
NoSQL in practice: a write-heavy enterprise application

João Ricardo Lourenço
CISUC

Coimbra, Portugal
jorl17.8@
gmail.com

Veronika Abramova
CISUC

Coimbra, Portugal
veronika@

student.dei.pt

Bruno Cabral
CISUC

Coimbra, Portugal
bcabral@
dei.uc.pt

Jorge Bernardino
CISUC,ISEC

Coimbra, Portugal
jorge@
isec.pt

Paulo Carreiro
Critical Software

Coimbra, Portugal
pmcarreiro@

criticalsoftware.com

Marco Vieira
CISUC

Coimbra, Portugal
mvieira@
dei.uc.pt

Abstract—The continuous information growth in current
organizations has created a need for adaptation and innovation
in the field of data storage. Alternative technologies such
as NoSQL have been heralded as the solution to the ever-
growing data requirements of the corporate world, but these
claims have not been backed by many real world studies. Cur-
rent benchmarks evaluate database performance by executing
specific queries over mostly synthetic data. These artificial
scenarios, then, prevent us from easily drawing conclusions for
the real world and appropriately characterize the performance
of databases in a real system. To counter this, we used a real
world enterprise system with real corporate data to evaluate the
performance characteristics of popular NoSQL databases and
compare them to SQL counterparts. In particular, we present
one of the first write-heavy evaluations using enterprise soft-
ware and big data. We tested Cassandra, MongoDB, Couchbase
Server and MS SQL Server and compared their performance
while handling demanding and large write requests from a real
company with an electrical measurement enterprise system.

Keywords-NoSQL, Big Data, Enterprise, Write-Heavy, Mon-
goDB, Couchbase, Cassandra, SQL Server

I. INTRODUCTION

“Big Data” has recently taken more prominence in the
industry, with very high amounts of data in need of con-
stant, quick, and always-available processing [1]. Traditional
relational systems are known for their ACID (Atomicity,
Consistency, Isolation, Durability) properties and consis-
tency guarantees, but this design choice may often limit
their availability and scalability [2]. To counter this scenario,
NoSQL systems have been developed. They sacrifice some
of the ACID properties, namely consistency, favoring avail-
ability [3], resulting in BASE (Basically Available Soft-state
services with Eventual-consistency) systems. Indeed, these
systems are Basically Available, have a Soft state during
which consistency is not yet assured, but then are Eventually
consistent [4]. Trading off consistency for availability has
resulted in many different NoSQL systems which have
different architectures and different use-case scenarios [5].
They have been evaluated multiple times in recent years,
but there seems to be a lack of real-world studies with
enterprise data or systems. Rather, the NoSQL literature is
mostly based on artificial benchmarks such as the Yahoo!
Cloud Serving Benchmark (YCSB) [6].

We were given a real enterprise system with a write-
heavy workload and big datasets, and asked to evaluate
the feasibility of replacing part of its storage backend with
a NoSQL based one. This allowed us to test the perfor-
mance of NoSQL systems in the real world, as opposed
to the aforementioned artificial benchmarks, with respect to
throughput and storage requirements. As we will show in the
rest of this paper, although the workloads of the enterprise
system are not representative of big data itself, the limits
of the system were being reached, with bottlenecks in the
database operation becoming clear. To solve this problem,
techniques for handling big data were experimented, in
particular NoSQL technology. It is the data model associated
with the system that justifies our experiments and research
into big data technologies.

In this paper we present the problem, our findings and the
conclusions we have drawn from our experiments. Several
popular NoSQL systems were tested (MongoDB [7], Cas-
sandra [8], Couchbase Server [9]) and compared with the
relational model (MS SQL Server) to assert if they presented
any performance gains in a real enterprise scenario. To
the best of our knowledge, our work is the first to shed
light on a real world write-heavy enterprise scenario, not
relying on an artificial system and data. Our results may
serve as a bridge to fill in the literature gap between theory
and practice, artificial and real, by depicting the impact of
NoSQL on a real world enterprise application that handles
large amounts of data. Henceforth, our main contribution
consists of showing how NoSQL systems – a typical big
data solution – behave in a write-heavy enterprise scenario,
which made use of relational technology, with regards to
performance.

The remaining of this paper is structured as follows.
Section II presents a state of the art on NoSQL systems
which supports our choice of tested databases, together with
related work. Section III introduces the enterprise system we
worked with, the problems at hand, the current architecture
and our proposed architecture. Section IV explains the
experiments we ran and their setup. Section V presents our
results and their discussion. Finally, in Section VI we draw
the conclusions of our work and future work opportunities,
also focusing on the lessons learned from our experiments

and suggesting a set of defining characteristics that NoSQL
systems need to better support our enterprise scenario.

II. STATE OF THE ART

With a large amount of available NoSQL solutions, it
is important to be able to distinguish the fittest database
solution for a particular system with respect to its distinctive
characteristics. All the continuous development and evolu-
tion of non-relational technology, over the past years, has
contributed to the constant interest in evaluating NoSQL
databases. Moreover, until now, all the available studies were
highly focused on the performance testing using standard
benchmarks [10]. Although those evaluations provide a basic
knowledge of the database behavior, there is no performance
guarantee while working in a real enterprise environment,
where data and interaction are much more random, unpre-
dictable and hard to model [10].

In recent NoSQL evaluations, the authors focus on dif-
ferent possibilities of adapting NoSQL solutions and using
those databases along with other domain-specific technolo-
gies, such as clinical decision support systems [11]–[13].
In these studies, the authors evaluated different possibil-
ities of integrating NoSQL databases in existing systems
where flexibility or big data handling capabilities were
needed. They concluded that, according to each system
characteristic, NoSQL, in fact, could be a good possibil-
ity for data management. In particular, its flexibility and
scalability were seen as fitting for the needs of each of
these works. One of the drawbacks of NoSQL databases
is the learning curve. Another recent trend has been the
development of different approaches in terms of data queries.
While most developers and DBAs are comfortable and
accustomed with SQL, the querying and management of
non-relational databases requires more time to learn [14].
More than that, NoSQL technology is known for the non-
existence of a querying standard, with different databases
having different querying languages [14], [15]. Therefore,
[16] and [17] describe querying in NoSQL databases and a
possibility of a modeling system that is capable of executing
queries regardless of the database. Finally, other authors
propose efficient data mining and Big Data processing [18],
[19]. Their frameworks are capable of providing better data
querying and analysis. In this paper we evaluate the writing
performance of NoSQL databases in a real working system.
This evaluation will generate new insights on how NoSQL
databases perform on systems with such a specific set of
requirements.

Further reviewing the literature, one can gather that al-
though there have been many evaluations, with a specific
focus on synthetic data, there are few evaluations focused on
write-heavy datasets (we note, however, there are some read-
heavy evaluations, such as [20], [21] and [22]). Regarding
write-heavy workloads, the authors of [23] focus on many
scenarios, one of them being “mostly writes”, but use the

artificial YCSB benchmark. In much the same way, in [24],
a write intensive analysis is performed for various NoSQL
Databases, but, again, the YCSB framework is used. In,
[25], an in-depth analysis of various factors with varying
datasets, one of them write-heavy, is made. However, the
authors also use artificial frameworks for their tests. When
YCSB was first introduced, the authors published results
with the benchmark [6], analysing read, write and other
characteristics. The results among these papers, for the same
databases, tend to vary – a typical example of how NoSQL is
constantly evolving. Thus, while there is indeed data on the
write-heavy performance of NoSQL, it is mostly artificial,
disregarding the enterprise applicability and its context. In
that sense, similarly to our work, Zhong et al. [10] present
three enterprise scenarios where NoSQL is used. However,
unlike our work, their scenarios do not represent mature
enterprise systems, and are very much far apart from a write-
heavy scenario. Their work, and future developments, might
provide valuable contributions to the enterprise evaluation
of NoSQL, but it neglects write-heavy scenarios.

III. A REAL ENTERPRISE DISTRIBUTED SYSTEM

The enterprise system we worked with deals with storing
several measurements coming from electrical components,
obtained at high sample rates. Data is made up of tuples
containing mostly simple floating point values, a timestamp
and some additional metadata. This system, as it is currently
deployed is hindered by a performance bottleneck during
large batches of write-only operations, which are issued to
a central database.

By itself, the system uses a distributed architecture. The
data is generated by specific equipment and is stored in an
accessible way – be it XML or a private database. Another
set of independent processes eventually gather the data, do
some very simple processing on it and then write it to
the central server. Since there are so many records being
generated per minute in some of these systems (as many as 3
million values in every sampling timeslice), very high loads
of data can be gathered at the same time and quickly sent
to be written to the SQL server, resulting in large batches of
write operations. These are the operations which cause the
bottleneck and performance hit in the system.

The experiments consisted, then, of modifying the
database backend of the system to reduce the bottleneck,
as well as reduce disk space usage, making use of NoSQL
systems. A more detailed view of the currently implemented
solution and our proposed changes is presented in the next
sections.

A. Original System – Relational

The original system uses a centralized MS SQL Server
database where all the gathered data is stored. Furthermore,
additional data and metadata needed for other application
functionality is stored in other tables in the same database.

Data is gathered from all the necessary sources and is
written, in parallel, using batch operations, resulting in
hundreds of thousand write operations per second. The data
itself is very lightly preprocessed from the original source
and, indeed, is merely dumped into a table in this database.
While considering a relational system for a large number of
inserts it is important to disable indexing and some integrity
constraints, something which we took into account when we
were performing the experiment.

This approach favours the use of well established rela-
tional technology with all ACID properties. However, as
we have shown, it is prone to bottlenecks and performance
problems, suggesting that an alternative might provide an
appropriate trade-off between ACID compliance and perfor-
mance. In this sense, we proposed a system using NoSQL
that is now detailed.

B. Proposed System – NoSQL

We sought to minimize the changes to the current system,
and only touch areas that really had to be changed. Further-
more, since the system’s bottleneck was in a specific table
with many write operations, and not in the rest of the system
itself, we decided that the original SQL database should
be kept in order to store metadata and other application
control data. However, we would take the tables where
most of the data was being written to and place them in
a NoSQL system. Thus, the data causing the bottlenecks,
and the code that handled it, had to be moved and adapted
to NoSQL. Given that we were looking for ideal picks for
a write-heavy scenario, and that NoSQL’s strength lies in
large part in its high horizontal scalability [26], it was also
decided that we would run a cluster with sharded/partitioned
NoSQL databases in order to maximize write throughput.
One of the basic NoSQL considerations is the possibility to
achieve both performance and throughput by parallelizing
the execution of requests. Therefore we exploited this in
the setup and, ensuring the network could handle all the
data, and that there were no limitations from the source,
the system should be able to handle the demand and overall
performance would increase.

The original system was already finished and in deploy-
ment, which meant that our database choice was conditioned
by the system architecture. In this sense, we were limited to
databases which would run in a Windows environment and
that had .NET bindings. We would also not consider any
non-qualified and non-robust code since it could compromise
the entire evaluation. Therefore, we chose some of the most
popular databases with high support and documentation. To
this end, we tested Cassandra, MongoDB and Couchbase
Server. One of the drawbacks in satisfying this database
criteria was that we were not able to choose any Key-
Value Store database – the final chosen solutions were
two document stores (MongoDB, Couchbase) and one wide
column store (Cassandra). These three choices are among

the most popular NoSQL solutions [23], [27], [28] and make
up for what we believe is a reasonable sample of the best
NoSQL technology.

IV. EXPERIMENTAL PROCEDURE

The goal of the experiment was that of measuring the
performance of the databases under a real write-heavy
scenario. This was the most important quality attribute of
the system, so throughput was measured to assess it.

A. Experimental Setup

A homogeneous cluster using four machines with similar
hardware was chosen to host the databases. This choice was
cost-effective, adequate to the budget that we were allowed,
and also mimicked the real-world scenarios that the system
is used in. Two additional machines were used to perform
the write-heavy queries, simulating real data sources. Figure
1 depicts the experimental setup, and table I summarizes the
machine characteristics.

Figure 1. Experimental setup.

In order to ensure that there was no bottleneck in the
experimental setup, several tests were made. In particular,
we tested network throughput and stability by utilizing
all the available bandwidth with traffic generated by an
application between the machines, analyzing the throughput
and ensuring it did not have spikes. The data sources
were also tested for potential bottlenecks by running read-
intensive workloads in the source machines and comparing
the read throughput to the write throughput of the cluster.
Upon comparison, read throughput was higher than write
throughput, eliminating the possibility of a bottleneck. When
measuring the write throughput with local batch inserts
on the clusters and comparing it to network bandwidth,
we confirmed that the latter was higher than the former,

Table I
SUMMARY OF THE MACHINE SPECIFICATIONS AND NUMBER OF

SOURCES/LOAD GENERATING PROCESSES THEY RAN

CPU + OS RAM HDD #
Machines

#
Sources

Intel Core i3
3.10GHz
Windows

Server 2012 R2
64bit (build 9600)

4GB

WD5000AAKX
7200 RPM

16MB Cache
SATA 6.0GB/s

4 -

Intel Core i7
2.9GHz

Windows
Server 2008 Std.

64bit (build 6001)

8GB N/A 1 5

Intel Core 2Duo
2.53GHz
Windows

Server 2008 Std.
32bit (build 6001)

4GB

ST9320325AS
5400 RPM
8MB Cache

SATA 3.0GB/s

1 3

eliminating possible network bottlenecks. Finally, to make
sure that any bottleneck would only be in the database
itself, we ran increasingly write-intensive workloads on the
database until performance peaked, showing that an increase
in workload had a corresponding increase in throughput,
without exceeding network bandwidth or disk write through-
put.

Since the last two machines (responsible for providing the
load to the first four machines) had different characteristics,
the number of load generating processes they could run
in parallel was also different. We ran initial tests in “ad-
hoc” fashion to find the best number for each of these
machines, culminating with the total of 8 sources, 5 in
one and 3 in another one. These tests involved varying
the number of data sources in each machine and evaluating
throughput performance. The total of 8 sources, divided in
groups of 5 and 3, made the system usable and didn’t hinder
its performance (using lower or higher values than eight
would lead to system performance decrease for our initial
tests). Lastly, it is of relevance noting that the machines in
the cluster did not have a Solid State Drive (SSD) storage
medium.

B. Experimental Methodology

The experiments were performed by running the enter-
prise system. In each run of the experiment, the source
machines had a number of source processes executing write
operations on the cluster, as in the real-world scenario
(in essence, this simulated the large batches of data being
generated on the fly by electrical equipment). All of these
sources inserted the same number of records concurrently,
putting stress on the databases. Henceforth, the total amount
of records being inserted per workload was the sum of
all records inserted by these sources. When the insertions
were finished, the total insertion time was then measured so

that throughput could be calculated. A record structure is
presented in Figure 2.

Figure 2. Record structure of the enterprise system we tested.

Upon measuring the total insertion time, the system was
stopped and the databases reset to their initial state, allowing
for repetitions of the test or for another test with a different
workload to be performed.

During the adaptation of the code for the several NoSQL
solutions, we tried to use database best practices, for instance
using batch inserts wherever possible. However, we noticed
that current NoSQL databases don’t seem to have a wide
support for large batch insert operations, something which
needs to be improved if they are to ever be used with
this kind of dataset. While the operations themselves are
supported, performance gains are lower than expected, docu-
mentation was scarce and code maturity seemed low overall.
Nevertheless, they did provide speedup to the operations.

C. Workloads and Database Configurations

The testing procedure described in the previous section
was used for a single run. In the experiment, multiple runs
were executed to attain statistical significance. In particular,
10 tests were used and the results were averaged. This value
was chosen as the best trade-off between the time to run all
tests and the significance of the results – with 10 tests, the
confidence interval for the throughput had an amplitude of
roughly 5% of the total throughput, with some exceptions
for higher throughput values, where the confidence interval
amplitude peaked at approximately 17% (see Figure 3 where
these results can be seen in the form of error bars). If a
higher number of tests had been used, there would be little
to gain in statistical significance, as the confidence interval
amplitude was already quite low. In contrast, a lower number
of tests would increase the amplitude and hinder the test
significance.

In spite of using 10 tests for averaging the result, the
effective number of tests run for each experiment was 13.
The first three tests were discarded to simulate a real world
environment and, thus, remove cache side-effects (resulting
from a cold-boot), meaning that the warm-up time was given
by the first three executions.

Regarding the workloads, each of the thirteen tests was
executed for 10.000 records per source (i.e., in total, 80.000
records). After that, this procedure was repeated for 20.000
records, 30.000, etc, until 330.000 per source. This way
the impact of varying database load on throughput was
measured, as intended. We chose 10.000 records based
on real-world data and scenarios, as recommended by the
system developers. The increment was also 10.000 because

it was concluded, from initial testing, that a lower value did
not produce significant throughput change and was, thus,
not of much importance to analyse. Furthermore, throughout
our tests there seemed to be no need to adjust this uniform
increment or focus on any particular domain of records per
source, as the throughput showed no irregular behavior and,
instead, seemed to be modeled by a linear relationship with
the number of records. The 330.000 limit was a consequence
of our setup limitations – it was the highest load we could
cope with for most tested databases.

NoSQL databases are known for their configurability and
tuning [29]. To maximize their performance and adapt them
to this scenario, we adjusted their configuration settings.

We used Cassandra version 2.0.9, adjusting all timeouts
to 90 seconds, with the exception of the range timeout,
whose value was unchanged. This value allowed all tests
to finish successfully, since the original workloads would
trigger a timeout in the database. Row caching was disabled
to maximize write throughput. The concurrent reads and
writes settings were adjusted as suggested by the documen-
tation, using the 8×number of cores rule of thumb. The
memtable flush writer threads setting was set to 1, given
that we had no SSDs and only had one data directory. The
remaining settings were left at their default values for the
results presented in this paper. However, it should be noted
that additional tests were made by varying other parameters
such as the RPC server type and other memtable settings.
Since these changes produced no measurable difference in
performance, their default values were used.

MongoDB version 2.6 Standard was tested with the
default options and the highest write concern settings. A
setup with two config servers and one query router was
chosen because it provided the minimum amount of mongod
instances that had to be executed, allowing focus to shift to
the sharding itself. For sharding to take place, the hashing of
the id was used, as suggested by the MongoDB guidelines.
This ensured a random distribution of data across nodes.

Couchbase Server was tested with version 3.0.1-1444 and
configured to minimize the use of compaction, in order to
delay performance degradation when performing IO. The
number of writer threads was also increased in comparison to
the number of reader threads. However, these configuration
settings had little effect in performance. Instead, to achieve
a 3-fold performance increase, when compared to our initial
testing, the batch insertion method was adapted by using
multi-threaded REST requests. The number of threads and
records per thread was chosen to maximize performance,
after testing several values to see which had th best per-
formance. The resulting settings were 25 threads of 1000
records each (pe source).

Regarding the relational engine, SQL Server 2014 Stan-
dard edition was used. The server was used with full ACID
guarantees, as is the case in real deployments, but with all
indexing facilities turned off to maximize write throughput.

This server was only executed on one node, as we shall
discuss in the next section (Section V).

All databases were assigned 2GB of the available mem-
ory. This was the most memory that could be assigned
without damaging normal system operation. Furthermore,
since write-performance was the focus of the experiment,
all indexing capabilities were disabled wherever possible.

V. EXPERIMENTAL RESULTS

We now present the results of the experiment, as well
as our analysis. The limitations of the experiment are also
presented and discussed.

A. Results and Analysis

The results (see Figures 3 and 4) show that the rela-
tional/original solution provided a much higher throughput
than the NoSQL solution with sharding. The throughput of
MS SQL Server, whilst running on a single node, is up to five
times that of the best NoSQL solution. Indeed, Cassandra
performs the best out of the three tested NoSQL systems by
a fairly large margin (see Figure 4). These results were pre-
dictable, since the other two tested databases are document
stores, fine-tuned for read operations [29]. Cassandra, on
the other hand, is write-optimized [6], [29]. Nevertheless, in
spite of outperforming its NoSQL counterparts by a factor 4,
it is itself outperformed by the original system running MS
SQL server on a single node. Although one might be tempted
to think that the tested workloads were not adequate for
the NoSQL systems being tested, we note that MongoDB,
for instance, was unable to handle the larger workloads,
indicating that the choice of workload, for our experimental
setup, was indeed adequate.

100	

1000	

10000	

100000	

0	 500000	 1000000	 1500000	 2000000	 2500000	

Th
ro
ug
hp

ut
	 (o

ps
/s
)	

Number	 of	 Records	

Throughput	 (ops/s)	

MongoDB	 Couchbase	 Cassandra	 	 MS	 SQL	 Server	 	 (1	 node)	

Figure 3. Throughput results for all tested databases. Error bars show
standard deviation. There are missing values for MongoDB because it could
not finish the test and handle higher workloads.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	 500000	 1000000	 1500000	 2000000	 2500000	

Th
ro
ug
hp

ut
	 (o

ps
/s
)	

Number	 of	 Records	

Throughput	 (ops/s)	

MongoDB	 Couchbase	 Cassandra	 	

Figure 4. Throughput results only for NoSQL databases. Error bars show
standard deviation. There are missing values for MongoDB because it could
not finish the test and handle higher workloads.

Cassandra’s throughput is more irregular than that of the
other NoSQL solutions, showing a decreasing trend with
increasing workloads. While the other NoSQL databases
also show this trend (although to a lesser extent than
Cassandra), MS SQL Server does not seem to suffer as much
from performance degradation with increasing workloads,
although such degradation can still be seen.

MongoDB, as mentioned, was unable to cope with the
highest workloads, which can be seen in Figures 3 and
4. When a certain high workload was reached, it began
displaying errors due to internal problems because of the
large overload of data. This result, although somewhat
surprising (in the sense that a database crash is not expected
behavior), can be attributed to the exhaustion of all machine
resources – MongoDB ran out of resources, whereas other
databases did not. Of the three NoSQL databases, it showed
the lowest performance, with a very low throughput when
compared to SQL Server. Even taking into account that this
database is document-based and, thus, read-oriented, this
result was somewhat surprising.

Couchbase has the most stable throughput among all the
databases tested, although it is much lower than Cassandra
and SQL Servers’. As we have already seen, this is ex-
pected due to the fact that it is a document-based database.
However, contrary to MongoDB, it can cope with the high
workloads.

The “flat-line” results shown in Figures 3 and 4 could be
interpreted as some bottleneck in the experiment other than
a database bottleneck. We dismiss this idea for two reasons:
Firstly, because, as explained in Section IV, extensive tests
were executed to assure there was no other possible bottle-
neck; secondly, because the results make sense if we take

into account that our initial workload is already stressing the
system – this was intended, because it reflects the real-world
enterprise system, where lower workloads do not exist and
would thus be meaningless to test.

We conclude that a cluster with sharding enabled, made
up of a small number of machines (in our case, 4) running
any of these popular NoSQL solutions cannot outperform the
existing SQL Server based solution with ACID guarantees. It
might be the case that there is a high overhead due to internal
protocol communications and that disabling sharding would
actually improve performance, instead of doing the reverse,
but this is matter for future work.

B. Result Limitations

While our results intend to forward the study of NoSQL
in the real-world, they are not without their limitations.
Most NoSQL databases are optimized for Solid State Drives
(SSDs) and might perform poorly on systems which do not
have them [30], [31]. In this particular scenario, our cluster
did not have SSDs, meaning it wasn’t one for which these
NoSQL systems were fine-tuned. The real-world application
we are studying is not deployed over SSDs, so to keep our
experiments as close to reality as possible, we decided to
apply the same restriction on our experimental setup.

Similarly, it is a well-known fact that NoSQL systems tend
to be more optimized for UNIX-like operating systems, in
particular Linux [30], [31]. Due to our application require-
ments, we had to use a Windows system. We believe that
this might impact the generality of our results but provides
important information regarding performance of NoSQL
systems on this platform. It would no doubt be interesting
to rerun our experiment on other operating systems and
perform a comparative performance analysis.

Another key factor in this study regards the relatively
small size of our cluster. As we have discussed previously,
for such a small number of nodes, the protocol over-
head might have hindered the performance of the NoSQL
databases1. There seems to be a trade-off inherent to the
architecture of the NoSQL database, in the nature of its
internal protocol and storage, between the performance gain
in adding nodes to a cluster, and the protocol overhead
resulting from that. These claims are in line with the
findings and reasoning of [32] and [33], but need further
research. It is possible that a larger cluster size could have
rendered better results if the performance gains of more
nodes outweighed the protocol overhead, but this experiment
alone is not sufficient to study this, leaving room for future
work.

Still on the topic of the cluster size, one should also
question what the outcome of running MS SQL Server in a

1Further tests which we do not present in this paper hinted that running
these NoSQL systems on a single-node system increased their throughput,
strengthening this idea that there was a protocol overhead, or some other
kind of overhead related to sharding.

clustered environment would be, and how our experiment
does not inspect this scenario. It may be the case that
the whole reason that NoSQL showed poor results when
compared with relational technologies is simply due to the
aforementioned protocol overhead. By testing SQL Server
in cluster mode, it would at least be able to achieve a “fair
ground comparison”, although we highlight that we did not
test this due to the nature of the problem we had at hands –
the experiment only compared these NoSQL databases with
MS SQL Server to assert the performance benefits of using
NoSQL solutions in the enterprise system. In that sense,
then, the single-node SQL Server was the baseline test,
which would ideally improve by using NoSQL technology.

In spite of the testing setup being based in a real world
scenario, contrasting with artificial benchmarks such as
YCSB, the specific nature of our records might have an influ-
ence in the tests. The records at hand were very simple with
no particular schema associated other than a set of integers,
doubles and dates. In other scenarios, NoSQL might provide
more performance, for instance by exploiting the nature of
web-based data [5], which is the basis for MongoDB and
Couchbase’s document oriented model [5]. The lack of a
fixed schema, common to most NoSQL databases, could
give performance benefits, and this characteristic is not taken
into account into this work.

Lastly, due to the limitations in the resources we had
for our experiments, the number of concurrent applications
sending records was fixed at 8.

VI. CONCLUSIONS AND FUTURE WORK

NoSQL is constantly evolving, rendering past evaluations
obsolete in short time spans. This work not only fills
in a gap in what concerns the link between theory and
practice, but it also serves as a new up-to-date evaluation
of NoSQL systems which, due to their constant evolution,
quickly render past evaluations obsolete. In particular, it is,
to our knowledge, the first real world test of a write-heavy
enterprise application, especially one involving big data.

Our results show that a relational database engine, running
on a single node, can outperform popular NoSQL solutions
running in a cluster of 4 nodes with sharding by a factor
of five when dealing with a write-heavy scenario. Whether
this result stems from protocol overhead in the cluster or
due to the more developed nature and age-tested technology
of relational databases is a question for future work. If,
indeed, protocol overhead is at the root of these results, then
increasing the cluster size might also increase performance
without adding so much overhead, whereas reducing the
cluster size might reduce protocol overhead and also provide
better results. When faced with a scenario such as the one
in our enterprise application, however, these results would
recommend to keep the SQL Server and not opt by a NoSQL
cluster.

From our work, we might extract some valuable lessons
regarding NoSQL and write-heavy datasets. Indeed, if one
is looking for a good NoSQL solution for their write-heavy
dataset, it becomes clear that a column-family database
such as Cassandra will provide the best results, in spite of
sacrificing some ACID properties. The protocol overhead
involved in the communication inside the cluster, which
we believe is one of defining factors of our results, should
also be minimized and fine-tuned for large batches of write
requests, but we note that this must be the subject of future
work. Furthermore, NoSQL databases should have a wider
support for large batch insert operations if they are to ever
be used with this kind of dataset.

As future work, we propose to complement the original
experiment by using Solid State Drives and machines with
more resources, as well test SQL Server itself in a clustered
environment. Further testing regarding cluster size might
also advance the state of the art on NoSQL’s practical
applications. The impact of the record size is a factor not
yet thoroughly reviewed in literature, and has high practical
applications [34], thus being a good candidate for future
work. The number of sources is an interesting parameter that
should be studied with other experimental setups. It is our
belief that increasing the number of concurrent applications
will only decrease the throughput by saturating the network
connection and the databases’ request handling mechanisms.
In much the same way, decreasing the number of concurrent
applications should increase the throughput, a direct con-
sequence of decreasing the number of concurrent records
inserted per second. Nevertheless, we leave this experiment
for future work. The issue of protocol overhead has been
mentioned before and should be subject of future work – is
there some cluster setup where protocol overhead outweighs
the performance speedup? Lastly, it would be interesting to
compare the results of our real-world benchmark with those
of YCSB using the same configuration.

ACKNOWLEDGMENT

This research would not have been made possible without
support and funding of the FEED – Free Energy Data
and iCIS – Intelligent Computing in the Internet Services
(CENTRO-07 - ST24 – FEDER – 002003) projects, to which
we are extremely grateful.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: A survey on big
data,” Information Sciences, vol. 275, pp. 314–347, 2014.

[2] N. Leavitt, “Will nosql databases live up to their promise?”
Computer, vol. 43, no. 2, pp. 12–14, 2010.

[3] A. Moniruzzaman and S. A. Hossain, “Nosql database: New
era of databases for big data analytics-classification, char-
acteristics and comparison,” arXiv preprint arXiv:1307.0191,
2013.

[4] E. A. Brewer, “Towards robust distributed systems,” in
PODC, vol. 7, 2000.

[5] R. Hecht and S. Jablonski, “Nosql evaluation,” in Interna-
tional Conference on Cloud and Service Computing, 2011,
pp. 336–41.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 2010, pp. 143–154.

[7] (2015) Mongodb. [Online]. Available:
http://www.mongodb.org

[8] (2015) The apache cassandra project. [Online]. Available:
http://cassandra.apache.org

[9] (2015) Couchbase server. [Online]. Available:
http://www.couchbase.com

[10] T. Zhong, K. Doshi, X. Tang, T. Lou, Z. Lu, and H. Li,
“Big data workloads drawn from real-time analytics scenarios
across three deployed solutions,” in Advancing Big Data
Benchmarks. Springer, 2014, pp. 97–104.

[11] Z. Chen, S. Yang, S. Tan, L. He, H. Yin, and G. Zhang,
“A new fragment re-allocation strategy for nosql database
systems,” Frontiers of Computer Science, pp. 1–17.

[12] P. Moore, T. Qassem, and F. Xhafa, “’nosql’and electronic
patient record systems: Opportunities and challenges,” in P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC),
2014 Ninth International Conference on. IEEE, 2014, pp.
300–307.

[13] M. Mazurek, “Applying nosql databases for operationalizing
clinical data mining models,” in Beyond Databases, Architec-
tures, and Structures. Springer, 2014, pp. 527–536.

[14] M. Stonebraker, “Sql databases v. nosql databases,” Commu-
nications of the ACM, vol. 53, no. 4, pp. 10–11, 2010.

[15] ——, “Stonebraker on nosql and enterprises.” Commun.
ACM, vol. 54, no. 8, pp. 10–11, 2011.

[16] M. Bach and A. Werner, “Standardization of nosql database
languages,” in Beyond Databases, Architectures, and Struc-
tures. Springer, 2014, pp. 50–60.

[17] R. Sellami, S. Bhiri, and B. Defude, “Odbapi: a unified rest
api for relational and nosql data stores,” in Big Data (BigData
Congress), 2014 IEEE International Congress on. IEEE,
2014, pp. 653–660.

[18] R. Lomotey and R. Deters, “Terms mining in document-based
nosql: Response to unstructured data,” in Big Data (BigData
Congress), 2014 IEEE International Congress on, June 2014,
pp. 661–668.

[19] R. K. Lomotey and R. Deters, “Terms mining in document-
based nosql: Response to unstructured data,” in Big Data
(BigData Congress), 2014 IEEE International Congress on.
IEEE, 2014, pp. 661–668.

[20] T. Dory, B. Mejı́as, P. Van Roy, and N.-L. Tran, “Comparative
elasticity and scalability measurements of cloud databases,” in
Proc of the 2nd ACM symposium on cloud computing (SoCC),
vol. 11, 2011.

[21] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor
data storage performance: Sql or nosql, physical or virtual,”
in Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE, 2012, pp. 431–438.

[22] L. A. B. Silva, L. Beroud, C. Costa, and J. L. Oliveira,
“Medical imaging archiving: A comparison between several
nosql solutions,” in Biomedical and Health Informatics (BHI),
2014 IEEE-EMBS International Conference on. IEEE, 2014,
pp. 65–68.

[23] Datastax, “Benchmarking top nosql databases:a performance
comparison for architects and it managers.” White Paper.

[24] B. G. Tudorica and C. Bucur, “A comparison between several
nosql databases with comments and notes,” in Roedunet
International Conference (RoEduNet), 2011 10th. IEEE,
2011, pp. 1–5.

[25] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and
D. Zhang, “Can the elephants handle the nosql onslaught?”
Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
1712–1723, 2012.

[26] J. Pokorny, “Nosql databases: A step to database scalability
in web environment,” pp. 278–283, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2095536.2095583

[27] C. Strauch, U.-L. S. Sites, and W. Kriha, “Nosql databases,”
Lecture Notes, Stuttgart Media University, 2011.

[28] D. Hammes, H. Medero, and H. Mitchell, “Comparison of
nosql and sql databases in the cloud,” Southern Association
for Information Systems (SAIS) Proceedings. Paper, vol. 12,
2014.

[29] S. K. Gajendran, “A survey on nosql databases,” University
of Illinois, 2012.

[30] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacobsen, “Cas-
sandra: An ssd boosted key-value store,” in Data Engineering
(ICDE), 2014 IEEE 30th International Conference on. IEEE,
2014, pp. 1162–1167.

[31] J. Baron and S. Kotecha, “Storage options in the aws cloud,”
Amazon Web Services, Washington DC, Tech. Rep, 2013.

[32] N. Kaviani, E. Wohlstadter, and R. Lea, “Cross-tier appli-
cation and data partitioning of web applications for hybrid
cloud deployment,” in Middleware 2013. Springer, 2013,
pp. 226–246.

[33] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson,
Effects of communication latency, overhead, and bandwidth
in a cluster architecture. ACM, 1997, vol. 25, no. 2.

[34] C. Ordonez and P. Cereghini, “Sqlem: Fast clustering in sql
using the em algorithm,” in ACM SIGMOD Record, vol. 29,
no. 2. ACM, 2000, pp. 559–570.

