Another important portability-enabling feature would be the careful structuring

of the various software components that constitute them, in order to ease the

separation of system-dependent modules from generic modules. This is probably the

most important research challenge when functional aspects are concerned.

5.3 Dynamic Aspects

Several research challenges exist regarding the various dynamic aspects under

consideration. One of them has to do with scalability. With the increasing use of

WSNs for home automation and commercial or industrial buildings management,

this will lead to an increase in the number of WSNs to be managed by a single

organisation. Thus, scalability must be regarded not only in terms of the number of

supported nodes in a single WSN, but also in terms of the number of different

WSNs that have to be monitored and/or diagnosed. The available diagnostic tools

only address the former problem, not the latter. This embodies several limitations,

as it requires a manager to use several monitoring interfaces (one for each WSN),
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instead of providing a single view of the various WSNs. Moreover, an integrated

view has the potential to ease the diagnosis of problems that manifest themselves

across various WSNs.

Another important research issue is the support for mobility, as many application

scenarios require it. When a tool uses the same protocol stack as the main WSN

application, then the mobility scenarios supported by the application are also

supported by the tool. However, for tools that are sniffer-based or tools with their

own protocol stack, mobility support is not automatic. In this context, it is apparent

that mobility support is far from being stabilised in the existing tools and many

research issues are still open.

Many WSN applications require dealing with a diversity of sensors, sensor data

and configuration parameters, requiring different processing, storage and commu-

nication capabilities. For instance, in the case of an intrusion detection WSN

application, some nodes with video acquisition and processing capabilities may be

cooperating with movement detection nodes. In cases like these, it is important that

the tool is able to deal with node heterogeneity, a characteristic still absent in many

tools. This ability is also important in order to make the tool more resilient to node

replacement (e.g., due to node malfunction) when this replacement involves

components not exactly the same as the replaced ones, and to allow for

interoperation of equipment from different vendors. In this respect, standardisation

efforts—such as the ones developed in the context of the IETF’s 6LowPAN working

group—lead to the definition of Management Information Bases (MIB) and the use

of the Simple Network Management Protocol (SNMP) in WSNs, and are key

enablers for research and development activity on tools’ heterogeneity support.

6 Conclusion

In this paper, a representative set of tools that enable post-deployment failure

diagnosis in Wireless Sensor Networks has been surveyed, with the aim of

providing the reader with a broad view of the state-of-the-art and of helping to

understand open challenges and possible research directions.

The individual description of each tool covered its main operation principle,

underlying paradigm, architecture, main functionality, validation and assessment,

main advantages and main disadvantages. In addition, a comparative assessment

was presented, considering three major evaluation dimensions: architectural aspects,

functional aspects and dynamic aspects.

Although functionality is a key aspect when choosing a diagnostic tool, the

developer effort required to use it—comprising its configuration and also the

debugging work—as well as node resource consumption, namely ROM/RAM,

processing, communications, and energy, are decisive factors. In this line, the more

recent tools try to minimize node code instrumentation efforts, reduce the analysis

work, increase the tools’ applicability and, at the same time, minimize resource

usage.

Many challenges still remain concerning post-deployment WSN diagnostic tools.

The maturity of ambient intelligence will inevitably lead to an increase in the
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number of networked embedded systems, as well as their heterogeneity, mobility

needs, and size. Monitoring and debugging tools will have to cope with this trend

and, additionally, be able to extend their scope to several geographically distant

networks at the same time. Another important challenge is security, an aspect that is

not covered by existing tools. On one side, the functionality of several of the

existing tools would be highly affected if encryption of the monitored data were

used. On the other, it is essential to guarantee the security of the monitored as well

as the monitoring information.

The availability of WSN failure diagnostic tools is a key aspect in progressing

from lab WSNs to real-world, deployed WSNs. Currently, there is no standard tool

in this area, and the majority of the tools reviewed in this paper are not sufficiently

mature, stable, or well supported, being mostly research projects. As a result, many

of them are unavailable to the community. This is mainly due to the fact that WSNs

are a relatively new area, mostly driven by academia. Nevertheless, there is clearly

an on-going effort to build developer-friendly, easy-to-use, light-impact, non-

intrusive, general tools. A key factor to the success of this effort will be the native

deployment of appropriate functionality in WSN platforms and operating systems,

although this is a process that will necessarily take considerable time.
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