
Improving genome compiler’s performance

 André Dias, Penousal Machado,

Amílcar Cardoso
CISUC – Center for Informatics and

Systems, Univ. de Coimbra
Pinhal de Marrocos – Pólo II,

3030 Coimbra, Portugal

Abstract

In this paper we propose the extension of current
genome compiler systems through the inclusion
of two techniques, and study the effects on the
performance of the system. The goal is to reduce
the number of operations necessary to evaluate
the individuals, hence reducing the
computational weight of the evaluation step.

1 INTRODUCTION
Genetic Programming (GP) has known a great increase of
utility during last years. From initial problem domains GP
application has been extended to real-world problems that
tend to be complex. Unfortunately, GP tends to imply a
considerable computational cost.
In this paper we study the effects of the inclusion of two
techniques intended to reduce to reduce the computational
weight of GP applications. We will refer to these
techniques as: caching of sub-trees and simplification of
the individual’s code.
The paper has the following structure: First we will
describe the addressed problem; Then, on Section 3,
introduce current approaches to reduce the computational
cost of GP; On Section 4 we make an overview of our
system; On Section 5 we describe the simplification
technique, and on Section 6 the caching mechanism;
Section 7 is dedicated to the presentation experimental
results and their discussion; Finally, on Section 8, we
draw some conclusions.

2 SPEED PROBLEM
GP is a computational demanding task and its application
to new, complex, problem domains is limited by the
inexistence of such resources.

On a typical GP run, 99% of total time is spent evaluating
individuals over the training set [Nordin 94]. For each
node of the individual’s tree a function is called and the
arguments must be copied into the stack. When the
functions belonging to the function set are simple (e.g.
arithmetic operations), most of the time is spent on
function calling, and pushing and popping arguments
to/from the stack. Thus, most of the time is spent on
operations that do not directly contribute to the execution
of the individual1.
Evaluating every individual over each fitness case makes
GP not viable in domains with large training sets. Using
GP for programmatic compression of an image with
256×256 pixels can take 50 years if implemented in Lisp
or 2 years if using C [Nordin 96].

3 STATE OF THE ART
Two different approaches have been proposed for
improving the performance of the evaluation step: direct
evolution of machine code [Nordin 94], and online
compilation of individuals [Fukunaga 98].
In Nordin’s approach [Nordin 94] there isn’t an
interpretation step. The evolutionary process is performed
on linear individuals representing machine code
operations. The genetic operators manipulate machine
instructions, their opcodes, register designation and
immediate values. The resulting machine code is then
executed for each fitness case in the training set. This
approach eliminates all the function calling overheads and
represents the most effective solution for evaluation.
According to [Nordin 94] speed improvements of 100
times over standard C implementations of GP can be
obtained. Typically this approach is 60 times faster than a
C implementation.

1 It’s important to notice that this only applies to certain domains. If the
evaluation of the individuals requires the simulation of their behavior on
a complex environment the time spent on the execution of the
individuals may be negligible when compared with the time spent by the
simulator. In these situations a genome compiler won’t improve the
performance significantly.

The system proposed by A. Fukunaga [Fukunaga 98] is
based on a typical GP implementation, using a tree
representation of the individuals. The evaluation process
implies compiling the tree into machine code, which is
then executed for each fitness case. The overhead of
function calling and stack manipulation is reduced, since
the tree is traversed only once. Improvements up to 50
times can be expected with this approach. This type of
system is usually designated by Genome Compiler (GC)
[Keith 94].
The performance of Nordin’s and Fukunaga’s systems
tends to degrade when complex functions are present on
function set. In this type of situation the time consumed
on interpretation, function calling and passing of
arguments is relatively small when compared to the time
spent in function calculus (i.e. inside the function). Since
the time gains result from the elimination of those steps
and not from faster function calculus, and since the
number of nodes to be evaluated remains the same, the
speed improvement tends to be small.

4 REDUCING CODE SIZE
Our goal is to build a GC system able to give significant
speed improvements even when complex functions are
present in the function set.
Considering the work described [Fukunaga 98] we
implemented a base GC system with two additional
mechanisms for speed improvement. Both rely on
reducing the number of operations necessary to evaluate
the individuals, without affecting fitness calculus. These
techniques don’t alter the genotype of the individuals and,
therefore, don’t have any type of side effect on evolution.
The first of these mechanisms is caching of sub-trees. In a
GP algorithm a population is generated from previous
one. This means that a great amount of the genetic code,
sub-programs, of the current population was already
present on previous ones, and, therefore, has already been
evaluated. If we are able to store the results of their
evaluation, and retrieve them efficiently from memory,
we can avoid recalculating these sub-trees.
In [Machado 99] a sub-tree caching mechanism was
implemented on top of a conventional GP making it 17
faster. We adapted this technique to our GC system.
The simplification mechanism aims at eliminating
unnecessary operations. It has been observed the
emergence of genetic chunks of code, which are not
expressed on individual phenotype (usually called introns)
during normal GP runs. The emergence of introns seems
to be linked with protection against genetic operations and
its role on evolution is still under debate. The growth of
introns can be exponential and represents a great
drawback on system performance. In [Machado 01] the
authors propose identifying and eliminating pieces of
code that are not necessary for the individual’s evaluation
as a way to improve the system’s performance.

5 CACHING
Caching is implemented as an array of pre-calculated
values, representing a static version of the solution. The
user defines a level for the cache. All possible sub-trees,
with depth equal or lower than this level, are calculated, at
the beginning of the run, for each fitness case and the
result are stored on the array. During the compilation step
a unique signature identifies each individual’s sub-tree
with depth equal or lower than the cache level. Instead of
calculating the sequence of instructions represented by the
tree, we generate machine code to fetch the appropriate
value from the cache. Later, during execution of code,
only one access to memory is needed, avoiding a
sequence of instructions. If this sequence is complex
enough, a significant speed improvement is achieved.
When the function set includes complex functions, the
improvement introduced by cache tends to increase.
Having complex and computational demanding
instructions replaced by a simple memory access
represents the best-case scenario for the caching
mechanism.
Caching is limited to problems where input vector does
not change during the run. Additionally, caching can only
be applied to deterministic functions.

6 SIMPLIFICATIONS
Removing introns from compiled code represents a direct
reduction on code size. In our approach the genetic code
is kept intact. However, identified introns are filtered
during compilation step, and are not translated to machine
code, hence not being part of the code that is going to be
executed.
In order to achieve speed improvements one must detect a
significant amount of introns, moreover the techniques for
intron detection must have low computational cost.
In our approach we resort to basic simplification
techniques. For instance: if the children of a node are all
constants and the function is deterministic, its result won’t
vary with the fitness cases, in this situation we can
calculate the result once and replace the node and it’s
children by a constant. In some situations, although, the
arguments are not constants, the result is, for instance the
protected division of a variable by itself. In our system the
user can specify a set of simplification rules, e.g.:

MUL(1,EXPR) → EXPR
MUL(0,EXPR) → 0
DIV(EXPR,EXPR) → 1
...

When an expression that can be simplified is found, it is
replaced by the simplification. This is done in a way that
allows these simplifications to propagate.
The time overhead introduced by the simplification step is
negligible, even when a relatively small training set is

used. It’s important to notice that every improvement
induced by simplifications on final machine code will be
explored several times (as much as the number of fitness
cases).

7 EXPERIMENTAL RESULTS
We tested the system with two symbolic regression
problems: of an image and of the function f(x)=x9. The
symbolic regression of images was also used by Nordin
[Nordin 96] to access the performance of his system,
while Fukunaga used the f(x)=x9 function to evaluate his.
We chose the “lenna” image because it is the most
popular one in the image compression field.
In the regression of f(x)=x9 we considered two variants.
In the 1st the f-set is composed by {+, -, *, %} and the
terminal set by {X}, the functions used are predefined
compiler functions. On the 2nd we used a similar f-set
however, the functions are not predefined compiler ones,
instead they are C function supplied by the user.
On the regression of the “lenna” image we used as f-set
{+,-,*,%} and as terminal set with {X,Y}. The image
regression was implemented using integer values and the
other problem using floating-point values.
For all the problems we used a population size of 500,
tournament selection, of size 5, a crossover rate of 90%,
reproduction rate of 10%, an initial tree depth of 2-6,
maximal depth of 17, and performed 30 generations. We
made 10 independent runs for each configuration. To
allow comparison the problems where also implemented
using a standard GP shell, lil-gp [Zongker 96].
In our tests we used a Pentium III 800 Mhz computer with
256MB of RAM, running windows 2000 Pro.

7.1 RESULTS
The charts presented in this section show the
improvements obtained by our GC system using cache
and simplifications over a standard lil-gp implementation.
The values refer to the relation between the time
consumed on evaluation by lil-gp and the time spent on
executing the code produced by our GC system. This
relation indicates the maximum improvement possible for
the approach, when compilation time is negligible
compared to execution time [Fukunaga 98].
The charts on figures 1 and 2 concern the regression of
the f(x)=x9 function using predefined compiler functions.
The chart on figure 1 indicates that our GC system
significantly improves the performance of the evaluation
step, being approximately 90 times faster than lil-gp.
When we use cache the speedup is even higher: 147 for a
level 1 cache, 152 for a level 2, and 170 for level 3.
It also shows that level 3 caching leads to performance
degradation when the number of fitness cases exceeds
500, this result was expected since caching consumes a
significant amount of memory leading to trashing.

0.0

50.0

100.0

150.0

200.0

0 500 1000

Fitness cases

Sp
ee

du
p GC

GC+CL1
GC+CL2
GC+CL3

Figure 1: Speed improvements using cache only

In figure 2 we show the speed improvements achieved by
the inclusion of the simplification mechanism. This
induces a significant performance boost, attaining a
maximum speedup of 200 over lil-gp. It’s interesting to
notice that, when using simplifications, the speedup
achieved by caching is marginal.

0.0

50.0

100.0

150.0

200.0

0 500 1000

Fitness cases

Sp
ee

du
p GC

GC+S
GC+S+CL1
GC+S+CL2
GC+S+CL3

Figure 2: Speed improvements using cache and

simplifications
The charts on figures 3 and 4 concern the regression of
the f(x)=x9 function using user defined functions.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 50 100

Fitness cases

Sp
ee

du
p GC

GC+CL1

GC+CL2

GC+CL3

Figure 3: Cache performance using user functions

As expected the increase of performance isn’t as
significant as in the previous situation, due to the
overhead of function calling.
The GC alone achieves a speed improvement of 4 times
over lil-gp, which can be explained by the fact that the
tree is traversed only once. Using a level 1 cache yields a
speedup of 6, level 2 of 10, and level 3 of 16.
The chart on figure 4 relates to the speed improvements
when using simplifications and caching, which leads to a
maximal speedup of 25 over lil-gp, simplifications alone
leading to 10.

0.0

5.0

10.0

15.0

20.0

25.0

0 50 100

Fitness cases

Sp
ee

du
p

GC

GC+S

GC+S+CL1

GC+S+CL2

GC+S+CL3

Figure 4: Speed improvements using cache and

simplifications.
The charts on figures 5 and 6 concern the regression of
the “lenna” image.
A maximum speed improvement of 200 was achieved
using a level 2 cache. This is slightly better than the
results achieved on the f(x)=x9 function. This is mainly
due to use of integer values instead of floating point. In
these tests we decided not to use a level 3 cache since it
would necessarily lead poor performance.

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0
200.0

0 500 1000

Fitness cases

Sp
ee

du
p GC

GC+CL1

GC+CL2

Figure 5: Speed improvements using cache, integer mode

0.0

50.0

100.0

150.0

200.0

0 500 1000

Fitness cases

Sp
ee

du
p GC

GC+S

GC+S+CL1

GC+S+CL2

Figure 6: Speed improvements using cache and

simplifications, integer mode
Using simplifications and caching simultaneously results
in a maximum speed up of 215 over lil-gp.
The simultaneous use of caching and simplifications
doesn’t give a high improvement of performance when
compared to the use of caching alone. However, it’s
important to notice that the simplification doesn’t cause
any type of memory overheads, which allows it’s use
even when the number of fitness cases is very high
without leading to degradation of performance.

8 CONCLUSIONS
We explored the use of two well-know techniques: intron
detection and removal and caching, to improve the
performance of our Genome Compiler system.
Although these techniques are not new, their use as a way
to improve the performance of GP, more specifically of
Genome Compiler systems, is to our knowledge novel.
The experimental results clearly indicate that significant
improvements can be achieved by their use. Moreover,
they can be used in situations where genome compilers
perform badly.
Our approach has potential to outperform systems like the
ones presented in [Fukunaga 98] and [Nordin 94] in
situations where the function set includes complex
functions or with a high number of fitness cases.
The simplification mechanism is of particular interest
since it proved to be highly effective and since it doesn’t
imply any type of memory overhead.
Additionally, it’s important to notice that these techniques
can be applied even when the functions of the function set
are defined by the user, and thus do not belong to the set
of primitives of the Genome Compiler.

Acknowledgments
This work was partially funded by the Portuguese
Ministry of Science and Technology and FEDER under
contract POSI/34756/SRI/2000

References

[Fukunaga 98] Fukunaga, A. Stechert, A. Mutz, D. A Genome
Compiler for High Performance Genetic Programming,
Genetic Programming Conference, GP'98, 1998.

[Keith 94] Keith, M. Martin, M. Genetic programming in C++:
Implementation Issues. Advances in Genetic Programming,
1994.

[Koza 92] Koza, J. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. 1992.

[Machado 99] P. Machado and A. Cardoso, Speeding up Genetic
Programming. Procs. 2nd Int. Symp. AI and Adaptive
Systems, CIMAF'99, La Havana, Cuba, pp. 217-222, 1999.

[Machado 01] Machado, P., Dias, A., Cardoso, A., GenCo – A
project Report. Proceedings of the Third International
Symposium on Artificial Intelligence and Adaptive Systems
(ISAS’2001), La Havana, Cuba, 2001.

[Nordin 94] Nordin, P. A compiling genetic programming
system that directly manipulates the machine-code.
Advances in Genetic Programming, 1994.

[Nordin 96] Nordin, P.; Programmatic Compression of Images
and Sound; In Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 345-350; MIT Press,
1996

 [Zongker 96] Zongker, D. Punch, B. lil-gp1.01 User’s Manual,
1996.

