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Abstract 
 
 
In this paper we propose the extension of current 
genome compiler systems through the inclusion 
of two techniques, and study the effects on the 
performance of the system. The goal is to reduce 
the number of operations necessary to evaluate 
the individuals, hence reducing the 
computational weight of the evaluation step.  

1 INTRODUCTION 
Genetic Programming (GP) has known a great increase of 
utility during last years. From initial problem domains GP 
application has been extended to real-world problems that 
tend to be complex. Unfortunately, GP tends to imply a 
considerable computational cost.  
In this paper we study the effects of the inclusion of two 
techniques intended to reduce to reduce the computational 
weight of GP applications. We will refer to these 
techniques as: caching of sub-trees and simplification of 
the individual’s code. 
The paper has the following structure: First we will 
describe the addressed problem; Then, on Section 3, 
introduce current approaches to reduce the computational 
cost of GP; On Section 4 we make an overview of our 
system; On Section 5 we describe the simplification 
technique, and on Section 6 the caching mechanism; 
Section 7 is dedicated to the presentation experimental 
results and their discussion; Finally, on Section 8, we 
draw some conclusions.  

2 SPEED PROBLEM 
GP is a computational demanding task and its application 
to new, complex, problem domains is limited by the 
inexistence of such resources.  

On a typical GP run, 99% of total time is spent evaluating 
individuals over the training set [Nordin 94]. For each 
node of the individual’s tree a function is called and the 
arguments must be copied into the stack. When the 
functions belonging to the function set are simple (e.g. 
arithmetic operations), most of the time is spent on 
function calling, and pushing and popping arguments 
to/from the stack. Thus, most of the time is spent on 
operations that do not directly contribute to the execution 
of the individual1. 
Evaluating every individual over each fitness case makes 
GP not viable in domains with large training sets. Using 
GP for programmatic compression of an image with 
256×256 pixels can take 50 years if implemented in Lisp 
or 2 years if using C [Nordin 96].  

3 STATE OF THE ART 
Two different approaches have been proposed for 
improving the performance of the evaluation step: direct 
evolution of machine code [Nordin 94], and online 
compilation of individuals [Fukunaga 98]. 
In Nordin’s approach [Nordin 94] there isn’t an 
interpretation step. The evolutionary process is performed 
on linear individuals representing machine code 
operations. The genetic operators manipulate machine 
instructions, their opcodes, register designation and 
immediate values. The resulting machine code is then 
executed for each fitness case in the training set. This 
approach eliminates all the function calling overheads and 
represents the most effective solution for evaluation. 
According to [Nordin 94] speed improvements of 100 
times over standard C implementations of GP can be 
obtained. Typically this approach is 60 times faster than a 
C implementation.  
                                                           
1 It’s important to notice that this only applies to certain domains. If the 
evaluation of the individuals requires the simulation of their behavior on 
a complex environment the time spent on the execution of the 
individuals may be negligible when compared with the time spent by the 
simulator. In these situations a genome compiler won’t improve the 
performance significantly.  



The system proposed by A. Fukunaga [Fukunaga 98] is 
based on a typical GP implementation, using a tree 
representation of the individuals. The evaluation process 
implies compiling the tree into machine code, which is 
then executed for each fitness case. The overhead of 
function calling and stack manipulation is reduced, since 
the tree is traversed only once. Improvements up to 50 
times can be expected with this approach. This type of 
system is usually designated by Genome Compiler (GC) 
[Keith 94]. 
The performance of Nordin’s and Fukunaga’s systems 
tends to degrade when complex functions are present on 
function set. In this type of situation the time consumed 
on interpretation, function calling and passing of 
arguments is relatively small when compared to the time 
spent in function calculus (i.e. inside the function). Since 
the time gains result from the elimination of those steps 
and not from faster function calculus, and since the 
number of nodes to be evaluated remains the same, the 
speed improvement tends to be small. 

4 REDUCING CODE SIZE 
Our goal is to build a GC system able to give significant 
speed improvements even when complex functions are 
present in the function set. 
Considering the work described [Fukunaga 98] we 
implemented a base GC system with two additional 
mechanisms for speed improvement. Both rely on 
reducing the number of operations necessary to evaluate 
the individuals, without affecting fitness calculus. These 
techniques don’t alter the genotype of the individuals and, 
therefore, don’t have any type of side effect on evolution. 
The first of these mechanisms is caching of sub-trees. In a 
GP algorithm a population is generated from previous 
one.  This means that a great amount of the genetic code, 
sub-programs, of the current population was already 
present on previous ones, and, therefore, has already been 
evaluated. If we are able to store the results of their 
evaluation, and retrieve them efficiently from memory, 
we can avoid recalculating these sub-trees. 
In [Machado 99] a sub-tree caching mechanism was 
implemented on top of a conventional GP making it 17 
faster. We adapted this technique to our GC system. 
The simplification mechanism aims at eliminating 
unnecessary operations. It has been observed the 
emergence of genetic chunks of code, which are not 
expressed on individual phenotype (usually called introns) 
during normal GP runs. The emergence of introns seems 
to be linked with protection against genetic operations and 
its role on evolution is still under debate. The growth of 
introns can be exponential and represents a great 
drawback on system performance. In [Machado 01] the 
authors propose identifying and eliminating pieces of 
code that are not necessary for the individual’s evaluation 
as a way to improve the system’s performance. 

5 CACHING 
Caching is implemented as an array of pre-calculated 
values, representing a static version of the solution. The 
user defines a level for the cache. All possible sub-trees, 
with depth equal or lower than this level, are calculated, at 
the beginning of the run, for each fitness case and the 
result are stored on the array. During the compilation step 
a unique signature identifies each individual’s sub-tree 
with depth equal or lower than the cache level. Instead of 
calculating the sequence of instructions represented by the 
tree, we generate machine code to fetch the appropriate 
value from the cache. Later, during execution of code, 
only one access to memory is needed, avoiding a 
sequence of instructions. If this sequence is complex 
enough, a significant speed improvement is achieved.  
When the function set includes complex functions, the 
improvement introduced by cache tends to increase. 
Having complex and computational demanding 
instructions replaced by a simple memory access 
represents the best-case scenario for the caching 
mechanism.  
Caching is limited to problems where input vector does 
not change during the run. Additionally, caching can only 
be applied to deterministic functions. 

6 SIMPLIFICATIONS 
Removing introns from compiled code represents a direct 
reduction on code size. In our approach the genetic code 
is kept intact. However, identified introns are filtered 
during compilation step, and are not translated to machine 
code, hence not being part of the code that is going to be 
executed. 
In order to achieve speed improvements one must detect a 
significant amount of introns, moreover the techniques for 
intron detection must have low computational cost. 
In our approach we resort to basic simplification 
techniques. For instance: if the children of a node are all 
constants and the function is deterministic, its result won’t 
vary with the fitness cases, in this situation we can 
calculate the result once and replace the node and it’s 
children by a constant. In some situations, although, the 
arguments are not constants, the result is, for instance the 
protected division of a variable by itself. In our system the 
user can specify a set of simplification rules, e.g.: 

MUL(1,EXPR) → EXPR 
MUL(0,EXPR) → 0 
DIV(EXPR,EXPR) → 1 
... 

When an expression that can be simplified is found, it is 
replaced by the simplification. This is done in a way that 
allows these simplifications to propagate. 
The time overhead introduced by the simplification step is 
negligible, even when a relatively small training set is 



used. It’s important to notice that every improvement 
induced by simplifications on final machine code will be 
explored several times (as much as the number of fitness 
cases). 

7 EXPERIMENTAL RESULTS 
We tested the system with two symbolic regression 
problems: of an image and of the function f(x)=x9. The 
symbolic regression of images was also used by Nordin 
[Nordin 96] to access the performance of his system, 
while Fukunaga used the f(x)=x9 function to evaluate his. 
We chose the “lenna” image because it is the most 
popular one in the image compression field. 
In the regression of f(x)=x9 we considered two variants. 
In the 1st the f-set is composed by {+, -, *, %} and the 
terminal set by {X}, the functions used are predefined 
compiler functions. On the 2nd we used a similar f-set 
however, the functions are not predefined compiler ones, 
instead they are C function supplied by the user. 
On the regression of the “lenna” image we used as f-set 
{+,-,*,%} and as terminal set with {X,Y}. The image 
regression was implemented using integer values and the 
other problem using floating-point values. 
For all the problems we used a population size of 500, 
tournament selection, of size 5, a crossover rate of 90%, 
reproduction rate of 10%, an initial tree depth of 2-6, 
maximal depth of 17, and performed 30 generations. We 
made 10 independent runs for each configuration. To 
allow comparison the problems where also implemented 
using a standard GP shell, lil-gp [Zongker 96]. 
In our tests we used a Pentium III 800 Mhz computer with 
256MB of RAM, running windows 2000 Pro.   

7.1 RESULTS 
The charts presented in this section show the 
improvements obtained by our GC system using cache 
and simplifications over a standard lil-gp implementation. 
The values refer to the relation between the time 
consumed on evaluation by lil-gp and the time spent on 
executing the code produced by our GC system. This 
relation indicates the maximum improvement possible for 
the approach, when compilation time is negligible 
compared to execution time [Fukunaga 98].  
The charts on figures 1 and 2 concern the regression of 
the f(x)=x9 function using predefined compiler functions. 
The chart on figure 1 indicates that our GC system 
significantly improves the performance of the evaluation 
step, being approximately 90 times faster than lil-gp. 
When we use cache the speedup is even higher: 147 for a 
level 1 cache, 152 for a level 2, and 170 for level 3. 
It also shows that level 3 caching leads to performance 
degradation when the number of fitness cases exceeds 
500, this result was expected since caching consumes a 
significant amount of memory leading to trashing. 
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Figure 1: Speed improvements using cache only 

In figure 2 we show the speed improvements achieved by 
the inclusion of the simplification mechanism. This 
induces a significant performance boost, attaining a 
maximum speedup of 200 over lil-gp. It’s interesting to 
notice that, when using simplifications, the speedup 
achieved by caching is marginal. 
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Figure 2:  Speed improvements using cache and 

simplifications 
The charts on figures 3 and 4 concern the regression of 
the f(x)=x9 function using user defined functions. 
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Figure 3: Cache performance using user functions 

As expected the increase of performance isn’t as 
significant as in the previous situation, due to the 
overhead of function calling. 
The GC alone achieves a speed improvement of 4 times 
over lil-gp, which can be explained by the fact that the 
tree is traversed only once. Using a level 1 cache yields a 
speedup of 6, level 2 of 10, and level 3 of 16.  
The chart on figure 4 relates to the speed improvements 
when using simplifications and caching, which leads to a 
maximal speedup of 25 over lil-gp, simplifications alone 
leading to 10. 



0.0

5.0

10.0

15.0

20.0

25.0

0 50 100

Fitness cases

Sp
ee

du
p

GC

GC+S

GC+S+CL1

GC+S+CL2

GC+S+CL3

 
Figure 4:  Speed improvements using cache and 

simplifications. 
The charts on figures 5 and 6 concern the regression of 
the “lenna” image. 
A maximum speed improvement of 200 was achieved 
using a level 2 cache. This is slightly better than the 
results achieved on the f(x)=x9 function. This is mainly 
due to use of integer values instead of floating point. In 
these tests we decided not to use a level 3 cache since it 
would necessarily lead poor performance. 
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Figure 5: Speed improvements using cache, integer mode 
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Figure 6: Speed improvements using cache and 

simplifications, integer mode 
Using simplifications and caching simultaneously results 
in a maximum speed up of 215 over lil-gp.  
The simultaneous use of caching and simplifications 
doesn’t give a high improvement of performance when 
compared to the use of caching alone. However, it’s 
important to notice that the simplification doesn’t cause 
any type of memory overheads, which allows it’s use 
even when the number of fitness cases is very high 
without leading to degradation of performance. 

8 CONCLUSIONS 
We explored the use of two well-know techniques: intron 
detection and removal and caching, to improve the 
performance of our Genome Compiler system. 
Although these techniques are not new, their use as a way 
to improve the performance of GP, more specifically of 
Genome Compiler systems, is to our knowledge novel. 
The experimental results clearly indicate that significant 
improvements can be achieved by their use. Moreover, 
they can be used in situations where genome compilers 
perform badly. 
Our approach has potential to outperform systems like the 
ones presented in [Fukunaga 98] and [Nordin 94] in 
situations where the function set includes complex 
functions or with a high number of fitness cases. 
The simplification mechanism is of particular interest 
since it proved to be highly effective and since it doesn’t 
imply any type of memory overhead. 
Additionally, it’s important to notice that these techniques 
can be applied even when the functions of the function set 
are defined by the user, and thus do not belong to the set 
of primitives of the Genome Compiler. 
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