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Abstract. Geometric Semantic Genetic Programming (GSGP) is a rec-
ently proposed form of Genetic Programming (GP) that searches directly
the space of the underlying semantics of the programs. The fitness land-
scape seen by the GSGP variation operators is unimodal with a linear
slope by construction and, consequently, easy to search. Despite this
advantage, the offspring produced by these operators grow very quickly.
A new implementation of the same operators was proposed that com-
putes the semantics of the offspring without having to explicitly build
their syntax. This allowed GSGP to be used for the first time in real-life
multidimensional datasets. GSGP presented a surprisingly good gener-
alization ability, which was justified by some properties of the geometric
semantic operators. In this paper, we show that the good generalization
ability of GSGP was the result of a small implementation deviation from
the original formulation of the mutation operator, and that without it
the generalization results would be significantly worse. We explain the
reason for this difference, and then we propose two variants of the geo-
metric semantic mutation that deterministically and optimally adapt the
mutation step. They reveal to be more efficient in learning the training
data, and they also achieve a competitive generalization in only a sin-
gle operator application. This provides a competitive alternative when
performing semantic search, particularly since they produce small indi-
viduals and compute fast.

Keywords: Geometric semantic genetic programming · Generalization ·
Overfitting · Pharmacokinetics · Drug discovery

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [8] is a recently proposed
form of Genetic Programming (GP) [6] that searches directly the space of the
underlying semantics of the programs. One of the most interesting properties of
GSGP is that the fitness landscape seen by its variation operators is a cone by
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-16501-1 4
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construction, and consequently easy to search. Despite this advantage, the indi-
viduals produced by these operators are always bigger than their parents. Since
this growth is rather quick, GSGP ends up being hard to use in practice, specially
in real-life multidimensional datasets. To counteract this, a new implementation
of the same geometric semantic operators was proposed by Vanneschi et al. [10].
In this implementation, the semantics of the offspring can be determined without
having to explicitly build their syntax. This allowed GSGP to be used for the
first time in real-life multidimensional datasets. Results have shown that besides
the expected good performance on the training data, GSGP also presented a
surprisingly good generalization ability. This generalization ability was justified
by the authors as a result of some properties of the geometric semantic operators.
However, their implementation of the mutation operator [10] presented a small
deviation from the original definition [8] that is still valid under the geometric
semantic framework. This implementation is available in the free open-source
GSGP C++ library [2]. In our work we study the effect of both implementa-
tions of the geometric semantic mutation on the generalization ability of GSGP.
We also propose and test two new variations of the geometric semantic mutation
which are able to provide an optimal mutation step adaptation.

The paper is organized as follows. Section 2 contextualizes GSGP. Section 3
describes the experimental setup. Section 4 presents and discusses the effect of
both implementations of the mutation operator on the generalization ability of
GSGP. Section 5 proposes and discusses the results of the two new geometric
semantic mutation operators, and Sect. 6 concludes.

2 Geometric Semantic Genetic Programming

Moraglio et al. [8] recently proposed a new GP formulation called Geometric
Semantic Genetic Programming (GSGP). GSGP derives its name from the fact
that it is formulated under a geometric framework [7] and from the fact that
it operates directly in the space of the underlying semantics of the individuals.
In this context, semantics is defined as the outputs of an individual over a set
of data instances. Perhaps the most interesting property of GSGP is that the
fitness landscape seen by its variation operators is always unimodal with a linear
slope (cone landscape) by construction. This implies that there are no local
optima, i.e., with the exception of the global optimum, every point in the search
space has at least one neighbor with better fitness and that neighbor is reachable
through the application of the variation operators. The immediate consequence
of this type of landscape is that it is easy to search. A drawback of GSGP is that
its operators always produce offspring bigger that their parents. Since our work
is on regression problems, the GSGP operators presented here are for real-value
semantics. For proofs and further details the reader is referred to [8].

Definition 1 (Geometric Semantic Crossover). Given two parent functions
T1, T2 : R

n → R, the geometric semantic crossover returns the real function
TXO = (T1 · TR) + ((1 − TR) · T2), where TR is a random real function whose
output values range in the interval [0, 1].
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From the crossover definition it follows that every offspring is bigger than its
parents combined. This leads to exponential individual growth.

Definition 2 (Geometric Semantic Mutation). Given a parent function
T : Rn → R, the geometric semantic mutation with mutation step ms returns
the real function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random
real functions.

For the mutation operator, the individual growth produced is linear. The contin-
uous individual growth produced by both operators renders GSGP hard to use
in practice, specially in real-life multidimensional datasets. Vanneschi et al. [10]
tackled this issue by providing a different implementation of these operators. In
this implementation, the semantics of the offspring can be determined without
having to explicitly build their syntax. Consequently, Vanneschi et al. [10] were
able to use GSGP for the first time in real-life multidimensional datasets. They
reported competitive performance both on training and testing data. The argu-
ments presented for the good performance on testing data will be presented and
discussed in Sect. 4.2.

However, the implementation of the mutation operator of Vanneschi et al. [10]
had a small deviation from the original definition. Their implementation imposed
that the random subtrees generated (TR1 and TR2), always had a logistic function
as their root node. This implies that the output of each random subtree ranges in
the interval [0, 1] and that, consequently, the output resulting from subtracting
these random subtrees ranges in the interval [−1, 1]. As the mutation operator
applies a mutation step, the final output added to each parent always ranges in
the interval [−ms,ms]. Looking back at the original definition of the geometric
semantic mutation [8], there is no defined range for the outputs of the random
subtrees. It should be noted that this small implementation deviation is still
valid under the geometric semantic framework. This deviation was not explicit
in their work but was confirmed upon contact, and it is also the implementation
made available in the GSGP library [2]. For clarification purposes, we will refer
to the original mutation definition as Unbounded Mutation (UM) and to the
alternative mutation implementation as Bounded Mutation (BM). In the end,
BM applies a structural bound on the perturbation applied to the parent. This
bound holds independently of the data (training or testing). We explore the
effects of using a structural bound in Sect. 4.

3 Experimental Setup

To provide a fair comparison between unbounded and bounded mutation, our
experimental setup is similar to the one of Vanneschi et al. [10]. The experi-
mental parameters are provided in Table 1. The mutation step for GSGP is set
to 1 as this showed better results in the preliminary testing than the value of
0.001 used by Vanneschi et al. [10]. Experiments are run for 500 generations
because that is where the statistical comparisons were made in the mentioned
work. Standard GP and Semantic Stochastic Hill Climber (SSHC) [8] are used
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as baselines for comparison. GSGP without crossover is also tested (GSGP NC).
As this work studies the effects of unbounded and bounded mutations (UM
and BM respectively), each method is tested with both mutations. Therefore,
the variants tested are: GSGP UM and BM; GSGP NC UM and BM and SSHC
UM and BM. All claims of statistical significance are based on Mann-Whitney U
tests, with Bonferroni correction, and considering a significance level of α = 0.05.
For each dataset 30 different random partitions are used. Each variant uses the
same 30 partitions. Experiments are conducted on the same two multidimen-
sional symbolic regression real-life datasets used by Vanneschi et al. [10]. These
datasets are the Bioavailability (hereafter Bio) and the Plasma Protein Binding
(hereafter PPB). They have, respectively, 359 instances and 241 features, and
131 instances and 626 features. For a detailed description of these datasets the
reader is referred to Archetti et al. [1] and Vanneschi et al. [10].

Table 1. GSGP and Standard GP parameters used in the experiments

Parameter Value

Runs 30

Generations 500

Population size 100

Training - Testing division 70 % - 30 %

Fitness Root Mean Squared Error

GSGP crossover SGXM [8], probability 0.5

GSGP mutation SGMR [8], probability 0.5

Standard GP crossover Standard subtree crossover, probability 0.9

Standard GP mutation Standard subtree mutation, probability 0.1

Tree initialization Ramped Half-and-Half, maximum depth 6

Function set +, -, *, and /, protected as in [9]

Terminal set Input variables, no constants

Parent selection Tournament of size 4

Elitism Best individual always survives

Maximum tree depth None

4 Experimental Study

All the evolution plots presented in the next sections are based on the median
over 30 runs of the training and testing error of the best individuals in the
training data. The median was preferred over the mean since it is more robust
to outliers. Section 4.1 presents the results and Sect. 4.2 discusses the generali-
zation ability.
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4.1 Results

Figure 1 presents the training and testing error evolution plots in both datasets.
This figure also shows the adaptive mutation step variants (SSHC AUM, SSHC
DAUM, SSHC ABM and SSHC DABM) that will be presented and discussed in
Sect. 5.

Starting with the comparisons against Standard GP, it was confirmed that
GSGP BM generalizes better in both datasets (p-values: Bio 1.794 × 10−6 and
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Fig. 1. Bio (top) and PPB (bottom) training and testing error evolution plots



46 I. Gonçalves et al.

PPB 5.121×10−4). These same conclusions were already presented by Vanneschi
et al. [10]. In terms of training error, Standard GP is superior to GSGP BM in the
Bio dataset (p-value 5.434×10−5) and no statistically significant differences were
found in the PPB dataset. On the other hand, Standard GP is superior to GSGP
UM in terms of testing error in the Bio dataset (p-value 9.273 × 10−4), while no
statistically significant differences were found in the PPB dataset. GSGP UM
is, however, superior to Standard GP in terms of training error in both datasets
(p-values: Bio 2.872 × 10−11 and PPB 2.872 × 10−11).

It can be observed in evolution plots that Standard GP and GSGP UM
overfit the training data, while GSGP BM generalizes well. In these datasets,
Standard GP is known to overfit (e.g., [4]) and GSGP BM has been recently
shown, and also confirmed here, to generalize well [10]. On the other hand,
there is a clear distinction between GSGP BM and UM, as the latter quickly
overfits the training data. It generalizes even worse than Standard GP in the
Bio dataset. This same distinction between BM and UM occurs with GSGP NC
and with SSHC. As a general trend, the BM variants (GSGP BM, GSGP NC
BM and SSHC BM) generalize well, while the UM variants (GSGP UM, GSGP
NC UM and SSHC UM) overfit the training data. This discrepancy between
the generalization ability of the UM and BM variants is discussed in the next
section.

Vanneschi et al. [10] mentioned that GSGP requires a relatively high muta-
tion probability in order to explore the search space more efficiently. Indeed, our
results show only small differences between using the crossover operator (GSGP
UM and BM) or not using it at all (GSGP NC UM and BM). Statistically,
there are no differences in terms of generalization, in any comparison with the
same mutation operator. In terms of training error the results are not consistent:
GSGP NC BM is significantly better than GSGP BM on the Bio dataset (p-value
3.955×10−5); GSGP UM is significantly better than GSGP NC UM on the PPB
dataset (p-value 4.734 × 10−11); and no other statistically significant differences
were found. However, a possible inefficiency of the crossover operator should be
expected. This operator can only produce an offspring which improves over both
parents when the target semantics are between (even if partially) the semantics
of the parents. Without an explicit semantic diversity control of the population
and a mate selection procedure that takes the target semantics into account, the
crossover operator may be inefficient. This inefficiency may also increase with
larger semantic spaces, i.e., as the number of data instances increases. From these
experiments, it can be concluded that the crossover operator can be skipped alto-
gether since it does not significantly and consistently improve the search outcome
(in testing or training error). It also presents the disadvantage of exponentially
increasing the size of the individuals, as opposed to the linear increase with the
mutation operator.

On a final note, the evolution plots also show that the SSHC variants con-
sistently learn faster than the GSGP and GSGP NC variants with the same
mutation operator. This should be expected as the semantic space has no local
optima and consequently the search can be focused around the best individual
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in the population. This leads to a faster decrease in the training error and, in
the case of SSHC BM, to a faster generalization to unseen data.

4.2 Discussion on Generalization Ability

From the results presented in Sect. 4.1, it is clear that what differentiates the sev-
eral methods in terms of generalization is the usage of a bounded or unbounded
mutation (BM and UM respectively). BM variants generalize well, while UM
variants overfit the training data.

The GSGP implementation of Vanneschi et al. [10] used a BM and reached
the same conclusions regarding its competitive generalization. They justified this
generalization ability by considering some properties of the geometric semantic
operators. Particularly, they remarked that the geometric properties of those
operators hold independently of the data on which the evaluation is taken place
and consequently they also hold on testing data. For the crossover operator this
implies that each offspring produced also stands between its parents in the test-
ing data semantic space. Therefore, in the worst case, each offspring is not worse
than the worst of its parents on testing data. The implication for the mutation
operator is that the perturbation that each offspring produces is bounded, also
in the testing data semantic space, by the mutation step (ms). Specifically, the
semantic variation on the testing data also ranges in the interval [−ms,ms].
Therefore, Vanneschi et al. [10] concluded that the geometric semantic opera-
tors guarantee that a possible worsening of the testing error is bounded and
consequently that these operators help control overfitting.

As seen before, the usage of a bounded or unbounded mutation was crucial in
determining the generalization achieved. The BM operator was able to produce
a competitive generalization by guaranteeing bounded and small perturbations
on the testing data. This was crucial to generalize well. However, it is clear
that perturbations that increase the testing error are always possible. It is also
clear that if these perturbations were a significant majority of the applications
of the operator then overfitting would be inevitable. Therefore, it can be con-
cluded that after reaching what can be thought of as a generalization plateau
(the point where it seems that no further induction can be performed with the
available data), the BM operator generates about half of its perturbations in
the decreasing testing error direction and the other half in the increasing testing
error direction. These perturbations end up compensating each other and there-
fore creating the relatively smooth generalization plateau. On the other hand,
the UM operator performed badly in terms of generalization. Since in this oper-
ator the perturbations produced on the testing data can be arbitrarily large, a
single application of a mutation that results in overfitting (decreases training
error but increases testing error) can have an arbitrarily large increase in the
testing error. This results in considerable uncertainty in the testing error evolu-
tion. This effect may be more noticeable in regression problems since any data
instance can have an arbitrarily large error contribution, as opposed to classi-
fication problems where normally the error is bounded for each data instance.
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For these reasons, the BM operator seems more robust and should be preferred
over the UM operator.

For the reasons already mentioned in Sect. 4.1, the crossover operator had
little effect in the results. However, in principle, the crossover operator should
be riskier in terms of generalization than the BM operator. This is because the
variation in the testing data semantic space, although bounded by the testing
semantics of the parents, can still be arbitrarily large. This results from the fact
that the parents can be, in terms of testing data semantics, very far apart. Since
there is no way of knowing if the parents are close or far apart in the testing
data semantic space, the bounds (defined by the semantics of both parents),
on testing data, are not useful in practice. This is another disadvantage of the
crossover operator, following the exponential growth of the offspring produced
and the low efficiency in terms of search.

Although the generalization achieved by the GSGP with bounded mutation is
very competitive, the issue of the size of the solutions generated by these geomet-
ric semantic operators remains. As mentioned in Sect. 2, using crossover in GSGP
translates into an exponential growth of the individuals. In our experimental
study, individuals in GSGP reach several millions of nodes with only around 20
generations conducted. This raises the question: how can such large/complex
individuals (models) achieve such competitive generalization? Some interpreta-
tions of theories such as Occam’s razor and the Minimum Description Length
principle state that smaller/less complex models generalize better. Consequently,
and in light of this view, this result would be improbable, if not impossible. How
can this be? A possible answer may lie in ensemble learning. Ensemble learn-
ing is a Machine Learning paradigm in which several models are created and
combined to produce a final model. Dietterich [3] provided three reasons as to
why constructing an ensemble of models may be superior to constructing a sin-
gle model. The first two reasons are computational and representational. The
computational reason is related to the difficulties in searching the search space,
such as getting stuck in a local optima. The representational reason arises when
the true target function cannot be represented by any of the hypotheses in the
search space. These first two reasons are not discussed in detail as they are not
relevant to GSGP, respectively because the semantic space has no local optima
and because in GSGP (and in traditional GP) any hypothesis can be represented
that could also be represented by an ensemble. The last reason is the one which
is relevant to GSGP and to generalization in general. It is a statistical reason
and it is related to the fact that several different models can have a similar or
even the same training data performance. This is essentially a model selection
problem. Which model should be chosen? There is no way of knowing which
model will generalize better. Ensemble learning tackles this issue by combin-
ing several accurate models, which reduces the risk of the final model being
overfitted. Even if some overfitted models are present in the ensemble, their neg-
ative contribution to the final model will be reduced since the final model will
also include contributions from models which generalize well. It is a common
result in ensemble learning to have large ensembles which achieve competitive
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generalization. Therefore, and in general, large/complex models (individuals)
can also generalize well depending on how they are constructed.

GSGP can be seen as an ensemble learning method, since its operators always
combine existing individuals independently to produce new individuals. The
crossover operator combines two parents with a randomly generated individual
and the mutation operator combines one parent with another randomly gener-
ated individual (the individual which results from subtracting the two random
subtrees). We can think of these parents and randomly generated individuals
as full models themselves. This interestingly relates back to ensemble learning,
where a necessary condition for its positive outcome is that the ensemble has a
mix of accurate and diverse models [5]. In GSGP we can think of the parents
as the accurate models (as they have survived during the evolution) and the
randomly generated individuals as providing the also needed diversity. GSGP
may derive some of its competitive generalization from this. If, for instance, we
consider the application of two sequential mutations, it follows that:

P + R1 ∗ ms + R2 ∗ ms

where P is the initial parent, R1 and R2 are the two randomly generated indi-
viduals and ms is the mutation step. Consequently, considering only the usage
of the mutation operator, GSGP can be seen as a weighted sum combination of
models (we can consider that the initial parent has a weight of 1).

In the end, GSGP successfully combines elements from ensemble learning
(implicitly) and from the geometric semantic framework. Combining several
models to incrementally produce new models has roots in ensemble learning.
This allows to reduce the model selection risk by offsetting possible bad models.
On the other hand, the combination of a structurally bounded mutation (BM)
and a small mutation step can further reduce the issue of adding bad models by
guaranteeing that their contribution will be small.

5 Adapting the Mutation Step

As discussed in the previous section, the mutation step can play a role in reduc-
ing the risk of overfitting. When it comes to learning more efficiently, the geo-
metric semantic mutation can be improved by adapting its step. It is possible
to deterministically compute the optimal mutation step for each application of
the operator. The description of how this can be accomplished is presented in
Sect. 5.1. Section 5.2 presents and discusses the results.

5.1 Optimal Step Adaptation

The geometric semantic mutation can be seen as a linear combination of two
elements: the parent P, and the random individual RI which results from sub-
tracting the two random subtrees. Since RI is multiplied by the mutation step
ms, we want to find a mutation step such that:

P + RI ∗ ms = t
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where P and RI are semantic vectors and t is the target vector of the data. Since
the parent is not influenced by any weight, we can rewrite this as:

RI ∗ ms = (t − P)

where we reach a general linear system:

Ax = y

The resolution of which can be performed deterministically and optimally by the
application of the Moore-Penrose pseudoinverse (hereafter simply inverse). This
inverse computes the mutation step which minimizes the error in the training
data for each specific combination of RI, P and t. We will call this modification of
the mutation operator as Adaptive Mutation (AM). As this work has studied the
effects of bounded and unbounded mutations, we can divide the AM as: Adaptive
Unbounded Mutation (AUM) and Adaptive Bounded Mutation (ABM).

Following a similar reasoning, another mutation operator can be devised. We
can consider the possibility of adding a weight to the parent and adjusting both
weights with the inverse. Let pw be the parent weight. Consequently:

P ∗ pw + RI ∗ ms = t

This new semantic mutation operator will be called as Doubly Adaptive Muta-
tion (DAM) and it can also be divided as: Doubly Adaptive Unbounded Muta-
tion (DAUM) and Doubly Adaptive Bounded Mutation (DABM). The inverse
method could also be used to perform a linear combination of more than two
weighted individuals.

5.2 Results and Discussion

The newly devised operators were tested with the SSHC (more efficient than
GSGP, see Sect. 4.1) and consequently its variants were named: SSHC AUM,
SSHC DAUM, SSHC ABM and SSHC DABM. Figure 1 (in Sect. 4.1) shows the
evolution of training and testing error for these adaptive variants. They reveal
to be superior in terms of learning the training data when compared to the
SSHC variants without adaptive mutation step (SSHC UM and SSHC BM).
This was expected, since the step adaptation is optimal for each application of
the operators. In terms of generalization, these variants quickly overfit. In light
of the analysis made in Sect. 4.2, this quick overfitting should also be expected,
as there is no structural bound coupled with a small mutation step and con-
sequently no overfitting risk reduction. Since in these variants the weights can
be arbitrarily large, the benefits of using a structural bound (SSHC ABM and
SSHC DABM) are lost.

However, an interesting property can be found when looking closely at the
initial generations. Figure 2 presents the testing error evolution on the first 10
generations. It shows that these variants achieve a competitive generalization
in only a single application of the mutation operators. This is particularly clear
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in the SSHC DAUM and SSHC DABM variants. It was expected that these
two variants fit the training data more easily when compared to the other two
variants (SSHC AUM and SSHC ABM), since they have an extra degree of free-
dom (the parent weight). Further testing is needed to determine if this property
holds across other datasets. If it holds, then these mutation variants become
a competitive alternative when performing semantic search, particularly since
they produce small individuals and compute fast. They also raise no issues in
constructing/reconstructing large individuals, as opposed to what may happen
with the GSGP variants.
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6 Conclusions

In this work we have studied the generalization ability of Geometric Semantic
Genetic Programming (GSGP), by analyzing the effects of two different imple-
mentations of the geometric semantic mutation. These implementations differ
on the existence or not of a guaranteed bound on the semantic variation across
both training and unseen data. Results showed that the generalization ability of
GSGP differs significantly depending on whether or not this bound is used. On
the tested datasets, the unbounded mutation highly overfitted the training data,
while the bounded mutation achieved a competitive generalization. We have also
expanded on previously reported geometric semantic arguments as to why GSGP
may generalize well. Furthermore, we provided an explanation as to why such
large solutions like the ones produced by GSGP can generalize competitively, by
discussing how GSGP may relate with ensemble learning.
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We have also proposed two new variants of the geometric semantic muta-
tion. These new operators are able to deterministically compute the optimal
mutation step for each application of the operator. They have shown to be more
efficient in learning the training data, and they also achieve a competitive gen-
eralization in only a single operator application. This provides a competitive
alternative when performing semantic search, particularly since they produce
small individuals and compute fast.
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