Cooperative Exceptions for Concurrent Objects

Bruno Cabral, Alcides Fonseca, Paulo Marques

University of Coimbra
Coimbra, Portugal
Email: {bcabral,amaf,pmarques} @dei.uc.pt

Abstract—The advent of multi-core systems set off a race to get
concurrent programming to the masses. One of the challenging
aspects of this type of system is how to deal with exceptional
situations, since it is very difficult to assert the precise state of
a concurrent program when an exception arises. In this paper
we propose an exception-handling model for concurrent systems.
Its main quality attributes are simplicity and expressiveness,
allowing programmers to deal with exceptional situations in a
concurrent setting in a familiar way. The proposal is centered
on a new kind of exception type that defines new paths for
exception propagation among concurrent threads of execution.
In our model, beyond being able to control where exceptions
are raised, the developer can define in which thread, and when
during its execution, a particular exception will be handled. The
proposed model has been implemented in Scala, and we show its
application to the construction of concurrent software.

Index Terms—exception handling; concurrent programming;
multi-core; threads; processes

I. INTRODUCTION

Exception Handling (EH) has been around for several
decades now. It is by far the most used technique in the
development of robust and fault-tolerant software. EH is an
essential tool for reliability, since the large majority of modern
programming languages rely on EH constructs for dealing with
errors and abnormal situations. Unfortunately, dealing with
exceptions in concurrent systems poses a challenge signifi-
cantly different from sequential EH [1]. An EH mechanism
should rely on the way the system is structured and be a
fundamental part of the system design. But, if we consider
the application of traditional EH mechanisms to concurrent
systems, some difficulties immediately arise in terms of the
concurrent execution of handlers, the signaling of exceptions
and the communication between threads or handlers. Although
the development of EH models for sequential object-oriented
systems has a long history, the same is not true for concurrent
object-oriented systems. Research in this area remains very
active. Furthermore, most concurrent systems nowadays con-
tinue to use sequential EH due to the lack of a definitive model
for performing concurrent EH.

The advent of multi-core systems fostered the “birth” of a
new generation of programming languages that will, hopefully,
change the way we program parallel systems. These languages
include Erlang [2], Fortress [3], X10 [4], and Chapel [5].
Furthermore, the contributions of Concurrent Haskell [6] and
Cilk [7] are also of great relevance. However, advances in
concurrent programming are not limited to the emergence

Jonathan Aldrich
Carnegie Mellon University
Pittsburgh, PA, USA
Email: jonathan.aldrich@cs.cmu.edu

of new programming languages. Other steps forward have
been taken by popular development platforms in order to
support new forms of concurrency. Consider, for instance,
the examples of the Fork-Join mechanism for Java [8] and
Futures [9]. The main objective of these constructs is to help
spread concurrent programming by making it much simpler.
But, two fundamental issues are frequently neglected or even
not addressed at all: how to generally deal with exceptions
in parallel systems, and how to communicate and handle
abnormal situations in a concurrent environment.

There have been many attempts to create a model for
dealing with exceptions in programs where multiple threads of
execution cooperate to achieve a common goal or compete for
a particular resource. Transactions and transactional systems
are a classic example (e.g., [10]). But, other authors have
suggested equally valid solutions for performing backward or
forward error recovery and for passing exception notifications
between threads. Examples of such models include Conversa-
tions [11], [12], CA Actions [10], [13], the Guardian [14], and
SaGE [15], [16]. These systems are intrinsically complex, and
justifiably so because they target systems with strong safety-
critical requirements. However, this complexity conflicts with
the objective of the recent developments in concurrent pro-
gramming, which is to simplify such coordination tasks for
developers. In many general purpose programming contexts,
developers do not require such levels of safety, and a simpler
system would serve them better.

Even in the new programming languages mentioned above,
exceptions are propagated in the call stack of the thread ex-
periencing problems and ultimately to the parent thread when
the execution of the child ends with an unresolved exception.
There are very few EH mechanisms that allow the propagation
of an exception to a parallel thread without the termination of
the thread raising the exception: the mechanisms that do exist
require threads to be grouped in order to share information
on exceptional occurrences [17] and, consequently, have an
inevitable impact in the software design.

In this paper, we propose to eliminate these shortcoming of
EH models by allowing the propagation of exceptions among
any running thread, independently of hierarchies or forcing
threads to end only to raise exceptions. Furthermore, this
model enables the separation of concerns, between exception
handling code and business code, among distinct threads. Also,
to give developers an intuitive and familiar mechanism that
builds on constructs they already know, so that they can

object Controller extends Actor
with ExceptionModel {
def act ()
val tree =
TreeFactory.createRandomTree (0) ;
val worker = (new Worker) .start

try {
val i: Any = worker !? tree
println ("Maximum: " + i)

} catch {

e: InfiniteValue =>
println("Infinite value
present in Tree")

exit ()

}

class Worker extends Actor
with ExceptionModel {

def act ()
loop {
react
case e: Tree => {
try {
val ans = e match {
case n: RealNode => n.value
case InfNode => |
throw (new InfiniteValue) 0
}
case t: Node => {
val r =
((new Worker) .start
'l t.right) ()
.asInstanceOf [Int]
val 1 =
((new Worker) .start
't left) ()
.asInstanceOf [Int]
if (r > 1) r else 1
}
}
sender ! ans
} catch {
e:InfiniteValue => {
sender ! 0
}
exit ()
IR RS
Fig. 1. Example of a desired use of exceptions in a concurrent programming

naturally start using it to manage concurrent exceptions in
their programs without a steep learning curve, our model
integrates seamlessly with existing try-catch type EH
mechanisms in modern programming languages. However, the
formal description of the programming language constructs
introduced with this new model, due to its size and high
relevance, is out of the scope of this paper and is depicted
in a separate work.
Our main contributions are:

o The definition of a new EH model supporting the prop-
agation of exceptions among any number of threads
executing in parallel, without imposing unwanted design
constraints, and without causing termination of the thread
raising the exception;

o The implementation of the proposed model as an exten-

sion to the Scala [18] language.

o The release of the complete source code and several
programs illustrating how the model can be used to
effectively handle exceptional conditions in concurrent
software.

The outline of this paper is as follows: Section 2 discusses
motivation, background and related work; Section 3 introduces
the EH model being proposed; implementation details are
depicted in Section 4; in Section 5 we present the results from
a preliminary validation of the model; and in Section 6 we lay
the conclusions.

II. BACKGROUND AND RELATED WORK

In this section we discuss the background that influenced
this work and was fundamental to determining the require-
ments for our approach to concurrent EH. Please note that,
when we speak of participants or members in a parallel
computation, or processes or threads of a concurrent program,
we are referring to the same thing - any kind of thread
of execution that runs in parallel within the same software
application.

A. Motivation

The main problem with modern concurrent programming
languages, in terms of EH, is their inability to communicate
exceptions between threads executing in parallel. Consider,
for instance, the example in Figure 1. This is an example of
a parallel program, based on the Actor model, which looks
for the maximum value among the nodes of a tree. In the
event that an infinite value is found in one of the nodes, the
program should stop, since it is no longer possible to identify
the maximum value. The Controller creates a tree with
a random number of nodes and values in each node. The
Controller also launches a Worker to initiate the search
from the top of the tree. The Worker checks if the value on
the node under analysis holds a real or an infinite value and,
in the case it is a real value, it compares it with the maximum
computed from the analysis of the branches of the node. The
relevant part for our work is what happens when the node
holds an infinite value. In this situation, the Worker should be
able to notify all the other Workers and the Controller
executing in parallel that execution should stop. A natural
way to handle this problem is to use the EH mechanism.
EH were specially created to handle such abnormal situations.
Unfortunately, the “exceptional” code in the example would
not produce the desired effect. Current EH models do not
allow exceptions to be propagated to concurrent threads unless
the thread raising the exception is hierarchically related with
the thread receiving the exception notification and the former
has already been terminated. Thus, in this example the actor
executing in parallel would remain completely unaware of the
occurring exception. Our approach, described in this article,
removes this limitation.

B. Exception Handling

Exception handling is a civilized way of dealing with
exceptional situations (occurrence of a condition that changes
the normal flow of execution of a program.) Exception-like
language constructs have been around since the mid-1950s
[19]. In the 1960s, facilities for dealing with exceptional condi-
tions, such as variable overflow, end-of-file, and bad data, were
fairly common in programming languages. But, it was not until
the development of the IBM PL/I programming language [20],
[21] that we saw the usage of high level control flow constructs
exclusively dedicated to enabling the writing of reliable and
safe programs. In 1975, John B. Goodenough [22] suggested
a notation for EH and, later, Flaviu Cristian [23] defined its
usage. Since then, we can argue that programming language
constructs for handling and recovering from exceptions have
not changed much despite being present in all mainstream
programming languages.

Unfortunately, the execution semantics for such mechanisms
are best suited for implementing sequential programs. When
we try to apply them in parallel applications, we face some
challenging issues:

o Neither static propagation [24], [25] or dynamic prop-
agation models (which search the call stack to locate
an adequate handler) designed for sequential applications
allow the propagation of exceptions among two or more
distinct threads executing in parallel. This is true even
if those threads are hierarchically related (e.g., as in the
Java threading model);

o The search for a suitable handler is either performed on
the lexically related code or by checking the code of
enclosing stack frames. Thus, it is impossible to execute
exception handling code on a distinct thread, i.e., other
than the one raising the exception, when using the EH
mechanism alone;

« Control flow, both after the occurrence of an exception
or after the execution of a handler, is only defined for
sequential code;

« Raising an exception on a running thread does not
have, per se, any direct influence on the execution of
a concurrent thread, even when they have strong inter-
dependencies;

C. Support for EH in recent concurrent programming lan-
guages

Despite the just mentioned pitfalls, sequential EH remains
as the most used form of EH in parallel applications to the
day. Looking at how EH is used in, or extended by, recent
concurrent programming languages and libraries, we can point
out some important shortcomings on the way exceptions are
handled.

In some languages, such as Chapel [5], the EH model is not
well understood. But, even in concurrent languages where the
EH semantics are well known, things are not much better. In
Scala [18], designers opted to keep the same exception model
of Java, in which, as we know, the native EH mechanism
does not directly support communicating exceptions between

threads. On the other hand, the Actor model available for Scala
allows an actor to monitor another actor and check if it ends
with an exception or in a regular fashion [18]. Other languages,
such as Fortress, X10, JCilk, and Erlang allow a process, upon
its termination, to communicate its termination status to the
immediately hierarchically superior process (or thread). In the
case of an abnormal termination, the exceptional information
is also communicated [3], [4], [17], [26], [27]. Nonetheless, the
remaining EH semantics on these languages are similar to the
ones present in traditional models. Erlang is a small exception
to this rule: it offers an extra EH feature where processes can
be linked together in a way that guarantees that whenever one
process crashes, all associated processes receive a notification,
and can either die or trap the notification signal [17]. Despite
representing an advance in the way exceptions are handled on
concurrent systems, the fact is that a computation still has to
terminate in order to communicate an exception occurrence.
Thus, any recovery attempt will always require another thread
to execute the recovery action for the failed computation.
Furthermore, in terms of arrivals, exception notifications are
completely asynchronous. The receiving process can, in some
cases, be more affected by the interruption caused by the
notification arrival then by the exceptional occurrence itself.
Managing groups of processes that share notifications among
them can also be cumbersome if there is a heterogeneous set
of exceptions and/or diverse relationships between processes
and exceptions.

Taking a different perspective, the introduction of new
mechanisms for concurrency into existent platforms, such as
Futures and Fork-Join, also means that these platforms require
more functionality in terms of EH. E.g., [28] identifies several
difficulties encountered when dealing with exceptions in such
systems.

As the discussion above illustrates, despite the vast and
recent advances in concurrent programming, EH continues
to be poorly supported in parallel programming models. As
the authors in [29] concluded, designers of programming
languages often neglect the exception mechanism and look at
it more like an add-on for their language instead of a central
part. As a consequence, software quality inevitably suffers.

D. Design for concurrency

The detection of an abnormal situation in the execution of a
parallel program presents different challenges depending of the
computation at hand, and requires the intervention of a varying
number of the participants in that computation. Consider that:

o If an exception cannot be handled inside the failing

participant it should be communicated to other partici-
pants, who are capable of (1) dealing with the exception,
by themselves or cooperatively, and allowing the failing
component to recover, or of (2) replacing the failing
participant, or of (3) preventing their own execution from
continuing.

o In any case, if the exception can affect the overall

computation or a subset of the participants, the failing
component has to be able to communicate the exception

to whoever might be affected. Furthermore, the exception
handlers on all the involved parts must also be able to
communicate the result of their recovery actions among
themselves.

« Communication of exceptions between all the participants
of a computation, or between their exception handlers,
must be done without forcing the premature termination
of any member.

These needs cannot be fulfilled by current t ry—catch EH
models. Other approaches, specific for handling exceptions in
concurrent and distributed applications, can indeed provide
such functionality but, as we will discuss further in the
Related Work, they might be difficult to use and intrusive,
and developers are not eager to use exceptions for recovery
purposes [30].

E. Related Work

The list of references in terms of related work is vast. But,
even so, there is no definitive and widely accepted solution
for dealing with concurrent EH.

Concurrent EH systems can be broadly divided into two
major groups: transactional and non-transactional. In terms
of transactional error handling systems, probably the most
successful is the Coordinated Atomic Actions (CA Actions)
scheme [13]. CA Actions combine and extend the concepts
of atomic actions [11] and Conversations [11], [12]. The
execution of a CA Action looks like an atomic transaction for
the outside. Inside of a transaction, participants cooperate and
interact through local objects. In the presence of an exception
each participant is forced to handle it independently of the fact
of which participant first observed the abnormal occurrence.

The CA Actions scheme has its limitations. External ex-
ceptions are explicitly signaled from a CA Action participant
thus, in some cases, it might not be possible to detect abnormal
conditions outside the participants. Furthermore, concurrently
signaled exceptions are expected to be related in some way
so that the exception resolution mechanism can pull off a
meaningful result. But, the main problem with concurrent
exception handling is determining which is the correct handler
to invoke (it may be different for each participant) Relying
on handler communication to ensure the correct handlers are
invoked may be a highly complex task- The authors of the
Guardian model [14] have addressed this issue. The Guardian
model, contrary to what happens in the prior model, does not
raise the same exception in all action participants to notify the
occurrence of an abnormal event. By raising in each process
a possibly different exception and specifying the context in
which it should be handled by the process, the Guardian
model guides each process to a correct exception handler, thus
orchestrating the recovery action. No transaction-like structure
is needed for the correct exception handlers to be invoked
(though that structure may be useful for other reasons). [14]
Thus, we can fit the Guardian model into the non-transactional
EH mechanisms category.

The SaGE system [15], [16], as happen in the Guardian
model, is targeted to Multi-Agent Systems (MAS). This

framework proposes a layered handling approach depending
on Java call stack structure which has been extended for
differentiating higher level exceptions from language level
exceptions. According to the authors, SaGE does not rely on
the use of entities external to agents and integrates exception
handling mechanisms in the execution model of the agents.
SaGE supports cooperative concurrency and manages the
propagation of exceptions between cooperating agents by,
for instance, transforming exceptions into more representative
ones in terms of the whole system.

All these approaches, in a certain way, require developers
to define groups of threads, processes or agents in which only
some types of exceptions are recognized and can be dealt with.
In many situations, these systems also introduce boundaries
between the execution of groups of process, establishing fron-
tiers for the propagation of exceptions, distinguishing types of
exceptions, and defining intricate rules for handler selection.
The same is true in more recent approaches, such as Failboxes
[31]. Our model, on the other hand, does not introduces so
many concepts or imposes such design restrictions.

In terms of programming languages, Erlang [2], [17] also
supports some form of grouping of processes. A group of
process can be linked together in order to allow all the process
in the group to be notified when some exception occurs in a
worker process. Erlang distinguishes manager processes from
worker process. Typically an Erlang program is a tree of
supervisor processes whose leaf nodes are workers. A down-
side of this approach is that the worker commits suicide after
communicating the exception to the upper manager processes
and, commonly, these will do the same.

In languages such as Java [32], C++ [33], or C# [34], there is
no form of support for concurrent EH. They do not even allow
exceptions to be propagated outside the thread where they were
raised. Thus, many of the most recent concurrent programming
languages represent a real step forward in terms of EH. Most
of them are better equipped to handle concurrent exceptions.
But, improvements are not as profound as it is desirable.
Fortress [3], X10 [4], JCilk [27], and Scala [18] simply allow
a failing thread/process to communicate an exception to its
parent when it terminates its execution in an abnormal way.

Akka [35] is an actor library and microkernel for Java and
Scala, inspired by the Reactive Manifesto !, which uses the
concept of the ”Supervising Actor” for dealing with abnormal
situations. The actor is responsible for handling its childrens
failures, forming a chain of responsibility, all the way to the
top. When an actor crashes, its parent can either restart or stop
it, or escalate the failure up the hierarchy of actors. The Akka
EH model does not allow propagating an exception among
non-hierarchically related actors.

DOOCE [36] allows multiple exceptions to be thrown con-
currently in the same try block to be handled concurrently.
Also, a try block can have multiple catch statements. In
DOOCE, exception handlers begin their execution after all

The Reactive Manifesto, Version 1.1 (http://www.reactivemanifesto.org),
September 23, 2013.

subtasks in the protected region terminate, either normally
or abruptly, or if any of the participated objects throws an
exception. In our model, the execution of the handlers, in each
thread, for a particular exceptional occurrence can be initiated
immediately after the arrival of the exception notification. In
addition to the termination model [32], DOOCE also supports
resumption [22].

Arche [37], [38] proposes two kinds of exceptions: global
and concerted. Global exceptions are thrown and communi-
cated to other process when a process terminates abnormally.
Concerted exceptions are the result of the execution of a
customized resolution function that takes all exceptions thrown
concurrently as input parameters. Concerted exceptions are
prepared in order to allow them to be handled in the context
of the calling object.

The as-if-serial EH [28] model allows asynchronous excep-
tions to be propagated to the invocation point of the function
call of a Future as if the call is executed locally, whereas in
the prior systems, exceptions are propagated to the thread that
spawns the computation when it attempts to synchronize with
the spawned thread.

Software Transactional Memory (STM) sets the ground
for making protected blocks atomic[39]. Operations inside
a try-catch are either all completed or none is. And if
there is an exceptional occurrence, there is a catch clause
that is able to restore the system. Although the behavior is
what we expect, STM solutions today are still very expensive.
For instance, the authors of the Atomic Boxes mechanism
[40] report slowdowns between 10 and 1000 times for simple
programs featuring sorting algorithms such as quicksort and
bubblesort. Furthermore, if the exception is caused by external
factors (writing to a file and other IO operations), the system
cannot automatically recover from those, which also poses a
problem.

III. COOPERATIVE EXCEPTIONS FOR CONCURRENT
OBIJECTS: A PROPOSAL

In this section, we propose a new EH model for dealing with
exceptions in concurrent systems that aims to give developers
an intrinsic ability to communicate and handle exceptions
cooperatively among parallel execution threads and, at the
same time, retain the same economy of expression present
in sequential EH models.

A. Approach

The Cooperative Exceptions for Concurrent Objects
(CECO) model introduces a new kind of exception, with
different semantics from existing checked and unchecked
exception models [32], [41] or from the EH models in modern
concurrent programming languages [18], [2], [3], [4], [5], [17],
[26].

Exceptions in CECO are represented by objects that can,
not only be propagated on the call stack of a thread, but also
between parallel threads of execution. While the exception is
propagated between threads and also along the call stack, the

Process A Process B Process C

(6)

V

Legend:
) Start of protected scope. (Registers to receive exception E)

1
2) Exception E is raised

3) Check for the occurrence of exception E
4) Handle exception E

5) Communicate that it is safe to continue

(
(
(
E
(6) End of protected scope

|:| Regular execution Protected Scope

. Exception handler execution

Fig. 2. Exception propagation and handling

information about its path is recorded in the exception object
itself.

Figure 2 illustrates the raising, propagation and handling
of an exception using CECO. The graphic represents three
parallel threads of execution, in this case named Processes A,
B, and C. Independently of the type of computation at hand,
the scenario that we are describing shows how an exception
raised inside one of the processes can affect the execution
of other processes in the same application. Consider that the
three processes have been executing in parallel for some time
and performing whatever tasks they were programmed to do.
At some point during its execution, Process B decides that it
should be alerted if one of its peers raises an exception of type
E. To express such a wish, Process B bounds a section of its
code (1), thus establishing the scope in which it expects to be
notified of the occurrence of any exception E that might be
raised by the processes executing in parallel. Later, during its
execution, Process A detects an abnormal situation and decides
to raise exception E. Since B registered to receive this type of
exception, the system propagates the exception to B (2). Note
that Process A and C do not get the exception, C never having
registered for receiving it and A, despite raising the exception,
also never having registered to receive it. In the example, the
protection scope in process B ends at (6) and B will no longer
be notified of the occurrence of exception E. A process will
only receive notification of exceptions that are delivered to it
after it has begun executing inside the protected scope; it is
impossible for a process to be informed of what exceptions
occurred prior to that moment. Moreover, if the execution of

Exception

queue of A in

distinct

moments of
A’s execution E2 E4
E1| |E1 E2 E3| |E3

Process A

1l

Raise
E E3

Process B -
Raise
E2
Process C .
Time

>

Start of execution

End of execution

Legend:

=> Execution outside the protected

scope scope

Exception raised and placed on the
notification list

= Execution inside the protected D Exception queue

E Exception being handled

! Exception raised and not on
the notification list

Fig. 3.

a process moves away from the protected region of code, any
concurrent exceptions that might be delivered afterwards will
no longer be delivered and are discarded for that process alone.
Protected scopes are defined by try—catch blocks.

Contrary to what happens in the Checked Exceptions model,
a concurrent exception does not need to be forcefully handled
by other threads. In our approach, a thread may decide to
ignore some exceptions and deal with others. If a thread does
decide to acknowledge the occurrence of an exception and
does not deal with it, the exception will be propagated up
the call stack of that thread, and eventually cause the thread’s
termination.

Another key aspect of CECO is that, even after being
notified of the exceptional event, the execution of Process
B may not be immediately interrupted. Developers may opt
to explicitly indicate the location where the program should
check for the occurrence of some types of exceptions (3). This
is what we call Explicit Reception of an exception. This feature
is most useful in parallel applications in which processes need
to be aware of problems with cooperative processes, but in
which an unexpected interruption would be more harmful than
not knowing about the exception. The alternative, which we
also provide, is an Implicit Reception mechanism that ensures
that an exception is delivery asynchronously any time after a
process is registered for receiving it. This usually means than
the occurrence of such an exception in a concurrent process
can interrupt the execution of the current process, even if it is
only momentarily.

When Process B effectively receives exception E, the han-
dler for that exception inside B is activated. Process B will
then conduct the necessary operations for making the system
safe for A and/or B (4). In this particular scenario, if B is
successful, it communicates to A that it is safe to continue (5).

Arrival and notification of concurrent exceptions accordingly to a process protected scope

Afterwards, A and B can continue with their regular execution
if recovery was successful. If A had not stopped its execution
and had just continued executing, B would not have to send
any notification and could just continue on. Stopping process A
was a design option for this example and was not derived from
any kind of restriction on the model. The communication sent
from B to A is an example of a customized recovery strategy;
it is not a part of CECO, and it could be implemented using
whatever mechanism the developer prefers.

Figure 3 represents the execution of a process that is part
of an application composed by 3 concurrent processes. During
its execution, process A alternates between sections of the
code where it enables the reception of concurrent exceptions,
and others where it does not. Consider the case where during
its execution, inside the protected scope, the process receives
notification of 2 exceptions, E1 and E2, and starts to handle
the first one. If the handling of this exception causes the
process to abandon the protected scope (e.g., by throwing a
local exception), E2 will remain in the notification list. Thus,
if the process falls again under a protected region where it can
handle E2, the exception is delivered at that time. On the other
hand, if other exceptions E’ are raised while the execution is
between protected regions, they will not be communicated to
the process. Thus, from the series of exceptions raised during
the process execution — El E2 E’ E’ E3 E4 — only El, E2,
E3, and E4 are communicated to the process, since they were
raised while the process was executing inside a protected
region. Note that the process registers to receive particular
types of concurrent exceptions; it is not required to receive all
types of concurrent exceptions. Thus, if a concurrent exception
of an unexpected type is raised while the process is executing
inside a protected region, it will not be delivered to that
particular process. CECO guarantees that a process receiving

two exceptions from another process gets the notifications
in the same order the exceptions were raised, and that no
duplication occurs. There is no guaranty that exceptions raised
by different processes are globally delivered in the same order,
as that would require global synchronization. This is a design
issue left up to implementations; if programmers are willing
to pay the scalability cost of global synchronization, then
stronger guarantees on ordering can be provided. In any case,
exceptions will be delivered to a process one by one, with
only one handler activated at a time.

B. Syntax and Semantics

CECO introduces a revised set of programming language
constructs and new types for representing exceptions compat-
ible with all mainstream object-oriented languages.

From this point on, we will refer to CException (short
form of Concurrent Exception) as the type of the exception
objects that can be communicated between different processes.
CException objects contain information about the kind of
abnormal situation that was encountered, a time-stamp and
point of origin (object, method, thread of the occurrence.) We
will also refer to the EH models used in languages such as
Java, C#, C++, Scala, and others, as tradional EH models”
or “sequential models”.

To propagate CException objects between processes, the
process that encounters an abnormal situation must perform
one of the following instructions:

raise exception

or
throw exception

Where exception is an object of type CException.
The raise instruction makes the exception occurrence
known to any concurrent process that is currently registered
for receiving this type of exception (try-catch for a
CException). The process raising the exception continues its
execution at the next lexical instruction immediately after the
raise command.

On the other hand, the throw instruction not only propa-
gates the exception to any parallel process but also throws the
exception on the raising thread. throw has the same effect
as the traditional throw (as the ones found in Java), but
also propagates the exception to concurrent processes. In this
situation the execution in the throwing thread continues into
the next suitable catch handler. It should also be noted that
calling raise can also trigger an exception handler in the
raising thread if the process is executing inside a t ry—-catch
block with a specific handler for that type of exception (we
will discuss the semantics of try—catch next.)

The argument of the raise command has to be of the type
CException or a descendant. But, if throw is invoked with
a non-CException parameter it means that the exception
is local and is to be propagated in that process as it is in
sequential EH models.

With the throw and raise commands, processes are able
to raise concurrent exceptions in an asynchronous fashion.
But, these notifications will not have any effect on other

parallel processes if none is registered for receiving such
type of exception. For registering to receive a certain kind
of concurrent exceptions, processes can resort to a language
construct similar to the traditional t ry—catch blocks.

try {...} catch (<concurrent exception>) {...}

or
async_try {...} catch (<concurrent exception>) {...}

The semantics of these blocks are very similar to their tradi-
tional counterparts, but if a catch references an exception of
the type CException, the process is in fact registering for
receiving concurrent exceptions of that kind for the duration
of the execution of the complete try—-catch block. This
is a fundamental difference between CECO’s try-catch
and the traditional one, the protection scope for concurrent
exceptions comprises not only the try section, as it is
common, but also the catch blocks when they are executed.
This means that any concurrent exceptions being raised during
the execution of a try—-catch block will be handled by
the handlers of that block, even if they are raised while the
code in the catch part is executing. This means that another
handler can be activated immediately after the termination
of an handling action. Nonetheless, the execution of these
handlers is dependent on the nature of the try-catch
block, which can be synchronous and asynchronous, as we
will see next. try—catch blocks can also be nested inside
other t ry—catch blocks. And, t ry—catch blocks can have
finally blocks similar to the traditional blocks with the
same syntax.

The try—catch blocks allow concurrent exception notifi-
cations to be delivered either synchronously or asynchronously:

o Synchronously - This is the default delivery scheme for
concurrent exceptions in CECO’s try-catch blocks.
This means that even if a process registers itself to
receive a certain kind of exception, and even if such
exception occurs during the execution of the respective
try-catch, it will only be effectively perceived by
the recipient process when it reaches a safe point in its
execution. These safe points are identified by the keyword
check, which we will discuss next. Nonetheless, the
sequential semantics still apply to local exceptions. Thus,
if a function is invoked inside the try-catch block
and throws a local exception, execution is immediately
aborted and transferred to the next suitable handler if it
exists.

o Asynchronously - In this scenario (async_try), the de-
veloper might consider it to be more practical to interrupt
the execution of the receiving processes as quickly as
possible without having to wait for a safe point. After
handling the exception, execution at the receiving thread
continues on the first instruction after the handler, or in
another handler if different exception arrived.

When a process is executing inside the protected scope for
concurrent exceptions, that is to say inside a try-catch
block where it has registered for receiving such type of excep-
tions, and the default synchronous delivery policy is in effect,

the process needs to reach a safe point in order to acknowledge
any pending notification. Safe points are identified with the
following instruction:

check

The execution of check 1is only allowed inside
try-catch blocks. A check will verify if any of the “ex-
pected” concurrent exceptions was raised during the execution
of the protected scope. If one or more of such exceptions were
raised, the first one (the oldest) is raised locally upon returning
from the check operation. Execution is then transferred
for the most suitable local handler. If there are no pending
notifications, execution continues normally after the check
operation. Exceptions raised by the check operation are
eliminated from the queue of pending notifications of that
particular process, but will continue to exist in the notification
queues of other processes.

IV. IMPLEMENTATION

We have chosen Scala [18] for implementing and testing
of CECO. Scala was selected because it is a modern pro-
gramming language, which has been attracting considerable
attention from the academia and the industry, and that clearly
targets the development of concurrent applications. Scala has
the particularity of allowing us to implement a language
extension in a very simple way, similar to what we would
do to create a common library. This is possible because Scala
allows masking some special methods as if they were language
keywords. Also, Scala has inherited Java’s EH model and, con-
sequently, inherited all the limitations of this model for dealing
with abnormal concurrent events. Thus, one might argue that
the implementation of CECO for Scala represents a useful
complement to the language. The CECO’s source code and
several coding examples are available for download?. Scala
Actors (inspired on the Actor Model) can inherit structure and
functionality from the CECO language extension.

To avoid undesired inconsistencies with the existent excep-
tion handling constructs in Scala, we decided to add ”_” as a
prefix to CECO language constructs.

A. Framework

CECO language constructs can be seamlessly integrated
with Scala code and used for implementing concurrent ex-
ception handling strategies within the Actor Model.

1) Implementation details: Actors should be extended with
the ExceptionModel trait in order to inherit the fea-
tures required for using the concurrent EH model. Con-
current exceptions can be triggered by both the _throw
and the _raise commands. Under the hood, when ei-
ther one of these two methods is invoked, the concur-
rent exception being raised is sent to a global actor
named ExceptionController. This actor is responsi-
ble for managing the communication and delivery of ex-
ceptions among actors. The ExceptionController ac-
cepts registrations from actors for the reception of excep-

Zhttps://github.com/AEminium/ceco

tions. And, since every actor extending ExceptionModel
has its own notification queue for concurrent exceptions,
ExceptionController is also responsible for dispatching
concurrent exceptions to exception queues of the registered
actors.

For registering to receive concurrent exceptions,
actors must use either one of the following
combinations: ”_try{...}_catch {...}” or
”_tryF{...}_catch{.

.} _finally{...}”, or any of its asynchronous

counterparts ”_async_try{...

}_catch {...} or”_async_tryF{...}_catch{...}
_finally{...}”. The type of exception expected on the
_catch block defines the type of concurrent exception that
the Actor will be monitoring. Between entering the _try
block and leaving the _catch block, the actor is registered
for receiving exceptions of the El1ConcurrentException
type.

Note that, if during the execution of _try{...}_catch
{. ..} more than one concurrent exception is communicated
to the actor, the _cat ch handler will be executed at least once
for each one of them in order of reception. If an exception of a
local type is raised, forcing execution to leave the boundaries
of the current block, the reception of the concurrent exception
ceases until a new block is initiated. In case of nested blocks,
reception will continue active until the outermost block is
terminated.

Invoking _check inside a _try{...}_catch {...}
block causes the top exception, on the local pending concurrent
exceptions queue, to be dequeued and thrown locally using the
native Java/Scala exception mechanism.

Internally, _async_try{...} are executed as regular
_try{...}_catch {...} blocks, butin a different thread.
This thread does not run on the regular actor thread-pool
because we need to keep its reference for future interrup-
tion. If a concurrent exception must be notified to that
block of code during its execution, we use Java/Scala’s
InterruptionException mechanism to interrupt its ex-
ecution and jump to the adequate handler.

B. Coding examples

The following examples will help to understand how CECO
works in practice and include a traditional Master-Worker and
a Pipe-And-Filter design. These examples, and others, are
available on-line 3.

1) Batch Mailing System: This program is composed by
two kinds of Actors: The Controller and the Senders.

The Controller possesses a list of e-mail addresses to which
it must send e-mail messages. To perform this task, the
Controller spawns multiple new Sender actors. Each Sender
is responsible for sending a message to one address.

Senders can raise two types of concurrent exceptions:
IO0Exceptionand InvalidAddressException. When
any of these is raised, the Sender will exit immediately. This
behavior is promoted by the use of the _t hrow method.

3https://github.com/AEminium/ceco/tree/master/src/main/scala/examples

R R T N

cee 1
while (!recipients.isEmpty) { 2
senders = List () 3
_try { 4
recipients.zipWithIndex.foreach { m => 5
val ms = new MessageSender 6
ms.start 7
ms ! (m) 8
senders = ms senders 9
} 10
recipients = List () |
senders.foreach{ m => m !? Stop } 2
_check 13
} _catch { 4
e:ConcurrentException => s
e match {
case e:
InvalidAddressException => {
database = database - e.email
println (" [Controller] " +
e.email
+ " does not exist")
}
case e:IOException => {
recipients = e.email
println (" [Controller]

recipients
I0 error")

Fig. 4. Main loop of the Controller.

The Controller is registered to receive notification of both
types of exceptions. But, it behaves differently in each case:

o When it receives an InvalidAddressException,

the Controller removes the address from the database.

o When it receives a TOExcept ion, the Controller retries

to send the message to the same address using a second
(or third) Sender.

The Controller will only check for exceptions after sending
a full batch, guaranteeing that all addresses are tried at roughly
the same time.

Figure 4 shows the main loop of execution of the Controller.

To implement this example without CECO, one simple
approach would be to modify the main actor to receive
exceptions as messages. Whenever a worker actor finds an
exception, it has to send that exception as a message back to
the main actor. The control flow for the main actor has to cope
with the fact that exceptions are retrieved from its inbox only
after executing the main loop. This has the disadvantage that
exceptions cannot be caught in the middle of the processing of
one message, only in between. Another major criticism for this
approach is mixing both normal and exceptional information
on the same channels. One of the major accomplishments
of all EH mechanisms is to provide the means to impose
the separation of concerns between normal and exceptional
execution.

2) Pipe-And-Filter: The second example mimics the pro-
duction line of a factory. There are four units in the line: a
Receiver, a Preprocessor, a Processor and finally a Dispatcher
unit. Each unit has a queue of elements to process, and can
only process one element at a time. Elements are moved from
one unit to the next in a Pipe-And-Filter way. The Receiver
puts new elements into the line and Dispatcher handles their

def work(u:Int) = {
_async_try |{
println("[2] Preprocessing " + u)
//the actual work
Thread.sleep (3x1000)
println("[2] Preprocessed " + u)
next ! u
} _catch {
e:ProcessingFault => {
println("[2] Reason to stop:
discardAbove = e.i
_raise (new PreprocessingFault (e.1i))
}

"t oe.i)

Fig. 5. Work function of the Preprocessor.

finalization. Preprocessor and Processor units are responsible
for handling the elements.

The elements being processed by this production line have
to be obligatorily handled in their arrival order (FIFO). Since
all the units in the line can be processing different elements in
parallel, if one unit fails, the work on the preceding ones has to
stop. But, the units in front can continue to function normally.
Furthermore, the elements on the failing unit and in the prior
ones have to be re-processed in the initial order and from the
beginning. The purpose of this example is to demonstrate the
usage of the asynchronous _async_try blocks. Each unit
main work cycle is protected by one of these blocks, thus
work can be immediately interrupted in case of a failure in a
proceeding unit.

In the actual implementation of this example, the Receiver
gets 5 elements to process. However during the Processing
phase of the third element, a machine jam is simulated. When
it happens, the previous area in the pipeline, Preprocessor, is
notified, discards the current element as well as all the ones
in the queue. Finally, it raises a PreprocessorEx meaning
that it cannot work (due to problems in the later machine). The
Receiver unit is notified and restarts delivering elements again
from 3, maintaining the expected order. Figure 5) presents the
main work function of the Preprocessor unit and the usage of
the _async_try blocks.

To imitate the functionality of this example, developers
would have to write a library mimicking almost all the
functionality of the CECO model. Developers would also have
to mix a thread-based approach with the Actor model. Without
CECO as a language extension, it would be impossible to
perform asynchronous delivery of exceptions without breaking
the Actor model. And, one could also argue that exceptional
and normal execution paths would not be differentiated as it
is desirable for exception handling.

V. PRELIMINARY VALIDATION

To conduct a preliminary validation of the usage of CECO
in the development of real world software, we decided exper-
iment with two common industry scenarios: a) the creation of
a program from scratch; and b) the adaptation of an existent
application to incorporate CECO. We asked a professional de-
veloper, with more than 10 years of experience and no previous

knowledge of CECO, to design and implement/upgrade these
programs.

A. Desktop File Search

The first case study, the Desktop File Search software,
was implemented from scratch. Actually, two versions of
the program were created: one using CECO and another
without CECO. This allowed to compare the effort, complexity
and solutions involved in the creation of both versions. The
Desktop File Search program allows users to perform file
searches over a Linux file-system, and was implemented from
scratch.

The program is structured using the Actor model and was
designed to promote modularity. The FileCrawler and the
FileScanner actors are responsible for finding and identifying
all accessible files in the system. The Indexer actors builds
in-memory indexes of existent files but, have limited memory
space. Thus, when a index is full, it cannot reference more
files, and new index actor has to be created. In the CECO
implementation, when the indexer in unable to handle new re-
quests it raises a NewIndexerException which is caught
in the Monitor actor. The Monitor is then able to create a new
Indexer. The Searcher actor inquires the indexers in order to
find possible all possible paths of a file. In the version not
using CECO, there is no Monitor, the Indexer itself, when con-
fronted with an ArrayIndexOutOfBoundsException
sends a message to the FileScanner object to notify him that
it cannot index more files and the FileScanner actor creates a
new Indexer.

B. Scalairc bot

The second case study focused on improving the exception
handling policies in the Scalairc* bot program, an IRC Client
written in Scala, using CECO.

The ConnectionChecker actor notifies the Control Actor
whenever it needs a Connection re-initiated. The Control actor
uses the Connection actor to initialize a connection. Un-
fortunately, the Control actor is not aware of the occur-
rence of java.net.SocketTimeoutConnection and
java.net.UnknowHostException raised in the Con-
nection actor, thus the Connection actor can fail to create a
new connection and the Control actor has no immediate way
of acknowledging that abnormal behavior.

C. Results

The first case study showed us that there was no significant
difference in the number of lines of code effectively written in
both versions of the program: a) 305 sloc in the CECO version;
and b) 348 sloc in the regular version. The developer learned
how to use CECO by studying the example programs and
by listening our explanations. Unexpectedly, learning to code
with CECO took less than half of the 60 minutes that we had
initially planned for training the developer. The similarity, in
terms of code, with the traditional EH models was essential in
this process. In terms of effort, the developer reported having

“https://github.com/colder/scalaircbot

spent more than 90 minutes and less than 120 minutes to
code each version. But, CECO had the advantage of keeping
exceptional code and communications totally separated from
business code. The traditional approach forced the developer
to communicate exceptional events through “regular” channels
and increased the complexity of message handling code. In
terms of performance, after an initial battery of runs of both
versions of the program, we did not notice any noticeable
difference in execution times, either in presence or absence
of exceptional situations. Thus, we decided not to pursuit this
line of validation further.

On the second case study, the Connection actor raised
concurrent exceptions using CECO, which were handled in the
Control actor immediately. With this knowledge, the Control
actor could try a different strategy for making another (existent
or new) connection available to requesting actors or, in case
a severe problem is detected, forward an exception to other
actors. Without CECO, the developer would need to create
a supervisor actor to facilitate the handling of exceptions.
But, it would not be trivial and very intrusive to mingle
exception handling code with business code, which is why
it is understandable why the programmers decided to ignore
the problem in the first place, instead of dealing with it. CECO
helped to make the application more reliable without the extra
baggage. The modifications implied almost no change in the
original code and the extra coding was actually far less then
we predicted. Of course, the amount of extra code is directly
dependent on the complexity of the exception handling actions.

VI. CONCLUSIONS

In this paper we propose a new model for dealing with
exceptions in concurrent software applications. Our objective
is to give developers a system that they will effectively
use. The examples on this article show that our approach is
straightforward, efficient and highly adaptable to any concur-
rent architecture. Our model provides a well defined propa-
gation model that communicates concurrent exceptions only
in relevant paths, prevents unexpected interruptions of the
processes/threads trapping these concurrent exceptions, and al-
lows concurrent exception handlers to cooperate harmoniously
in combined recovery actions. Moreover, all this is possible
without resorting to any form of complex process/thread
grouping, or having to terminate threads only to communicate
the occurrence of an exception. Also, by allowing unrelated
processes to exchange exception information among them
directly only by raising an exception (which is impossible or
not trivial to do in other models), we can quickly prevent
programs from continuing executing on an unfeasible path.

Future works include a formal description of the model,
a new implementation for Java, and a larger case study.
Furthermore, there is room for evolving CECO, thus, we are
convinced that the synchronization between handlers must
become a concern of the EH model, in order to assist in the
development of more powerful cooperative exception handling
strategies.

REFERENCES

[1] A. Fonseca and B.Cabral, "Handling Exceptions in Programs with
Hidden Concurrency: New Challenges for Old Solutions”, in ICSE’12
Workshop Proceedings, Sth International Workshop on Exception Handling
(WEH.12), 2012.

[2] J. Armstrong, R. Virding, C.Wikstrom, and M.Williams, “Concurrent
programming in Erlang”, Prentice Hall, Second Edition, 1996.

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele
Jr.,S. Tobin-Hochstadt, The Fortress Language Specication - Version 1.0”,
Sun Microsystems, March, 2008.

[4] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, ”X10: an object-oriented approach to non-
uniform cluster computing”, in Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA °05), ACM, New York, NY, USA, 2005

[5] B. L. Chamberlain, D. Callahan, H. P. Zima, "Parallel Programmability
and the Chapel Language”, in International Journal of High Performance
Computing Applications, Vol.21(3) August, 2007.

[6] S.Peyton, A. Gordon, and S. Finne, ”Concurrent Haskell”, in Proceedings
of the 23rd ACM Symposium on Principles of Programming Languages
(POPL ’96), St Petersburg Beach, Florida, ACM, 1996.

[7]1 C. E Joerg, "The Cilk System for Paralle] Multithreaded Computing”,
PhD thesis, MIT, 1996.

[8] D. Lea, ”A Java fork/join framework”, in Proceedings of the ACM 2000
Conference on Java Grande (JAVA ’00)”, ACM, San Francisco, California,
United States, June 03 - 04, 2000.

[9] C.Flanagan, and M. Felleisen, "The semantics of future and its use in pro-
gram optimization”, in Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’05), ACM,
San Francisco, California, United States, January 23 - 25, 1995.

[10] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, Z. Wu, Fault
Tolerance in Concurrent Object-Oriented Software through Coordinated
Error Recovery, in Proceedings of the 25th FTCS - International Sympo-
sium on Fault-Tolerant Computing, Pasadena, USA, 1995.

[11] R. H. Campbell, B. Randell, Error Recovery in Asynchronous Systems,
in IEEE Transactions on Software Engineering, Vol. SE-12(8), 1986.

[12] B. Randell, A. Romanovsky, C. M. F. Rubira-Calsavara, R. J. Stroud,
Z. Wu, and J. Xu, From Recovery Blocks to Concurrent Atomic Actions,
in Predictably Dependable Computing Systems, ESPRIT Basic Research
Series, Springer-Verlag, Brussels, 1995.

[13] B. Randell, A. Romanovsky, R. J. Stroud, J. Xu, A. F. Zorzo, D.
Schwier, and F. von Henke, ”Coordinated Atomic Actions: Formal Model,
Case Study and System Implementation”, Technical Report, UMI Order
Number: NEWCASTLE-CS#TR98-628, 1998.

[14] R. Miller, A. Tripathi, The guardian model for exception handling
in distributed systems, in Proceedings of the 21st IEEE Symposium on
Reliable Distributed Systems (SRDS 2002), IEEE, Piscataway NJ, USA,
2002.

[15] F. Souchon, C. Dony, C. Urtado, S. Vauttier, ”’A proposition for exception
handling in multi-agent systems”, in Proceedings of the SELMASO03
International Worskshop, 2003.

[16] F. Souchon, S. Vauttier, C. Urtado, C. Dony, “Fiabilit des applications
multi-agents: le systme de gestion dexception sage”, 2004.

[17] J. Armstrong, "Making Reliable Distributed Systems in the presence of
Software Errors”, PhD thesis, 2003.

[18] M.Odersky, L.Spoon, and B.Venners, “Programming in Scala - A
comprehensive step-by-step guide”, First Edition, Artima, November, 2008.

[19] J. McCarthy, P. W. Abrams, D. J. Edwards, T. P. Hart, and M. Levin,
LISP 1.5 Programmers Manual, MIT Press, 1965.

[20] International Business Machines (IBM), IBM System/360 PL/I Refer-
ence Manual, SRL Form C28-8201-1, 1968.

[21] G. Radin, The early history and characteristics of PL/I, in History of
Programming Languages, Academic Press, 1981.

[22] J. B. Goodenough, Exception handling: issues and a proposed notation,
In Communications of the ACM, Vol. 18(12), ACM Press, December 1975.

[23] F. Cristian, Exception Handling and Software Fault Tolerance, In Pro-
ceedings of FTCS-25, 3, IEEE, 1996 (reprinted from FTCS-IO 1980, 97-
103).

[24] J. L. Knudsen, Exception handling - a static approach, in Software:
Practice and Experience, Vol. 14(5), May 1984.

[25] J. L. Knudsen, Better exception handling in block structured systems,
in IEEE Software, Vol. 4(3), May 1987.

[26] J. Danaher, "The jcilk-1 runtime system”, Masters thesis, Massachusetts
Institute of Technology Department of Electrical Engineering and Com-
puter Science, June 2005.

[27] 1. Lee, “The JCilk multithreaded language”, Masters thesis, Mas-
sachusetts Institute of Technology Department of Electrical Engineering
and Computer Science, August 2005.

[28] L. Zhang, C. Krintz, and P. Nagpurkar, ”Supporting exception handling
for futures in Java”, in Proceedings of the 5th international symposium on
Principles and practice of programming in Java (PPPJ *07), ACM, New
York, NY, USA, 2007.

[29] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu, A Comparative Study
of Exception Handling Mechanisms for Building Dependable Object-
Oriented Software, in The Journal of Systems and Software, Vol. 59(2),
2001.

[30] B. Cabral and P. Marques, Exception Handling: A Field Study in Java
and .NET, in Proceedings of the 21st European Conference on Object-
Oriented Programming (ECOOP 07), LNCS 4609, Springer-Verlag, 2007.

[31] B. Jacobs, F. Piessens, “Failboxes: Provably safe exception handling”,
in proceeding of: ECOOP 2009 - Object-Oriented Programming, 23rd
European Conference, Genoa, Italy, July 6-10, 2009.

[32] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java(TM) Language
Specification, 3rd Edition, Prentice Hall , June 2005.

[33] B. Stroustrup, “The C++ Programming Language”, third edition,
Addison-Wesley Longman Publishing Co., Inc, 2000.

[34] ISO/IEC, Information Technology Programming Languages - C#, 2nd
Edition, ISO/IEC, Switzerland, 2006.

[35] Akka Scala Documentation - Release 2.4-SNAPSHOT, Typesafe Inc,
June 5, 2014.

[36] S. Tazuneki, and T. Yoshida, “Concurrent exception handling in a
distributed object-oriented computing environment”, in International Con-
ference on Parallel and Distributed Systems: Workshops,IEEE Computer
Society, Washington, DC, USA, 2000.

[37] V. Issarny, "An exception handling mechanism for parallel object-
oriented programming: Towards reusable, robust distributed software”, in
Journal of Object-Oriented Programming, Vol.6(6), 1993.

[38] V. Issarny, ”An exception handling model for parallel programming and
its verification”, in Conference on Software for critical systems, 1991.
[39] C. Fetzer and P. Felber, Improving program correctness with atomic
exception handling, Journal of Universal Computer Science, vol. 13, no.

8, pp. 10471072, 2007.

[40] D. Harmanci, V. Gramoli, and P. Felber. 2011. ”Atomic boxes: co-
ordinated exception handling with transactional memory”, in Proceed-
ings of the 25th European conference on Object-oriented programming
(ECOOP’11), Mira Mezini (Ed.). Springer-Verlag, Berlin, Heidelberg, 634-
657, 2011.

[41] ISO/IEC, Information Technology Common Language Infrastructure
(CLI) Partition I to VI, 2nd Edition, ISO/IEC, Switzerland, 2006.

