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Abstract. Geometric Semantic Genetic Programming (GSGP) is a
recently proposed form of Genetic Programming in which the fitness
landscape seen by its variation operators is unimodal with a linear slope
by construction and, consequently, easy to search. This is valid across
all supervised learning problems. In this paper we propose a feedfor-
ward Neural Network construction algorithm derived from GSGP. This
algorithm shares the same fitness landscape as GSGP, which allows an
efficient search to be performed on the space of feedforward Neural Net-
works, without the need to use backpropagation. Experiments are con-
ducted on real-life multidimensional symbolic regression datasets and
results show that the proposed algorithm is able to surpass GSGP, with
statistical significance, in terms of learning the training data. In terms
of generalization, results are similar to GSGP.

1 Introduction

Moraglio et al. [6] recently proposed a new Genetic Programming formulation
called Geometric Semantic Genetic Programming (GSGP). GSGP derives its
name from the fact that it is formulated under a geometric framework [5] and
from the fact that it operates directly in the space of the underlying semantics
of the individuals. In this context, semantics is defined as the outputs of an
individual over a set of data instances. The most interesting property of GSGP
is that the fitness landscape seen by its variation operators is always unimodal
with a linear slope (cone landscape) by construction. This implies that there
are no local optima, and consequently, that this type of landscape is easy to
search. When applied to multidimensional real-life datasets, GSGP has shown
competitive results in learning and generalization [3,7]. In this paper, we adapt
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the geometric semantic mutation to the realm of feedforward Neural Networks
by proposing the Semantic Learning Machine (SLM). Section 2 defines the SLM.
Section 3 describes the experimental setup. Section 4 presents and discusses the
results of the SLM and GSGP, and Section 5 concludes.

2 Semantic Learning Machine

Given that the geometric semantic operators are defined over the semantic space
(outputs), they can be extended for different representations. The Semantic
Learning Machine (SLM) proposed in this section is based on a derivation of
the GSGP mutation operator for real-value semantics. This implies that the
SLM shares the same semantic landscape proprieties as GSGP. Particularly, the
fitness landscape induced by its operator is always unimodal with a linear slope
(cone landscape) by construction, and consequently easy to search. This is valid
across all supervised learning problems.

2.1 A Geometric Semantic Mutation Operator for Feedforward
Neural Networks

The GSGP mutation for real-value semantics [6] is defined as follows:

Definition 1. (GSGP Mutation). Given a parent function T : Rn → R, the
geometric semantic mutation with mutation step ms returns the real function
TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random real functions.

This mutation essentially performs a linear combination of two individuals:
the parent and a randomly generated tree (which results from subtracting the
two subtrees TR1 and TR2). The degree of semantic change is controlled by the
mutation step.

An equivalent geometric semantic mutation operator can be derived for feed-
forward Neural Networks (NN). The only three small restrictions for this NN
mutation operator are: the NN must have at least one hidden layer; the output
layer must have only one neuron; and the output neuron must have a linear acti-
vation function. Each application of the operator adds a new neuron to the last
hidden layer. The weight from the new neuron to the output neuron is defined
by the learning step (SLM parameter). This learning step is the equivalent of
the mutation step in the GSGP mutation. It defines the amount of semantic
change for each application of the operator. The weights from the last hidden
layer to the previous layer are randomly generated. This is the equivalent of
generating the two random subtrees in the GSGP mutation. In this work these
weights are generated with uniform probability between -1.0 and 1.0. If more
than one hidden layer is used, all other weights remain constant once initialized.
In this work all experiments are conducted with a single hidden layer. The acti-
vation function for the neurons in the last hidden layer can be freely chosen.
However, it has been recently shown, in the context of GSGP, that applying a
structural bound to the randomly generated tree (which results from subtracting
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the two subtrees TR1 and TR2) results in significant improvements in terms of
generalization ability [3]. In fact, if a unbounded mutation (equivalent to using
a linear activation function) is used, there is a tendency for GSGP to greatly
overfit the training data [3]. For this reason, it is recommended that the acti-
vation function for the neurons in the last hidden layer to be a function with
a relatively small codomain. In this work a modified logistic function (trans-
forming the logistic function output to range in the interval [−1, 1]) is used for
this purpose. In terms of generalization ability, it is also essential to use a small
learning/mutation step [3]. If more than one hidden layer is used, the activation
functions for the remaining neurons may be freely chosen.

2.2 Algorithm

The SLM algorithm is essentially a geometric semantic hill climber for feedfor-
ward neural networks. The idea is to perform a semantic sampling with a given
size (SLM parameter) by applying the mutation operator defined in the previ-
ous subsection. As is common in hill climbers, only one solution (in this case a
neural network) is kept along the run. At each iteration, the mentioned semantic
sampling is performed to produce N neighbors. At the end of the iteration, the
best individual from the previous best and the newly generated individuals is
kept. The process is repeated until a given number of iterations (SLM param-
eter) has been reached. As mentioned in the previous subsection, the mutation
operator always adds a new neuron to the last hidden layer, so the number of
neurons in the last hidden layer is at most the same as the number of iterations.
This number of neurons can be smaller than the number of iterations if in some
iterations it was not possible to generate an individual superior to the current
best.

3 Experimental Setup

The experimental setup is based on the setup of Vanneschi et al. [7] and
Gonçalves et al. [3], since these works recently provided results for GSGP. Exper-
iments are run for 500 iterations/generations because that is where the statistical
comparisons were made in the mentioned works. 30 runs are conducted. Popu-
lation/sample size is 100. Training and testing set division is 70% - 30%. Fitness
is computed as the root mean squared error. The initial tree initialization is
performed with the ramped half-and-half method, with a maximum depth of 6.
Besides GSGP, the Semantic Stochastic Hill Climber (SSHC) [6] is also used as
baseline for comparison. The variation operators used are the variants defined
for real-value semantics [6]: SGXM crossover for GSGP, and SGMR mutation
for GSGP and SSHC. For GSGP a probability of 0.5 is used for both opera-
tors. The function set contains the four binary arithmetic operators: +, -, *,
and / (protected). No constants are used in the terminal set. Parent selection in
GSGP is based on tournaments of size 4. Also for GSGP, survivor selection is
elitist as the best individual always survives to the next generation. All claims
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of statistical significance are based on Mann-Whitney U tests, with Bonferroni
correction, and considering a significance level of α = 0.05. For each dataset 30
different random partitions are used. Each method uses the same 30 partitions.
Experiments are conducted on three multidimensional symbolic regression real-
life datasets. These datasets are the Bioavailability (hereafter Bio), the Plasma
Protein Binding (hereafter PPB), and the Toxicity (hereafter LD50). The first
two were also used by Vanneschi et al. [7] and Gonçalves et al. [3]. These datasets
have, respectively: 359 instances and 241 features; 131 instances and 626 features;
and 234 instances and 626 features. For a detailed description of these datasets
the reader is referred to Archetti et al. [1]. These datasets have also been used
in other Genetic Programming studies, e.g., [2,4].

4 Experimental Study

Figure 1 presents the training and testing error evolution plots for SLM, GSGP
and SSHC. These evolution plots are constructed by taking the median over 30
runs of the training and testing error of the best individuals in the training data.
The mutation/learning step used was 1 for the the Bio and PPB datasets (as in
Vanneschi et al. [7] and Gonçalves et al. [3]), and 10 for the LD50 as it was found,
in preliminary testing, to be a suitable value (other values tested were: 0.1, 1, and
100). A consideration for the different initial values (at iteration/generation 0)
is in order. The SLM presents much higher errors than GSGP/SSHC after the
random initialization. This is explained by the fact that the weights for the SLM
are generated with uniform probability between -1.0 and 1.0, and consequently, the
amount of data fitting is clearly bounded. On the other hand, GSGP and SSHC
have no explicit bound on the random trees and therefore can provide a superior
initial explanation of the data. It is interesting to note that, despite this initial
disadvantage, the SLM compensates with a much higher learning rate. This higher
learning efficiency is confirmed by the statistically significant superiority found in
terms of training error across all datasets, against GSGP (p-values: Bio 2.872 ×
10−11, PPB 2.872×10−11 and LD50 7.733×10−10), and against SSHC (p-values:
Bio 2.872 × 10−11, PPB 2.872 × 10−11 and LD50 3.261 × 10−5).

This learning superiority is particularly interesting when considering that
the SLM and the SSHC use the exact same geometric semantic mutation oper-
ator. This raise the question: how can two methods with the same variation
operator, the same induced semantic landscape, and the same parametrizations
achieve such different outcomes? The answer lies in the different semantic dis-
tributions that result from the random initializations. Different representations
have different natural ways of being randomly initialized. This translates into
different semantic distributions and, consequently, to different offspring distri-
butions. From the results it is clear that the distribution induced by the random
initialization of a list of weights (used in SLM), is more well-behaved than the
initialization of a random tree (used in SSHC). In the original GSGP proposal,
Moraglio et al. [6] provided a discussion on whether syntax (representation)
matters in terms of search. They argued that, in abstract, the offspring distri-
butions may be affected by the different syntax initializations. In our work, we
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Fig. 1. Bio (top), PPB (center) and LD50 (bottom) training and testing error evolution
plots

can empirically see how different representations induce different offspring dis-
tributions and consequently reach considerably different outcomes. A possible
research venue lies in analyzing the semantic distributions induced by different
tree initialization methods, and to possibly propose new tree initializations that
are more well-behaved.

In terms of generalization, results show that all methods achieve similar
results. The only statistically significant difference shows that the SLM is supe-
rior to GSGP in the Bio dataset (p-value: 1.948 × 10−4). However, it seems
that in this case, GSGP is still evolving and that in a few more generations
may reach a generalization similar to the SLM. On a final note, the evolution
plots also show that SSHC consistently learns the training data faster and better
than GSGP. This should be expected as the semantic space has no local optima
and consequently the search can be focused around the best individual in the
population. These differences are confirmed as statistically significant (p-values:
Bio 2.872 × 10−11, PPB 2.872 × 10−11 and LD50 1.732 × 10−4). There are no
statistically significant differences in terms of generalization.
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5 Conclusions

This work presented a novel feedforward Neural Network (NN) construction algo-
rithm, derived from Geometric Semantic Genetic Programming (GSGP). The
proposed algorithm shares the same fitness landscape as GSGP, which enables
an efficient search for any supervised learning problem. Results in regression
datasets show that the proposed NN construction algorithm is able to surpass
GSGP, with statistical significance, in terms of learning the training data. Gen-
eralization results are similar to those of GSGP. Future work involves extending
the experimental analysis to other regression datasets and to provide results for
classification tasks. Comparisons with other NN algorithms and other commonly
used supervised learning algorithms (e.g. Support Vector Machines) are also in
order.
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