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Abstract. Hyper-Heuristics is a recent area of research concerned with
the automatic design of algorithms. In this paper we propose a grammar-
based hyper-heuristic to automate the design of an Evolutionary Algo-
rithm component, namely the parent selection mechanism. More pre-
cisely, we present a grammar that defines the number of individuals that
should be selected, and how they should be chosen in order to adjust the
selective pressure. Knapsack Problems are used to assess the capacity to
evolve selection strategies. The results obtained show that the proposed
approach is able to evolve general selection methods that are competitive
with the ones usually described in the literature.

1 Introduction

Evolutionary Algorithms (EAs) are computational methods loosely inspired by
the principles of natural selection and genetics, that have been successfully ap-
plied over time to complex problems involving optimization, learning or design.
EAs work by defining an initial population of candidate solutions to the problem,
which are then iteratively improved by means of variation operators. The subset
of individuals that undergo the modification process must be selected according
to some fitness criteria. The quality of the solutions achieved by the EA de-
pend on the careful adjustment of some its components and/or parameters. The
design is usually performed off-line, by hand, and requires the use of expertise
knowledge.

Hyper-Heuristics (HH) is a recent area of research, involving the construction
of specific, high-level, heuristic problem solvers, by searching the space of possible
low-level heuristics for the particular problem one wants to solve [10]. HH can be
divided in two major groups [1]: the selection group encompasses HH that search
for the best sequence of low-level heuristics, selected from a set of predefined
methods usually applied to the problem one intends to solve; the other group
includes methods that promote the creation of new heuristics. In the later case,
the HH iteratively learns the specific algorithm which is then applied to solve the
problem at hand. During this process, the HH are usually guided by feedback
obtained through the execution of each candidate solution in instances of the
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problem that needs to be solved. Genetic Programming (GP), a branch of EAs,
has been increasingly adopted as a HH to search for effective problem solving
algorithmic strategies [3][8]. In the recent years, Grammatical Evolution (GE)
[7], a form of GP, has been used with success as a HH, since it allows the
enforcement of semantic and syntactic restrictions, by means of a grammar.

In this paper we propose and test a GE-based HH framework to evolve a
EA particular component. Specifically, we propose a framework to evolve the
selection mechanism used by the EA. With this goal in mind, we expect to obtain
selection mechanisms that are general, and are able to successfully guide EAs to
solve the problem at hand. The selection component is important for the success
of the algorithm, since it determines which individuals should be combined to
produce new solutions. We describe a set of experiments, where we show that the
framework is able to evolve selection algorithms that are competitive with the
ones commonly used in EAs. Moreover we investigate the generalization capacity
of the evolved algorithms, by applying them to unseen scenarios. The results are
statistical validated.

The paper is organized as follows. In section 2 we discuss some previous
relevant work on HH for nature-inspired algorithms, and present the grammar
used to evolve selection strategies. In section 3 we introduce the experimental
setup for the learning phase and present the results. Section 4 deals with the
validation and generalization of the learned selection strategies. In section 5 we
summarize the results and suggest directions for future work.

2 A Grammatical Evolution Hyper-Heuristic

The proposed HH relies on GE to search for selection methods. GE is a GP
branch, more specifically a form of Grammar-based GP, in which the variation
operators are applied to solutions encoded as binary strings. A mapping process
is then required to decode this information into an executable algorithmic strat-
egy. The mapping is done by means of a grammar and this process decouples the
search engine from the evaluation mechanism. For these reasons, a GE system
is general and flexible [7].

2.1 Grammar Definition

To apply a GE engine in our HH framework we must define a grammar whose
words are specific selection strategies. In this work we propose a grammar with
some modifications to the traditional Backus-Naur Form (BNF), inspired by [2].
These modifications aim to overcome some limitations that the BNF imposes,
namely the lack of tools to allow repetition of non-terminal symbols and ranges
of alternative values. The first extension is the addition of the operator ∼ to
signal the repetition of non-terminals. The full syntax is as follows: ∼< a ><
NT >, where < a > is an integer or terminal value, indicating that the non-
terminal < NT > should be repeated < a > times. The second extension is the
addition of valued range alternatives. A range of numeric alternative values can
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be compactly specified, using the operator &. Thus < int >::= 0&5 is equivalent
to < int >::= 0|1|2|3|4|5. Taking these extensions into account, the grammar
used in this work is as follows:

<start > ::= <calculate -parents > <selection -strategy >

<selection -strategy > ::= parents = {~number -of-parents <elements >}

<elements > ::= get_rank (<rank >)

<rank > ::= 0 & POP_SIZE

<calculate -parents > ::= number -of-parents = (random01 () * POP_SIZE )

The< start > symbol represents the grammar axiom. The grammar starts by
calculating the number of parents that the strategy should select, according to a
percentage of the total individuals available (POP SIZE). The evolved strategies
are targeted for EAs with a crossover operators, thus we enforce an even number
of parents in the selection pool. Afterwards, a selection strategy to choose which
individuals will appear in the selection pool is generated. The solutions from
the current population are ranked by fitness and a selection strategy emerges by
defining which ranks should be chosen as parents.

2.2 Related Work

Several efforts have been reported in literature to automatically evolve nature-
inspired algorithms. In [11], Tavares et al. adopted GP to evolve a population
of mapping functions between the genotype and the phenotype. Experimental
results showed that GP finds mapping functions that can obtain results as good
as the ones that are designed by hand.

In [3], Keller et al. propose a linear-GP HH to evolve heuristics to Travel-
ling Salesman problem. In their work they propose several small languages to
reduce the search space size. They conclude that the proposed HH is able to
evolve heuristics that are able to solve the problem at hand, and that they are
parsimonious, i.e. the heuristics make a good use of the resources available.

In [12], Tavares et al. proposed a GE framework to evolve Ant Colony Op-
timization Algorithms (ACO) to the Traveling Salesman Problem. The results
showed that the proposed framework is able to evolve ACO algorithms that are
competitive with the human designed ACOs.

Lourenço et al. [5] proposed a GE based HH to evolve full-featured EAs.
The results showed that the proposed architecture is able to evolve effective
algorithms for the problems under consideration.

In [13] Woodward et al. propose an HH to evolve mapping rules that assign
fitness values to each individual in the population. These fitness values are then
used to select individuals, using a fitness-proportional mechanism. They consider
a set of transformations that can be applied to either the rank or the fitness,
and then return the new fitness value of each individual. The experiments results
conducted showed that the evolved strategies are human competitive.
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3 Learning Selection Heuristics

In this section we aim to gain insight into the capacity of the proposed HH to
evolve effective selection strategies. The settings adopted by the GE-based HH
for all the tests conducted are depicted in Table 1. Individuals evolved by the
HH encode potential parent selection strategies. To estimate their relevance, one
must access how they help an EA to solve a given problem. Therefore, each HH
individual is implanted in a standard EA, which in turn will solve an instance of
an optimization problem. The quality of the best solution found by this EA is
used to assign fitness to the corresponding evolved selection strategy. Running
an EA to assign fitness to each evolved selection strategy is a computational
expensive task. To minimize the computational overhead, we rely on the following
conditions to assess the quality of the evolved strategies: i) one single instance
of moderate size is used to assign fitness; ii) only one run is performed.

We report experiments using three different EA settings as surrogates for the
selection strategies. In all of them, the maximum population size (POP SIZE)
is set to 50 and the number of generations is set to 250. Three possible replace-
ment strategies, R1, R2, and R3, are considered (see Table 2). R1 corresponds to
a standard generational EA, whereas the last two implement a steady-state archi-
tecture where descendants compete with existing individuals for survival based
on the fitness criterion. Both R1 and R2 force the evolved selection strategies
to select a number of parents that is equal to POP SIZE, thus the grammar
production < calculate−parents > simply becomes < calculate−parents >::=
number − of − parents = POP SIZE. On the contrary, R3 allows the selec-
tion strategy to choose a number of parents that is lower than POP SIZE. All
three replacement strategies consider uniform crossover with a rate of 0.9 and
swap mutation with rate 0.01 as variation operators. Additional combinations
of variations operators were tested with similar outcomes to those reported in
this paper (detailed results are not shown due to space constraints).

Table 1: Parameter setting for the GE-based Hyper-Heuristic
Parameter Value

One Point Crossover Probability 0.9
Bit Flip Mutation 0.01

Codon Duplication Probability 0.01
Codon Pruning Probability 0.01

Population Size 100
Selection Tournament with size equal 3

Replacement Steady State
Codon Size 8

Number of Wraps 3
Codons in the initial population 50-55

Generations 50
Runs 30
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Table 2: Replacement strategies used in the surrogate EAs.
Setting Fixed Replacement Strategy

R1
Yes

Generational
R2 Steady State
R3 No Steady State

3.1 The 0-1 Knapsack Problem

The combinatorial optimization 0-1 Knapsack Problem (KP) was selected as
the testbed for our experiments. It can be described as follows: given a set of
n items, each of which with some profit p and some weight w, how should a
subset of items be selected to maximize the profit while keeping the sum of the
weights bounded to a maximum capacity C? In all instances adopted in our
study, the knapsack capacity was set to half of the sum of the weights of all
items. A standard binary representation is adopted and evaluation considers a
linear penalty function to punish invalid solutions [6].

3.2 Results

The KP instance used to evaluate the selection strategies is composed by n = 100
items. Table 3 summarizes the results of the off-line learning process. Note that
the results are displayed in terms of the normalized root mean squared error.
Every cell contains two values: the number of GE runs that discovered selection
strategies that helped the EA to discover the optimum (BestHits) and the Mean
Best Fitness (MBF ) together with the corresponding standard deviation. The
outcomes reveal that, for all training situations, the HH is able to learn effective
selection strategies.

A detailed inspection reveals that the replacement strategies used in the sur-
rogate EA lead to the appearance of selection methods with different selective
pressure. The three lines from Fig. 1 (one from each replacement strategy) help
to clarify this issue. For every setting we selected the best selection algorithm
evolved in each run and created charts displaying the distribution of the appear-
ance of the possible ranks (values displayed are averages of 30 runs). Note that
rank 0 corresponds to the best individual and rank 49 to the worst. An inspec-
tion of the figure shows that selection strategies evolved inside a generational
surrogate (R1) have a higher selective pressure than those that evolved in the
steady state surrogates. In generational EAs, the whole population is replaced
at each generation. The HH acknowledges the risk of losing good quality solu-
tions and promotes the appearance of selection strategies with a high selective
pressure, thereby maximizing the likelihood of passing information contained in
good quality solutions to the next generations. On the other hand, in steady
state surrogate EAs, the ranks are distributed more or less evenly. This results
is not unexpected, since in this scenario, the greedy replacement mechanism al-
ready ensures selective pressure: an offspring only enters the population if it is
better than its parents. Therefore the selection strategy in these EAs can act
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more like a diversity preservation mechanism. Finally, in Fig. 2 we exemplify the
rank distribution of one of the best evolved strategies, using the R1 setting.

Table 3: Hyper-Heuristic learning results (for 30 runs)
Replacement strategies

R1 R2 R3

Best Hits 30 30 30
MBF 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
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Fig. 1: Rank distribution in the best evolved strategies with the three replace-
ment settings.

4 Validation of the Learned Selection Strategies

The experiments described in this section aim to study how the best strategies
discovered by the GE-based HH behave in KP instances that are different from
the one used in learning. We selected 4 evolved strategies from each possible
replacement strategy, taking into account the following criteria: i) quality of the
solution; ii) time taken to reach a solution. In the remainder of this section these
selection strategies are identified as R11 through R14 for methods evolved with
the R1 replacement strategy, R21 through R24 for R2 replacement strategy, and
R31 through R34 for R3 replacement strategy.

This experimental study will help to gain insight into the optimization per-
formance of EAs that have the learned strategies as selection methods. Also, we
will verify if the strategies generalize well to unseen instances and are compet-
itive with standard hand-designed selection strategies. Three common selection
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Fig. 2: Example of the rank distribution of a selection strategy evolved with the
R1 setting.

options (Roulette Wheel, Tournament with size 2, and Tournament with size
3) are considered. We report results obtained with a generational and a steady-
state surrogate EAs, both of them relying on uniform crossover with rate 0.9 and
binary swap mutation with rate 1/n as variation operators. A KP instance with
1000 items and with the knapsack capacity set to half of the sum of the weights
of all items was selected for the validation analysis. In every optimization sce-
nario, 30 runs were performed and the best solution found during the execution
was recorded. To support our analysis we apply the Friedman’s ANOVA test
to check for statistical differences in the means. When differences are detected,
the post-hoc Wilcoxon Signed Rank Test, with Bonferroni correction, is applied
to perform the pairwise comparisons. In both tests we used a significance level
α = 0.05.

Fig. 3 presents the MBF box plot distribution of the 15 selected strategies
(12 evolved and 3 hand-designed) for each validation scenario: Panel a) displays
the results for the generational surrogate, whereas panel b) presents the results
for the steady-state surrogate. Clearly, the performance of the evolved strategies
is related to the configuration where they are applied. Strategies R11−R14 were
evolved with a generational EA surrogate and, as a consequence, they promote a
considerable selection pressure. Therefore it is not a surprise that these strategies
achieve good results in a validation scenario where a generational surrogate is
adopted (see Panel 3a). On the contrary, strategiesR21−R24 andR31−R34 have
a low selective pressure and are inadequate for a generational EA environment.

An opposite situation arises in the steady-state validation surrogate (panel
3b). In this scenario, and given the fitness-based replacement strategy adopted,
selection methods evolved in a generational environment converge prematurely
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to sub-optimal regions of the search space. The remaining 8 evolved strategies
were obtained in a scenario similar to the one used in this validation phase.
For that reason they contain features that help to maintain diversity and to
effectively help the EA to discover the regions of the search space containing
the best solutions. The distinction between these two sets of evolved selection
methods confirms that the HH framework is able to generate strategies that are
suited to the specific features of the training environment.

The results displayed in the two panels of Fig. 3 confirm that the HH is able
to evolve selection methods competitive with the hand-designed approaches. The
information displayed in Table 4 helps to further clarify the relative performance
of learned strategies. Considering the MBFs attained, we performed a full set
of pairwise comparisons between evolved strategies and the hand designed algo-
rithms and present a graphical overview: A +++ indicates that the algorithm
in the row is statistically better than the one in the column, and that the effect
size is large (r ≥ 0.5). As an example, R11 clearly outperforms Roulette Wheel
in the Generational surrogate. A ++ sign indicates that there are statistical dif-
ferences, and that the effect size is medium (0.3 ≤ r < 0.5). A - signals scenarios
where the algorithm in the row is worst than the one in the column. Finally, a ∼
indicates that no statistical differences between the algorithms were found. The
statistical results confirm that evolved strategies tend to perform better in situa-
tions resembling those found during learning. Selection methods R11−R14 excel
in the generational scenario and one specific strategy (R13) is able to outperform
all hand-designed approaches. When the steady-state EA surrogate is adopted,
the effectiveness of the R21 − R24 and R31 − R34 strategies is evident. The
performance of methods evolved with the R2 setting is particularly impressive,
as each one of them outperforms all hand-designed selection mechanisms.

4.1 Generalization

To complete our analysis we briefly investigate if the evolved strategies generalize
well to a problem different from that used in the learning step. We maintain our
focus on the KP class, but consider the Multiple Knapsack Problem (MKP)
variant. The MKP can be described as follows: given two sets of n items and
m knapsack constraints (resources), for each item j, a profit pj is assigned, and
for each constraint i, a consumption value rij is assigned. The goal is to find a
subset items that maximizes the profit, without exceeding the given constraint
capacities Ci. Note that the KP is a special case of the MKP when m = 1. For a
formal definition and additional information on the MKP, please refer to [4] or
[9]. For our experimental analysis we selected several MKP instances from the
OR-Library3. Due to space constraints we present results obtained with a single
MKP instance with n = 250 items and m = 5 constraints. However, results
obtained with other instances follow the same trend.

We maintain the 15 selection strategies adopted in the previous validation
analysis and keep all other optimization conditions, including the two same surro-

3 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
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gate EAs. Fig. 4 depicts the MBF box plot distribution of the selection methods,
both for the generational (panel a)) and steady-state (panel b)) surrogates. In
table 5 we summarize the statistical comparison between the strategies consid-
ered in the generalization study. The analysis of the results reveals the exact
same trend that was identified in the previous validation. Considering the per-
formance of the evolved selection strategies, there is a clear correlation between
the conditions found in the off-line learning step and those of the validation/-
generalization experiments. Additionally, optimization results are competitive
with those achieved by hand-designed approaches: R11− R14 methods tend to
outperform standard selection strategies in generational environments, whereas
R21 − R24 and R31 − R34 excel in steady-state surrogates. These outcomes
confirm that the GE-based HH was able to learn strategies that generalize well
to different KP variants.
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Fig. 3: Optimization results of the 15 selection strategies chosen for the valida-
tion study: panels (a), (b), present the results obtained with the generational
and steady state EAs, respectively.

5 Conclusions

In this paper we proposed a GE-based HH to discover effective selection strate-
gies for EAs. The proposed grammar is composed by symbols that allow the
creation of rank-based selection strategies. We demonstrated the validity of the
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Fig. 4: MKP optimization results of the 15 selection strategies chosen for the
generalization study: panels (a), (b), present the results obtained with the gen-
erational and steady state EAs, respectively.

Table 4: Statistical analysis between the learned strategies and the hand-designed
methods in the KP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ - - ∼ ∼

R12 +++ +++ - - - ∼

R13 +++ +++ ++ - - ∼

R14 +++ +++ - - - ∼

R21 - - - +++ +++ +++
R22 - - - +++ +++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 +++ - - ∼ ∼ +++
R32 - - - ∼ +++ +++
R33 +++ - - ∼ +++ +++
R34 +++ - - ∼ ∼ +++
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Table 5: Statistical analysis between the learned strategies and the hand-designed
methods in the MKP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ ∼ ∼ ∼ ∼

R12 +++ +++ +++ - ∼ ∼

R13 +++ +++ ++ - ∼ ∼

R14 +++ +++ +++ - ∼ ∼

R21 - - - +++ +++ +++
R22 - - - ∼ ++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 - - - ∼ ++ +++
R32 - - - ∼ +++ +++
R33 - - - ∼ +++ +++
R34 - - - +++ +++ +++

approach in the domain of different Knapsack Problem variants. Results ob-
tained show that the HH framework adapts the selective pressure of the evolved
mechanism, taking into account the specific features of the adopted surrogate.
Despite the simplicity of the proposed grammar, the HH was able to learn effec-
tive selection strategies, competitive with standard hand-designed mechanisms
regularly adopted in the literature. Moreover, the evolved strategies generalize
well to different variants of the problem considered in our study.

There are several possible extensions to the work described in this paper. One
possibility is to expand this framework to different problems and verify if strate-
gies evolved in one specific optimization situation generalize well to different,
possibly related, problems. Another possibility is to consider different learning
design options, such as performing multiple runs to evaluate a solution, or the
adoption of multiple training instances .

We will also consider several extensions to the grammar, by adding new
symbols that take into account different features of the individuals belonging to
the population (e.g., age).
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