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Abstract. The help provided by CASE tools in the development of software 
systems is very important. These tools are evolving by integrating new ways of 
making the job of the software engineer easier. We are developing an intelli-
gent CASE tool that integrates a module that translates natural language text 
into a UML class diagram. This translation is a complex problem and it de-
pends on the user and the vocabulary used. In this paper, we present an ap-
proach based on Case-Based Reasoning to translate natural language require-
ments to class diagrams. Our approach enables the system to adapt to the user 
vocabulary and the way that s/he models software systems. 

1 Introduction 

As software systems become bigger and more complex, researchers try to find ways 
to increase the productivity and efficiency of software development. Knowledge 
generated during the software development process can be a valuable asset for a 
software company. But in order to take advantage of this knowledge, the company 
must reuse this knowledge. This can be achieved through the use of knowledge man-
agement tools integrated in CASE tools. We are developing a CASE tool named 
REBUILDER UML that integrates a module for translation of natural language text 
into an UML class diagram [1]. This module is called REBUILDER TextToDiagram 
and uses an approach based on Case-Based Reasoning (CBR [2, 3]) and Natural Lan-
guage Processing (NLP [4]). 

Case-Based Reasoning (CBR) can be viewed as a methodology for developing 
knowledge-based systems that uses experience for reasoning about problems [5]. The 
main idea of CBR is to reuse past experiences to solve new situations or problems.  
The main objective of our work is to produce UML class diagrams from natural lan-
guage using NLP techniques and a CBR approach. Our system deals, essentially, with 
morphological, syntactic and semantic (and a bit of discourse) issues of requirements 
text. This paper describes our approach, illustrating it with examples. 

The next section describes REBUILDER UML, the CASE tool in which our ap-
proach is integrated, and NOESIS [6] a previous translation module that we devel-
oped and in which this work is based on. Section 3 presents the proposed approach 
and the developed module. Section 4 presents works that are related with our ap-
proach and makes some final remarks. 



2 REBUILDER UML and NOESIS 

REBUILDER UML is implemented as a plug-in for Enterprise Architect (EA 
www.sparxsystems.com.au), a commercial CASE tool for UML modeling. The plug-
in comprises three main modules (see Figure 1): the knowledge base (KB), the CBR 
engine, and the KB manager. The KB is the repository of knowledge that is going to 
be reused by the CBR engine. The main goal of the system is to reuse UML class 
diagrams, which are stored as cases in the case library and reused by the CBR engine. 
The knowledge base manager enables all the knowledge stored in the system to be 
maintained.  

There are two types of users in REBUILDER UML: software engineers and the 
system administrator. A software engineer uses the CASE tool to model a software 
system in development, and s/he can use REBUILDER UML commands to reuse old 
diagrams. These diagrams result from previous systems developed by her/him, or by 
the development team in which s/he is integrated. The other user type is the system 
administrator, which has the aim of keeping the KB fine tuned and updated. Since 
each software engineer has a copy of the central KB, the system administrator is re-
sponsible for making new releases of the KB and installing it in the systems of the 
development team (or teams). Thus, the role of the administrator is crucial for the 
system to be used properly by several users, enabling the sharing of knowledge 
among them. Despite this, the system can also be used in a stand alone fashion, acting 
as a knowledge repository with intelligent reuse tools for a single user. In this setup, 
the user is at the same time playing both roles: reusing and maintaining knowledge.  

 

 
Figure 1.  The architecture of REBUILDER UML, based as a plug-in for Enterprise Architect ™. 

The integration with EA is made by a plug-in, enabling REBUILDER UML to 
have access to the data model of EA, and also to its model repository. Visually, the 
user interacts with REBUILDER UML through the main menu of EA. The user can 



search, browse, retrieve and reuse past designs. Maintenance operations are also 
available for the administrator. 

NOESIS [6] was the first prototype developed within the scope of REBUILDER 
with the goal of helping the designer formalize, in the form of UML class diagrams, 
the initial software modeling step. In other words, NOESIS produced an initial UML 
diagram that could be submitted to the other reasoning modules that would then com-
plete and elaborate the initial model. The input to NOESIS is a text describing the 
structural requirements of the desired software (see [6] for examples). These texts are 
simplified in terms of language complexity, which attenuates the difficulty of under-
standing them. CBR was used to perform semantic analysis of the input text. 

NOESIS did not handle some of the most important aspects of UML class model-
ing such as class attributes and methods. We hope to ameliorate our previous work 
and attain these lacking aspects with this new implementation.  

3 REBUILDER TextToDiagram 

REBUILDER TextToDiagram comprises a morphological analyzer that outputs 
tagged text, a syntactic analyzer that outputs chunks and a semantic analyzer that 
outputs UML class diagrams, as can be seen in Figure 2. It uses the OpenNLP tool [7] 
to do the morphological and syntactic analysis. The knowledge layer comprises three 
parts: a domain ontology used to compute semantic distances between concepts; case 
indexes, which are links between cases and the ontology; and the case base, compris-
ing all the cases needed for the system to reason. The ontology comprises concepts 
and relations between concepts. Cases comprise a text, a diagram and mappings be-
tween the text and the diagram objects and relations. A case index is an association 
between a word in a case and an ontology concept.  

 

 
Figure 2.  REBUILDER TextToDiagram architecture. 



3.1 Morphological Analyzer 

The Morphological analyzer receives a text where the user expresses system require-
ments. It has essentially three phases: splitting, tokenization and POS tagging. During 
the splitting phase, it identifies all the phrases of input text (see Figure 3). 
 

Vendors may be sales employees or companies.  
Sales employees receive a basic wage and a commission, whereas 

companies only receive a commission. 
Figure 3.  Splitting of the input text. 

Then, the tokenizer breaks the identified phrases into tokens (see Figure 4). Fi-
nally, the POS tagger identifies all the grammatical categories (using tags for exam-
ple: NN for noun, NNS for plural nouns, VB for verbs, and so on) of the tokens iden-
tified as can be seen in Figure 5. 

 
 

Vendors | may | be | sales | employees | or | companies | . 
Sales | employees | receive | a | basic | wage | and | a | commission | , | 

whereas | companies | only | receive | a | commission | . 

Figure 4.  Text tokenization. 

Vendors/NNS may/MD be/VB sales/JJ employees/NNS or/CC com-
panies/NNS ./.  

Sales/NNS employees/NNS receive/VBP a/DT basic/JJ wage/NN 
and/CC a/DT commission/NN ,/, whereas/IN companies/NNS only/RB 
receive/VBP a/DT commission/NN ./. 

Figure 5.  Text POS tagging. 

3.2 Syntactic Analyzer 

The Syntactic analyzer receives all tags from the previous module and defines all the 
chunks. These chunks are syntactic units useful when looking for units of meaning 
larger than the individual words, identified in the text using shallow parsing. Figure 6 
presents the obtained chunks. The chunks produced by the syntactic analyzer are then 
passed to the semantic analyzer to produce the corresponding class diagram.  

 
[NP Vendors/NNS ] [VP may/MD be/VB ] [NP sales/JJ employ-

ees/NNS or/CC companies/NNS ] ./. 
[NP Sales/NNS employees/NNS ] [VP receive/VBP ] [NP a/DT ba-

sic/JJ wage/NN ] and/CC [NP a/DT commission/NN ] ,/, [PP whereas/IN ] 
[NP companies/NNS ] [ADVP only/RB ] [VP receive/VBP ] [NP a/DT 
commission/NN ] ./. 

Figure 6.  Text Chunking. 



3.3 Semantic Analyzer 

The Semantic analyser receives the chunks and produces the corresponding UML 
class diagram using Case Based Reasoning (CBR). Each case (see Figure 7 for an 
example) has a problem description (chunks and a text ID), the solution description 
(the UML class diagram) and the mappings between the problem terms and the solu-
tion objects (from nouns to classes, verbs to relations or methods and so on). A case 
is stored in a XMI file (XMI stands for XML Metadata Interchange, which is a pro-
posed use of XML intended to provide a standard way for programmers and other 
users to exchange information about metadata).  

 

 
Figure 7.  Example of a case. 

There are two structures used to store cases indexes: an ontology and a syntactic 
tree. The ontology reflects the semantic similarity (and relatedness) using relations of 
specialization and generalization between concepts. There are indexes in the ontology 
that establish a relation between concepts and cases. The indexes are links between 
words in the case problem description and the corresponding ontology concept. This 
association is straightforward since the domain ontology is intended not to have am-
biguities. There are also relations between chunks and cases in the syntactic tree.  

 
Root

NP

VP

NP

PP

NP

PP

NP

Case 1

Case 2

NP

VP

PP

PP

...
...

Case 3

 
Figure 8.  Example of the syntactic tree. 



The syntactic tree (see Figure 8) reflects the syntactic similarity, storing cases in 
specific nodes of chunks. For instance the phrase “A bank has many clients with sev-
eral accounts” would have the chunks [NP A/DT bank/NN ] [VP has/VBZ ] [NP 
many/JJ customers/NNS ] [PP with/IN ] [NP several/JJ accounts/NNS], so the most 
similar case with this one stored in the tree is the case 1. 

The semantic analyzer architecture was developed according to the CBR main 
steps, as we can see in the Figure 9. The first step is case retrieval, which uses the 
index structures to select a group of similar cases. Then, from these cases, the system 
selects the best case using similarity metrics (case selection). With the best case se-
lected, the system reuses it using heuristic rules (case adaptation) by mapping the 
chunks of the solution with chunks of the problem. The last process stores the process 
obtained in the case base, if the similarity (to other cases in the case base) is beyond a 
specified threshold. 

 

 
Figure 9.  Semantic analyser architecture. 

Case Retrieval 
The retrieval process comprises four algorithms that use the index structures: Syntac-
tic, Semantic Filter, Semantic and Conjunctive. All algorithms start by finding a list 
of entry points into the index structures. Verbs and names, which are associated with 
ontology concepts, are used as the entry points in the ontology. In the syntactic index 
tree, the entry point is the node with the same chunks as our target sentence. If it does 
not exist, the algorithm creates a list of entry points (above a specified threshold) 
containing nodes that represents the generalization and specialization of the target 
sentence. The core of the retrieval algorithms is presented in Figure 10. 

 
 
 
 



indices syntacticRetrieval(syntacticNodes) 
for each element in syntacticNodes 

frontier += initialFrontier 
end for 
while length(frontier) > 0 

for each element in frontier 
indices += obtainSyntacticIndeces(element) 
auxFrontier += specializations(element) + generalizations(element) 

end for 
end while 
return indices 

Figure 10.  Core of the retrieval algorithm. 

The syntactic retrieval algorithm uses only the syntactic index tree. The semantic 
filter retrieval algorithm uses the syntactic index tree and the ontology to constrain 
the search to a specific semantic distance threshold. The semantic filter algorithm 
uses the ontology to obtain concept references to names of the target sentence and 
uses these concepts as the entry points. The conjunctive retrieval algorithm uses 
both the syntactic index tree (as in the syntactic retrieval) and the ontology (as in the 
semantic filter) to retrieve indexes and in the end intersects the indices returned from 
each structure.  

Case Selection 
The selection process can chose the most similar case using seven algorithms with 
different similarity metrics: syntactic, semantic, discourse, contextual, morphological, 
Levenshtein distance and n-gram similarity. We use the chunks, tags and tokens as 
comparison units in these algorithms.  

The syntactic similarity metric verifies the number of common nodes between 
problem chunks and solution chunks. This metric is computed using the following 
formula (where T – target; S – Source, I – number of intersection nodes, nodes – 
number of nodes): 
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The semantic similarity metric verifies the semantic distance between the verbs 

and nouns of the problem and solution with this formula (MSL – Maximum Search 
Length allowed by the algorithm, constraining the search space): 
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The contextual similarity metric verifies the number of times that specific cases 

from a specific text were used. If the case was already used the algorithm returns 1 
else it returns 0. 

The discourse similarity verifies the position of each sentence of both the prob-
lem and the solution in the original text: 
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The morphological similarity metric verifies the number of common tags be-

tween the phrase of the problem and the phrase of the solution, the formula is: 
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The Levenshtein distance metric [8] is used between two phrases (chunks or tags) 

and is given by the minimum number of operations needed to transform one phrase 
into the other, where an operation is an insertion, deletion, or substitution of a single 
string. 

The n-gram similarity metric [9] is used to compare n-grams of two phrases 
(chunks, tags or tokens): 
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Each previous equation is normalized to the interval [0...1]. Then the system com-

putes a weighted sum to evaluate the overall similarity between the problem and the 
solution. That sum is given by: 
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The weights w1 through w7 are associated with each metric, the sum of the 

weights is equal to 1. In order to define a weight configuration, we are going to use 
genetic algorithms. An individual is a set of weights and the evaluation function is a 
set of test cases which are presented to the system as problems. We then compare the 
generated diagram with the pre defined diagram (established by software engineers). 
The idea of weight optimization is to minimize the distance between diagrams. 

Case Adaptation 
The adaptation process uses two algorithms: one to adapt the solution chosen for each 
phase and other to join all diagrams into one (remember that each diagram represents 
only one phrase of the original text). After the process of mapping all sentences of the 
target text with similar source sentences, we load the specific diagram. The selected 
index and names of the source diagram are replaced with the nouns encountered in 
the target sentence. Other heuristics are used to perform the adaptation, for example: 
after a prepositional phrase usually comes an attribute of the previous noun phrase; 
the first name of the phrase is always an entity; emergence and action verbs usually 



represent entities methods; state verbs represent binary attributes; attributes can be 
identified by values expressed in attributive adjectives among others. An example of 
this process can be seen in the Figure 11. 

 

 
Figure 11.  Mappings of the adaptation process. 

4 Conclusions and Related Work 

There are some research groups investigating ways of building conceptual models 
from software requirements expressed in natural language, we now provide a brief 
overview of some of these efforts and some concluding remarks.  

Illieva and Ormandjieva [10] use a methodology that can be split into four phases. 
The first phase of linguistic analysis does the POS tagging of the text followed by 
chunking (shallow parsing), the second phase of tabular representation identifies the 
subject, the verb and the object of the various sentences, the third phase of semantic 
net representation does a translation of subjects and objects to entities, and verbs and 
prepositions to relations among these entities, finally the fourth phase produce a class 
diagram representation according to some rules from the semantic net.  

In NL-OOPS [11] it is used the PLN system LOLITA, which does morphological, 
syntactic, semantic and pragmatic analysis of the input text and stores the result in a 
semantic net. NL-OOPS extracts knowledge from this semantic net: static nodes are 
mapped to classes, associations and attributes, dynamic nodes are mapped to meth-
ods.  

Research groups from Birmingham and Indianapolis [12] developed an approach 
that uses formal verification of requirements and represent them in XML. Afterwards 
the requirements are specified according to a two level grammar and finally this 
specification can be mapped to JAVA, XMI/UML or VDM++.  

Li, Dewar and Pooley [13] developed a methodology that does POS tagging, fol-
lowed by a simplification step that transforms the original text into a text with the 
triples: subject, verb and object (SVO) and finally this simplified text is mapped to 
class diagrams using predefined rules.  

This paper presents an approach to the translation of natural language text into a 
class diagram. This approach is based on CBR and is supported by an ontology. The 



main advantage of our approach is the flexibility that it possesses in relation to its 
adaptation to the user way of modeling software systems, and to the vocabulary used. 
It also enables the system to learn new knowledge, thus covering other regions of the 
search translation space. A positive aspect of this approach is the knowledge sharing 
aspect, where new system users can benefit from an already developed case base.  

REBUILDER TextToDiagram runs on an ordinary PC and is developed in C#. The 
ontology used is a domain ontology that can be pre defined, or can be learned during 
user usage of the system. The main focus of the ontology is to define an semantically 
organize every concept in the case base. These concepts are then used for similarity 
assessment and case retrieval. Our system is going to be evaluated by software engi-
neers, where we are going to measure the time spent by software designers to develop 
a class diagram from text, with and without the system. 
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