
Achieving Human-Aware Seamless Handoff

David Nunes, Duarte Raposo, David Silva, Pedro Carmona and Jorge Sá Silva
Department of Informatics Engineering

University of Coimbra
Coimbra, Portugal

dsnunes@dei.uc.pt, {draposo, djsilva, pcarmona}@student.dei.uc.pt, sasilva@dei.uc.pt

Abstract—Smartphones have spawned a new generation of
people-centric sensing applications, where their sensors gather
information from users to achieve a wide range of objectives,
from fitness monitoring to the urban-wide management of traffic.
The connections between devices are of utmost importance
for these systems; in fact, switching between the multitude of
network interfaces available to smartphones (3G/4G, WiFi) can
be beneficial to improve connectivity, the distribution of network
traffic and save battery power. Current solutions in the literature
for the management of network interfaces are limited in the
sense that they only consider either application requirements or
the system’s status. In this paper, we propose a new model that
considers not only these aspects but also the human-context, that
is, the user’s position and activity to intelligently manage which
interfaces should be used. To support the switching between
different interfaces without interrupting existing connections, we
also discuss several handoff techniques. Finally, we present an
experimental evaluation of our model based on Multipath TCP.

Keywords—Network interfaces; Handover; Human factors;
Context-aware services

I. INTRODUCTION

People-centric sensing applications allow for collaborative
data gathering by individuals, facilitated by smartphone’s sen-
sors. These applications present dynamic levels of Quality
of Service (QoS): some applications have sudden needs for
bandwidth and speed to transmit large amounts of sensory data;
others may only require the exchange of short messages, while
prioritizing connectivity. Harvesting the flexibility of different
connection interfaces in smartphones might allow the device
to better adapt to the circumstances; for example, WiFi might
be used to offload large quantities of data, cellular connections
might benefit connectivity and even Bluetooth might be used
to pass information in an opportunistic manner. On the other
hand, the device’s own status (e.g. battery level, available
memory) should also influence management of connections.
While both these aspects have been previously considered in
research, there is another important factor that has yet to be
considered. We define the concept of human user’s context
or awareness as every aspect of reality that directly relates to
the human condition, such as human emotions, activity, logical
location or even social networking contacts. These are factors
that should be heavily considered in a network management’s
control-loop. For example, a people-centric sensing app may
dynamically provide additional communication redundancy
when the user enters areas with known interference issues,
or use multiple interfaces simultaneously whenever the user
is feeling anxious, in order to avoid further frustrations re-
sultant from intermittent connectivity. In fact, the stability of
connections is important, since if connectivity is intermittent

the real-time component of the system is compromised [1].

With these issues in mind, this paper firstly discusses
the problem of managing networking connections in mobile
devices in section II. It then proposes a model for developing
human-aware network-selection mechanism that considers the
system, application and human contexts in section III. Section
IV gives an overview of different technologies for seamless
handoff that can be used with our model. In section V,
we present our case-study, a people-centric sensing mobile
application for nightlife entertainment. In this section, we also
validate our model several experiments based on MultiPath
TCP (MPTCP). Finally, we conclude our article on section VI
with a discussion on the results and future work.

II. MANAGEMENT OF CONNECTION INTERFACES

Networking needs are dynamic in people-centric sensing,
since several different types of data are sent depending on
the context. When processing and sending accelerometer data,
for example, bandwidth and speed may be important since
we are dealing with large amounts of data. However, for
receiving notifications or sending location data, connectivity is
more important, so that the user does not miss eventual events
of interest. Thus, an intelligent network-selection mechanism
can in managing networking performance, energy consumption
and reduce intermittent connectivity, resulting in more reliable
systems. It is also important to note that the overhead for
acquiring sensing information may also be crucial in many
people-centric sensing apps. However, the analysis of this
overhead is out of the scope of this paper. On the other
hand, the availability of wireless connections and their signal
strength varies greatly as the user moves. In fact, the usage
of multiple wireless mediums and network interfaces can not
only contribute to a better distribution of network traffic, to
also to the increase of Internet coverage and connectivity for
mobile environments [2] and even to the energy efficiency of
devices [3].

Thus, several QoS and Quality-of-Experience (QoE)-aware
interface selection mechanisms have been previously proposed
in the literature. Some solutions promoted savings in 3G
cellular traffic by trying to offload as much data as pos-
sible to WiFi. Through simple history-based predictors that
estimated future WiFi throughput, the transmission of data
was held until a WiFi network was available [2]. However,
to do this, it is necessary to know the application’s delay
tolerance threshold and the QoS requirements. Two types of
solutions were envisioned for this purpose. Firstly, inference
mechanisms that use port information and binary names; e.g.
packets corresponding to known email ports or belonging



to “Outlook” can be delayed [2]. Secondly, APIs used by
applications to transmit this QoS information [4]. Other works
have expanded on this idea of offloading data to WiFi. For
example, in [5] the utility and cost of network flows were
modeled to determine when to use the 3G interface and an
implementation that took advantage of both 3G and WiFi
simultaneously, by extending SCTP, was also presented. On the
other hand. alternative approaches focused on specific goals set
by the user. Such was the case in MultiNets [6], a system that
considered different switching policies (energy saving, data
offloading, or performance). Regarding this, the authors in [4]
offered a different perspective. They argued that network usage
patterns may change quickly and it is not feasible to expect
users to understand their system’s behavior and constantly
update policies. In [3], the energy cost of mobile connections
was reduced through schedulers based on energy models for
different radio interfaces and the continued communications
history of the user. While this is a step in the right direction
for creating intelligent network-selection mechanisms, the ap-
proach was limited in the sense that it was only concerned
with saving battery power. Additionally, it also only took
into consideration the interface’s energy consumption and the
user’s usage history, disregarding application’s requirements
and user’s intentions.

III. A MODEL FOR CONTEXT-ORIENTED
NETWORK-SELECTION MECHANISMS

Current state-of-the-art on networking interface manage-
ment tends to focus exclusively on achieving a specific ob-
jective or leaves the choice of selecting the best high-level
goal to the end-user, which is inefficient and undesirable in
terms of usability. We believe the limiting factor is the lack
of regard of the human context. Observing the development
of people-centric-sensing systems, it is natural to consider
that it is not only the device’s status (e.g. battery level) or
the application’s QoS requirements are of importance to the
problem at hand. The human himself should be a motivating
factor for considering which network interfaces should be used.
Unlike MultiNets [6], which merely considered user-defined
policies, we intend to go a step forward and automate such
policies in accordance to the human context. This idea may
be applied to a human’s psychological state (e.g. emotions),
physiological condition (e.g. physical activity) and real-world
context (e.g. logical position), factors that can influence the
control-loop of the the interface-selection mechanism. Based
on the previous discussion there are three main aspects that
need to be considered: System-awareness - the status of the
device, such as the available system’s resources, its power
status (charging / battery power / battery level) and link-layer
information (e.g. signal strength), among other variables; User-
awareness - user’s should be able to impose restrictions (e.g.
limiting cellular traffic due to monetary costs), and define
high-level goals (e.g. performance, independently of battery-
life), although these should not be required for the system’s
autonomy. Another aspect of user-awareness is the use of
sensory information to infer the user’s real-world context. As
an example, emotional distress may prompt the smartphone
to improve networking performance, in order to promote a
better mood; Application-awareness - as suggested in [2],
[4] and [5], it is very important to consider the application’s
requirements in terms of bandwidth and connectivity.

While previous research has proposed architectures for
implementations of interface switching engines [6], these are
bound to the limitations discussed above. With this in mind, we
hereby propose a general architecture for intelligent network
selection engines, of which we have developed an experimental
implementation. As far as we know, this is the first attempt
at defining a general model that combines in a logical and
concise manner the major ideas present in the literature, while
also innovating by considering the human-context. As we

Fig. 1: Network Selection Engine’s Architecture

can see in Figure 1, our architecture considers three layers,
the Application Layer, the Network Selector Layer and the
Kernel Layer. Applications exist at the Application Layer and
initiate connections with remote entities through the Appli-
cation Stream Classifier, which evaluates the application’s
requirements either through direct methods, such as APIs, as
proposed in [4] or indirect methods, such as through mathe-
matical models based on network throughout [7], or both. The
Kernel Layer includes the system’s lower-level functions that
provide information about the system’s resources (e.g. battery-
level, available memory), link-layer information (e.g. wireless
connection strength) and sensory data. This layer is usually
accessed through abstraction APIs provided by the device’s OS
for higher-level layers. Handoff mechanisms responsible for
switching between the different network interfaces exist at this
layer. Some of these mechanisms will be discussed in section
IV. The network selection and evaluation process happens at
the Network Selector Layer, supported by the Application
Stream Classifier module and the User Policy & Context
Engine and System Status Engine modules. The User Policy
& Context Engine processes the policies defined by the user
(restrictions in network interfaces, desire for high-performance
or power savings) as well as processing contextual information
coming from the device’s sensors (e.g. emotional or activity
inference). The System Status Engine is responsible for ac-
quiring and processing relevant information from the Kernel
Layer about the current condition of the system. These three
modules influence the Network Selection Engine, which makes
decisions about which networks and interfaces should the
system connect to. These decisions are translated to the Kernel
Layer through the Handoff Interfacer, which is responsible for
interacting with the handoff mechanism in place. We believe
this three-layer design fully conceptualizes the key problem in
a way that previous designs have not achieved. As evidenced
by the state-of-the-art presented in section II, system-aware
and application-aware designs have already been extensively
considered. Our design builds on top of these concepts, while
also introducing the user as a third major factor. Thus, we will
now focus our discussion on this human element.



Actual implementations of a User Policy & Context Engine
would have to consider techniques for modeling user context.
As previously defined in section I, the concept of human
context can encompass every aspect of reality relating to the
human condition, such as human emotions, activity, location,
social networking contacts, among others. The work in [7] has
previously expressed how much a user values the throughput
of a network flow as U(x), a function of throughput x.
Modeling U(x) as a logarithmic function for elastic flows
(such as TCP downloads) has been common in networking
literature, since this function has a diminishing marginal rate
of increase with increasing throughput [5]. While our approach
does not depend on the nature of this utility function, we do
consider a component that specifically translates the human
context, H(k1, k2, ...kn), where kn represents a factor that is
relevant to the human (e.g. body temperature, number of social
networking contacts, etc.). Assuming a logarithmic behavior,
we can write the utility function as:

U(x) = K1 log(x) +H(k1, k2, ...kn)

Considering now the cost for using each networking interface
as a function C(x) and assuming that xw and xg are the
instantaneous throughputs of the WiFi and 3G interfaces of the
smartphone, respectively [5], an implementation of our model
could maximize:

A(xw, xg) = U(xw + xg)− Cw(xw)− Cg(xg)

which can be rewritten as follows, to evidence the human
factor:

A(xw, xg) = K1 log(x)+H(k1, k2, ...kn)−Cw(xw)−Cg(xg)

The design of utility functions for specific applications is
outside of the scope of this paper. In particular, solutions for
the human context function H(k1, k2, ...kn) have extensively
been considered in the literature, often requiring advanced
mathematical models or machine learning techniques. Never-
theless, we present a simple implementation of these concepts
in section V. We would also like to note that user policies can
also be represented by adaptive weights in the cost function
C(x). For example, we can assume Cg(x) to be a linear
function:

Cg(x) = K2 +M1x

where M1 is a weight representing the monetary cost estab-
lished by the cellular provider for using 3G traffic.

IV. HANDOFF TECHNIQUES FOR MOBILE DEVICES

One important aspect of our proposed architecture rests on
the applied handoff mechanism. “Brute-force” handoffs, where
one network is simply disabled and another enabled, cause
periods of interruption of connectivity, which lead to losses
of data and latency. While UDP is the protocol traditionally
used for real-time applications, its lack of ordering and error
correction schemes make not ideal for people-centric sensing,
where robustness depends on the quality of sensed data.
Unfortunately, TCP does not play well with handoffs, since
acknowledgments from the mobile host may not be delivered.
TCP misinterprets the loss of data as a congestion problem,
reduces its sending window size and attempts to retransmit
packets, while increasing the time between each unsuccessful

retransmission exponentially (exponential backoff). This re-
sults in long delays and loss of data, even after connection
has been reestablished. Since 99.7% of all mobile traffic is
TCP [8] this is a serious problem. MobileIPv6 attempted to
solve this problem; however, its handoff performance is usually
affected by large delays and high data loss rates, making it an
unfit protocol for real-time people-centric sensing. While there
are some extensions for its improving handoff performance1,
these features come at the cost of modifying the standard to
a great extent. Additionally, MobileIPv6 is highly dependent
on the existence of proxies and gateways, which can become
bottlenecks, single-points of failure and would require an
expensive investment in terms of additional hardware, software
agents and other changes to currently deployed systems [8].
Handoff techniques based on the manipulation of the device’s
routing tables have also been proposed [8] [6]. The solution
proposed in these works is interesting, since it does not depend
on protocol changes or additional infrastructure. Nevertheless,
these handoff approaches fail for long-lived TCP flows whose
transmission outlives the device’s connection to the original
network. This may be quite a common occurrence, particularly
in cases where links are very transient (e.g. the user is using
public transportation) or for complex applications that support
real-time sensing data.

MPTCP is a modified version of TCP that naturally al-
lows for make-before-break handoffs. It implements multipath
transport by pooling multiple TCP paths from disjoint network
interfaces within a single transport connection, transparently to
the application2. The protocol maintains backwards compati-
bility with traditional TCP and was designed to flow freely
through existing middleboxes. Previous research has used
MPTCP to support mobility and reduce energy consumption
[9] [3]. These works show that, due to energy constraints, it
is often not feasible to use all available network interfaces
and that mobile devices often benefit from having just a
single primary connection active. Thus, interface selection
mechanisms are important to better manage energy consump-
tion and performance. The ability for multipath transport had
previously been introduced by modifications to SCTP [5].
However, most middleboxes, highly pervasive in home and
enterprise networks, require a deep knowledge of the transport
layer to be able to manipulate ports, addresses and keep
track of connection states and their unawareness of SCTP
leads to the protocol being consequently blocked. SCTP is
also fundamentally different from TCP in the sense that it
is a message-oriented protocol, rather than a stream of bytes,
meaning that applications would need to be modified to support
it.

V. HUMAN-AWARE HANDOFF VALIDATION

Previous studies have presented simulation experiments
with other protocols, namely comparing several mechanisms
for improving MobileIP handoff performance [10]. These show
that standard MobileIPv6 presents a handoff delay of approx-
imately 814ms, with various of its improvement architectures
achieving delays of around 270-450ms. In particular, S-MIP, a
seamless handoff architecture for MobileIP, achieves a delay,
as perceived by the sender, of a mere 100ms. However, other

1IETF RFC7411 - https://tools.ietf.org/html/rfc7411
2IETF RFC6182 - https://tools.ietf.org/html/rfc6182



studies based on real test-beds show that Round-Trip Time
for standard MobileIP handoff goes as high as 8 seconds
[11]. This sort of performance evaluation cannot be applied to
techniques such as the manipulation of routing tables proposed
in [8], since these are not, in essence, true handoff operations.
In this section, we will present the results of an evaluation
study that serves as a proof-of-concept for our human-aware
model, previously proposed in section III. In this study we
implemented a simple User Policy & Context Engine based
on the user’s movement and position. At the same time, this
section further validates the usage of MPTCP as a handoff
protocol, in the same vein as the works discussed in section
IV.

As a case-study we are developing an Android
people-centric sensing app named HappyHour.

Fig. 2: Hap-
pyHour Map
screen

People seek different environments when so-
cializing, sometimes feeling more cheerful
and like partying in a crowded place, oth-
ers just wanting to relax and pass the time
while listening to some music and talking
with friends. Finding a place that fits our
mood is a traditionally trial and error process
that involves visiting several places in our
surroundings, or a more predictable approach
of visiting regular places. Thus, people either
spend a lot of time trying to find an adequate
place that fits their social group’s desires

or get bored of always going to the same old places. Our
application allows users to find the nightlife establishment in
a directed way, by allowing them to know what is happening
around them in near real-time. Through a map, as shown in
Figure 2, users can check the establishments of interest in their
surroundings. The App aggregates the points of interest (POIs)
in clusters depending on the zoom level, for easy viewing.
By clicking on a POI, a description of the establishment and
its currently scheduled events (e.g.,”80’s night”) is shown.
By periodically aggregating the users’ GPS positioning and
accelerometer readings, the App can also show on the map
an estimation of which areas are the most populated and
those where people’s movements are more pronounced (e.g.
due to dancing). This allows users to pick areas with a more
vibrant party vibe (more populated and agitated) or calmer
areas that are more prone to soothing environments (less
populated and agitated). In addition, users can also be informed
about promotions and offerings (e.g. drinks 50% off) that are
occurring in their surroundings through a notifications system
that allows nightclub managers to send notifications to users
within 700 meters if their establishment. This system is based
on a management web interface (accessed through Facebook)
where nightclub / bar owners can create and edit events and
schedule notifications to be sent at a certain time. Thus, we
offer a new business model that gives establishments the
opportunity to reach customers in a more direct way. Figure3

Fig. 3: HappyHour’s Architecture

shows the application’s architecture. The Backend server is
responsible for management of users, establishments, events
and notifications. The server offers its services in the form
of RESTful web services, both to the Android App and to
the Management web interface. It also communicates with a
database where records of users, POI locations, descriptions
and events are kept. The Android App is responsible for
the interaction with the end-user. It displays a map where
the relevant points of interest are shown. It is also respon-
sible for acquiring, processing and sending GPS positions
and accelerometer data. The Management Web Interface is
restricted to establishment owners allowing them to manage
events and notifications.

It is often difficult to communicate meeting locations to
friends in crowded nightlife enviroments, due to the constant
background chatter and movement of nearby people. FindMe
is a new HappyHour feature that intends to facilitate the
process of meeting friends in the vicinity. Having previously
registered his friends on HappyHour, a user can enable the
FindMe feature, triggering the backend server to periodically
check for the presence of friends in the surroundings. When-
ever this is the case, the users’ respective positions and activity
are shared on each other’s maps, in near real-time. For this
experimental proof-of-concept, we have implemented a simple
activity classifier that performs a Fast Fourier Transformation
(FFT) on the accelerometer’s data, measuring the amount
of movement. Depending on this amount, the user’s state
is classified as either resting, walking or dancing. Each of
these activities are represented in the map interface of the
user’s friends as specific types of markers, placed at the user’s
current geographical position, as shown in figure 4. However,
even a simple classification process such as this can be
somewhat taxing on mobile hardware [1]. Therefore, FindMe
automatically begins a connection, sending the user’s GPS
coordinates and accelerometer data in near-real time, leaving
the classification process to the remote backend server. Empir-
ically, we estimated that network disconnections would often
disrupt our application, particularly when users moved between
different WiFi networks. These disconnection periods could be
as high as 10 seconds when losing WiFi connectivity due to
the reestablishment of TCP connections on the 3G interface.
To maintain an accurate evaluation on position and activity,
the QoS requirements for FindMe require these disconnection
periods to be as low as possible. In order to minimize losses
of data resultant from disconnections during the measuring
process, we devised a simple User Policy & Context Engine
based on MPTCP that implements a H(kf , ka, ku) function
with the following factors:

Fig. 4:
FindMe

The variable kf represents a boolean that
translates whether or not the user is in the
vicinity of a friend. We define ”vicinity” in
terms of the user’s last known GPS position,
posu, which should be within 500 meters of
the last known position of another user in his
list of friends, that is:

kf =

{
1 if posu ≤ 500m
0 otherwise

On the other hand, ka is a boolean that
represents whether or not the FindMe function is currently
active in the application’s settings. Finally, ku translates a



user-defined policy to primarily use either WiFi, 3G or both
interfaces simultaneously, whenever sharing his data in near-
real time. Thus, the H(kf , ka, ku) function is based on the
following strategy:

if kf = 0 or ka = 0 then return ”the user’s policy or
context are not within functionality parameters”
else

if ku = Both then
use Both interfaces whenever possible

else if ku = WiFi then
use WiFi as the primary interface

else
use 3G as the primary interface

end if
end if

Despite its simplicity, this implementation allows us to con-
sider several ideas previously discussed in section III. The
human’s context is herein represented by his geographic
positioning and activity. Human desires are also taken into
consideration through the enabling or disabling of the FindMe
functionality, as well as through the selected policy. While us-
ing both interfaces achieves greater performance, it also results
in additional battery consumption. On the other hand, using
primarily the 3G interface can provide greater connectivity, but
may induce additional monetary costs. Finally, using primarly
WiFi offers good performance at a low cost, but this interface
is prone to a limited connectivity range.

While we implemented this experimental User Policy &
Context Engine on a Nexus 5 Android phone with a MPTCP-
enabled kernel, we decided to perform the handoff tests using
UCLouvain’s Linux Kernel implementation3 and a laptop
equipped with a WiFi antenna and a 3G USB Dongle. The
reason for this was simplicity, as the Linux Kernel imple-
mentation allowed greater control over testing conditions. The
laptop hosts a virtual machine running an MPTCP-enabled
Debian Squeeze and connects to a remote host located on our
faculty’s hosting farm running the same OS. The connection
is made through a private WiFi network supported by a
Cable Internet backhaul, offering a bandwidth of around 1
Mbps upstream and 18 Mbps downstream, and a public 3G
network, offering a bandwidth between 0.2 and 0.4 Mbps.
The laptop connects to the remote host through a standard
socket. Initially, we intended to understand how the use of
multiple interfaces can affect the handoff and throughput of
HappyHour, that is, when ku = Both. This setup focuses
on performance and achieves the highest throughput, being
desirable whenever the application is directly sending large
amounts of accelerometer data (such as in the case of our
FindMe scenario). It is also useful whenever the user is moving
in a urban environment, due to the periodic connections and
disconnections to WiFi hotspots; for example, whenever the
user is entering or leaving a nightlife establishment bolstering
its own wireless network. After the connection is initiated
on both interfaces, a disconnection event was simulated by
disabling one of them. This allowed us to study how the
connection was maintained by the remaining interface. Figures
5a and 5b show the throughput of the TCP connection on
the remote host when both interfaces are active at the same
time. As we can see in both cases, when one interface is cut

3http://mptcp.info.ucl.ac.be/

(a) WiFi being cut off

(b) 3G being cut off

Fig. 5: WiFi and 3G used simultaneously

(a) WiFi as primary, 3G as backup

(b) 3G as primary, WiFi as backup

Fig. 6: WiFi and 3G used simultaneously

off the connection effortlessly continues through the remaining
interface. There is, of course, a drop on the general throughput,
but the dropped packets are quickly resent and the information
continues to flow without any major problems. It interesting
to note that the maximum achieved throughput is less than
the sum of the throughput of both interfaces (achieved around
91% of this theoretical sum).

We also performed a second series of tests for ku = WiFi
and ku = 3G. In these configurations, one interface was
configured as backup and the primary interface was disabled
mid-test. We imagine this to be a fairly popular setup amongst
general users, since WiFi usually offers better performance and
energy efficiency at a lower financial cost. Returning to our



HappyHour use case, the user has now defined ku = WiFi
and desires to visit a different establishment. Since the WiFi’s
range is limited to the establishment, the WiFi interface even-
tually experiences a connection loss. MPTCP is responsible
for rerouting traffic through 3G, as shown in Figure 6a. As
the graphic shows, the connection to the server takes about 4
seconds to recover. While the connection has been already
established through the 3G interface (the initial three-way
handshake and MP JOIN messages have been exchanged), the
3G subflow’s congestion window still has its initial value and
needs some time to adapt to the sudden increase in demand.
In our tests, the WiFi loss occurs not long after the initial
connection has been established, but in cases where a long
time has passed since 3G was used, it may be possible that
the 3G radio entered in an idle state and, thus, requires some
time to wake up. Nevertheless, the connection is not broken
and, therefore, it is not necessary to establish a new one under
a different IP, as it would happen if only regular TCP was
being used. Figure 6b shows a situation where ku = 3G and
thus, 3G has been defined as the primary interface while WiFi
has been relegated to backup. Such a configuration, together
with using both interfaces simultaneously, is particularly useful
setups for vehicular scenarios. Going back to our HappyHour
use case, the user is given a ride by a friend and seats on
the passenger seat, still using the application to decide where
they should go next. When moving at vehicular speed (e.g. 60
km/h), connectivity for WiFi networks becomes very transient
and it is difficult to obtain connections that last more than a
few seconds. This being the case, using 3G as a main interface
or using both 3G and WiFi at the same time is a good strategy
for increasing the odds of maintaining stable connections.
As we can see, WiFi recovers the connection in about 2,5
seconds, which is faster than 3G. This is expected, since WiFi
has a much greater downlink capacity the congestion window
increases much faster.

In order to better ascertain the handoff delays for each inter-
face, we performed 10 additional measurements and computed
the mean recovery time. We considered the recovery time to be
the delay between the last packet sent by the primary interface
and the first packet sent by the backup one. The results in

Fig. 7: Recovery times for each interface
Figure 7 show that, while the 3G connection suffers from a
larger mean recovery time (4.27 seconds), this delay is also
more stable since the values do not deviate too much from
the 4 seconds mark. On the other hand, the WiFi connection
tends to recover faster (mean of 3.04 seconds) but this recovery
also fluctuates a lot more, with several experiments resulting
in delays of around 4 seconds.

VI. DISCUSSION AND FUTURE WORK

We believe that our experimental proof-of-concept serves
as ground for the continued development of human-aware

network-selection mechanisms. Considering how our own
”brute-force” evaluations resulted in disconnection periods as
high as 10 seconds and how previous research had presented 8
second handover delays for standard MobileIP [11], we deem
MPTCP’s handover delays of around 3-4 seconds acceptable.
Nevertheless, we believe that better handoff performance might
still be achieved through the tweaking of several settings, such
as the congestion window initial values. For future work, we
are currently exploring the architecture herein presented and
applying it to an emotionally-aware network-selection mech-
anism based on smartphone sensory data. This emotionality-
aware system will allow users to select the best networking
interfaces to be used, depending on their mood. We expect
to publish new results based this more complex human-aware
system in the near future.

ACKNOWLEDGMENTS

The work presented in this paper was partially financed by
the iCIS project (grant CENTRO-07-ST24-FEDER-002003),
as well as by Fundação para a Ciência e a Tecnologia and
POPH/FSE.

REFERENCES

[1] M. Musolesi, E. Miluzzo, N. D. Lane, S. B. Eisenman, T. Choudhury,
and A. T. Campbell, “The second life of a sensor - integrating real-
world experience in virtual worlds using mobile phones,” in In Proc.
of HotEmNets ’08, 2008.

[2] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wifi,” in Proceedings of the 8th international confer-
ence on Mobile systems, applications, and services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 209–222.

[3] C. Pluntke, L. Eggert, and N. Kiukkonen, “Saving mobile device energy
with multipath tcp,” in Proceedings of the sixth international workshop
on MobiArch, ser. MobiArch ’11. New York, NY, USA: ACM, 2011,
pp. 1–6.

[4] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson, “Intentional networking: opportunistic exploitation of
mobile network diversity,” in Proceedings of the sixteenth annual
international conference on Mobile computing and networking, ser.
MobiCom ’10. New York, NY, USA: ACM, 2010, pp. 73–84.

[5] X. Hou, P. Deshpande, and S. R. Das, “Moving bits from 3g to metro-
scale wifi for vehicular network access: An integrated transport layer
solution,” in Network Protocols (ICNP), 2011 19th IEEE International
Conference on. IEEE, 2011, pp. 353–362.

[6] S. Nirjon, A. Nicoara, C.-H. Hsu, J. Singh, and J. Stankovic, “Multinets:
Policy oriented real-time switching of wireless interfaces on mobile
devices,” Real-Time and Embedded Technology and Applications Sym-
posium, IEEE, vol. 0, pp. 251–260, 2012.

[7] S. Shenker, “Fundamental design issues for the future internet,” Selected
Areas in Communications, IEEE Journal on, vol. 13, no. 7, pp. 1176–
1188, 1995.

[8] A. Rahmati, C. Shepard, C. Tossell, A. Nicoara, L. Zhong, P. T. Kortum,
and J. P. Singh, “Seamless flow migration on smartphones without
network support,” CoRR, vol. abs/1012.3071, 2010.

[9] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proceedings of
the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design, ser. CellNet ’12. New York, NY, USA:
ACM, 2012, pp. 31–36.

[10] R. Hsieh and A. Seneviratne, “A comparison of mechanisms for
improving mobile ip handoff latency for end-to-end tcp,” in Proceedings
of the 9th annual international conference on Mobile computing and
networking. ACM, 2003, pp. 29–41.

[11] S. K. Sivagurunathan, J. Jones, M. Atiquzzaman, S. Fu, and Y.-J. Lee,
“Experimental comparison of handoff performance of sigma and mobile
ip,” in High Performance Switching and Routing, 2005. HPSR. 2005
Workshop on. IEEE, 2005, pp. 366–370.


