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Abstract—Reconfigurable embedded devices built on SRAM-

based Field Programmable Gate Arrays (FPGA) are being 
increasingly used in critical embedded applications. However, the 
susceptibility of such memory cells to Single Event Upsets (SEU) 
requires the use of fault tolerant designs, for which fault injection 
is still the most accepted verification technique. This paper 
describes FIRED, a fault injector targeted at SRAM-based 
FPGAs for dependability evaluation of critical systems. This tool 
is able to perform hardware fault injection in real-time, by 
inserting bitflips at the SRAM cells through partial dynamic 
reconfiguration. These faults may produce errors in the design of 
the VHDL or Verilog modules deployed in the FPGA. A case 
study of a fault injection campaign in a PID-based cruise control 
system is used to evaluate the capabilities of FIRED, namely its 
capacity of injecting faults while a physical application is being 
controlled. 

Keywords—dependability, fault injection, embedded systems, 
FPGA, SEU 

I.  INTRODUCTION 
There is an increasing demand for in-system reconfigurable 

devices as part of embedded systems, specifically Field 
Programmable Gate Arrays (FPGA). This need is driven by the 
ever-strict requirements imposed by aggressive market timings, 
by the needs of energy-efficient computation, or by the 
demands for adaptive systems due to the dynamic nature of the 
deployment environments. 

It’s of no surprise that the reduced cost and the low power 
consumption of recent devices have had a strong impact on the 
use of reconfigurable systems. What started as a minor market, 
the use of FPGA devices in communication equipment, has 
now become widely spread all over different fields such as 
wireless sensor networks [1], automotive [2], industrial control 
applications [3], space [4], etc. 

The possibility of having a hardware system tailored to 
optimize a specific function, as opposed to a generic processor-

based embedded system, has a major effect on device 
efficiency. The verification and validation of hardware-
implemented critical system is also simpler for FPGA-based 
systems than for processor-based software implemented 
approaches, due to the needs for certification of not only the 
application software, but also operating system, CPU, etc. 
Finally, FPGAs are also hitting the Application Specific 
Integrated Circuit (ASIC) market, since manufacturers are 
reducing the gap in both price and performance, which gives 
ASICS an advantage only when significantly larger quantities 
and higher speed are required.  

Recently some manufacturers have extended the in-system 
reconfiguration capabilities of FPGA devices to support 
runtime reconfiguration. Xilinx introduced this in Virtex device 
family and named it Partial Dynamic Reconfiguration (PDR). 
In the Programmable Logic (PL) area of such devices the 
system designer can define static as well as dynamic regions. 
As the name states, a static region is permanent and does not 
change throughout execution time, whereas a dynamic region 
can be reconfigured at runtime, while the remaining logic of 
the FPGA continue to run. The use of dynamic reconfigurable 
systems also allows a reduction in power consumption as, in 
most systems, not all the modules are needed simultaneously. 
Therefore, the system designer is able to select a device with a 
smaller footprint, with lower power consumption, and switch-
on and -off hardware modules as needed. Being performed at 
runtime, the reconfiguration delay is critical, so these systems 
rely on fast access memory technologies, namely SRAM, as 
opposed to Flash memory, for storing the implemented 
hardware description – the Configuration Memory (CM).  

However, the drawback of SRAM memory cells lies in its 
susceptibility to interferences from heavy ions or 
electromagnetic radiation, causing Single Event Upsets (SEU). 
Hence the design of dependable systems requires the use of 
fault tolerant mechanisms, such as Scrubbing, Triple Module 
Redundancy (TMR), Error Detection and Correction Codes 
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(EDAC), etc. In critical systems, such mechanisms need to be 
verified to evaluate the system fault tolerant capabilities. Fault 
injection (FI) is the most accepted technique for experimental 
dependability evaluation of critical systems. 

It is possible to find in the literature a few examples of 
FPGA-based fault injectors, but they are mainly targeted at 
testing the resilience of ASIC designs before the production 
phase [5, 6]. The approach followed in our study assumes that 
the system is to be deployed in an FPGA device, thus the need 
to evaluate its resilience to faults affecting the most sensitive 
underlying hardware: the SRAM memory cells.  

This paper presents FIRED, a fault injection tool for 
dependability evaluation of SRAM FPGA-based embedded 
systems, whose main capabilities are i) to inject faults at 
SRAM cells of the configuration memory of an FPGA; ii) to 
inject faults in a running system without the need to halt and 
resume; iii) to assess the dependability properties of SRAM-
based FPGA embedded systems; and iv) to inject faults in a 
production system without any additional artifact. 

In the next section we look at some of the available FPGA 
fault injectors and their applications. In section three, we 
introduce the extensive fault model supported by FIRED, and 
in section four we describe its architecture and the interaction 
between its major components. In section five we present a 
case study of a fault injection campaign, targeting an FPGA 
running a VHDL model of a PID cruise control system. In 
section six we finish the description of FIRED by analyzing its 
fault injection properties. Finally, in section seven, we 
conclude the paper presenting future developments of this tool. 

II. STATE OF THE ART 
To assess the dependability of an embedded system and the 

fault tolerant mechanisms in place, a very common approach is 
to inject faults or errors in the system and then monitor its 
behavior. In SRAM FPGA-based systems, these errors usually 
corrupt the implemented user design stored in configuration 
memory or, with lower probability due to a smaller area 
occupation, the system state. Depending on the technology 
used for the injection of errors in the FPGA configuration 
memory, the methods found in the literature are grouped in 
hardware-based FI and software-based FI [7]. The high 
maintenance costs of hardware-based FI facilities, capable of 
simulating the radiation effects in FPGAs through heavy-ion 
and proton beaming, restrict its use to a few manufacturing 
companies and research institutions. A cheaper alternative is to 
use a laser beam to simulate the radiation effects, but some 
preparation of the device surface is needed before the FI 
campaign. To overcome these high costs, some researchers 
took advantage of Xilinx FPGA Partial Dynamic 
Reconfiguration properties to simulate the effects of SEUs in 
their configuration memory, assuming a bitflip fault model. 
This form of software-based FI, when compared to physical 
methods, has higher precision, better controllability and lower 
cost. The major drawbacks are the representativeness of the 
injected faults compared with the radiation-induced SEUs and 
also the higher intrusiveness. 

There are only a few FPGA software-based fault injectors, 
resulting from academia research projects. Since these tools are 

targeted at specific families of FPGAs, their use on different or 
updated versions of FPGAs implies major changes in the 
internal design. All of these fault injectors use some form of 
bitstream instrumentation, either before system startup (offline) 
or during system execution (online).  

The FLIPPER [5] fault injectors, developed by the Italian 
National Institute for Astrophysics, under a contract with ESA, 
are composed by a hardware platform (based on Xilinx 
XQR2V6000 device) and a software application running on a 
PC. Targeted at Xilinx Virtex-2 (FLIPPER 2004-08) and 
recently Virtex-4 (FLIPPER2 2010-12), they use partial 
reconfiguration to inject single and multiple bitflips in 
configuration memory. Both FLIPPERs mimic the radiation 
experiments and allow the identification of design sensitive bits 
and the evaluation of SEU sensitivity in an FPGA 
implementation of an ASIC prototype. The injection can be 
random, sequential, or user defined and is performed in 
accumulation (adding up the effects). 

The FT-UNSHADES [6] fault injector, developed by the 
University of Seville, with the support of the European Space 
Agency (ESA), was created to study the effects of radiation-
induced faults in an ASIC, assuming a bitflip fault model. This 
system is able to inject bitflips in Flip-Flops through the use of 
dynamic partial reconfiguration of a Xilinx FPGA. The FPGA 
implements both the "faulty system" and the "fault-free 
system" and compares their output to inform the host computer 
that a failure occurred. To inject bitflip faults, the host just has 
to exchange a few thousand bits (two FPGA frames) with the 
FPGA configuration memory. 

Gokhale [8] developed a SEU Simulator for assessing 
dependability through fault injection. The simulator uses PDR 
to corrupt the FPGA frames while the system is running. It is 
composed of three FPGAs, two running the user circuit in 
parallel (golden design and design under test) and a third one 
responsible for real-time output comparison. The simulator can 
be used to classify the user design configuration bits as being 
sensitive or non-sensitive. It is also capable of differentiating 
the sensitive bits from persistent, associated with system state 
and control function, or non-persistent, which could be 
recovered by just restoring the original bit value.  

The goal of FIRED is not to evaluate dependability 
properties of ASIC designs prior to production, as with the 
FLIPPERs and FT-UNSHADES, but to assess the properties of 
FPGA-based production systems. It also tries to improve the 
resource usage and the performance of the approach followed 
by Gokhale, which uses multiple FPGAs to isolate the 
interference between each system component, leading to higher 
reconfiguration delays due to the use of slower external 
interfaces.  

III. FAULT MODEL 
FIRED was created to investigate the feasibility of using 

COTS SRAM-based FPGA devices in harsh environments. 
The use of generic devices instead of radiation-hardened 
versions and the fast access memory technology used as 
configuration memory, makes them more prone to upsets [9]. 
The effects of these upsets include the corruption of the system 
state, which affect both ASICS and FPGA devices, and 
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changes in the implemented design, which are specific to 
FPGAs, as they rely in SRAM cell for configuration memory. 
There has been a strong effort on evaluating the devised fault 
tolerant approaches to recover the system state, but only 
recently the researchers have focused on improving the 
resilience of reconfigurable devices, through configuration 
memory protection [10, 11].   

A. Fault Type  
SRAM-based reconfigurable devices suffer from the same 

sensitiveness to radiation-induced faults as the SRAM memory 
used in non-reconfigurable systems. This can be predominantly 
seen in areas were the FPGAs are experiencing an increased 
usage, namely space applications. The radiation effects in 
SRAM memory cells are manifested as SEUs and have been 
extensively reviewed in the literature [12]. Experimental 
studies, like Rosetta [13] from Xilinx, where all sorts of 
FPGAs are exposed to radiation, have shown that most upsets 
take the form of bitflips in memory cells. Similar results were 
gathered by Gunneflo through hardware-based FPGA fault 
injection campaigns [14]. The incidence of radiation in these 
devices may produce multiple bitflip, in which case it is 
common to observe a circular pattern around the hit point [15]. 

Therefore, to realistically mimic the radiation-induced 
faults in SRAM-based FPGAs, FIRED is capable of injecting 
both single and multiple adjacent bitflip errors, as presented in 
Fig. 1. Besides this, FIRED is also able to inject suck-at-0 and 
stuck-at-1 faults, i.e., all the bits embraced by the injection 
mask take the value 0 or 1. 

B. Fault Location 
All the errors injected by FIRED are targeted at the FPGA 

configuration memory, specifically the location of the Device 
Under Test (DUT) hardware implementation, as defined by the 
manufacturer design tools. Although there is no detailed 
information available from FPGA manufactures about the 
mapping between the user design and the contents of the CM in 
the form of a bitstream, they provide some information about 
the structure and basic elements of the device: Configuration 
Logic Block (CLB), Digital Signal Processor (DSP), 
Input/output Block (IOB), etc. 

Transient faults that affect these CM cells introduce 
permanent changes in the DUT design that will remain until the 
contents of the affected cells are restored. This usually happens 
when the device is power cycled, at the startup phase.  

In the FIRED tool, the location of a single bitflip fault is 
simply defined by an address location inside of the FPGA 
configuration memory. For multiple bitflips, an additional 8-
by-8 bits mask has to be specified, as shown in Fig. 1. 

C. Trigger 
In order to emulate radiation bursts, resulting in transient 

faults with cumulative effects on the FPGA, FIRED is capable 
of injecting multiple faults at distinct instants throughout a 
single experiment. In this case the DUT is not reset after each 
injected fault, and the permanent effects of the upcoming faults 
are added to the effects of the ones already injected, which may 
eventually be perceived at the DUT interface as a device 
failure.  

   
Fig. 1. Mutliple bitflip fault injection pattern 

 
Fig. 2. Specification of a time-triggered fault injection: a) absolute time, b) 

relative time. 

 
Fig. 3. Specification of an event-triggered fault injection. 

The fault injection trigger was designed to be highly 
configurable, allowing the person conducting the FI 
experiments to precisely define the injection instants. 

Triggers can be specified based on time (time-triggered) or 
in an external event (event-triggered). In the former case, the 
injection time of each fault (TimePre) may be specified as an 
absolute value, with respect to the beginning of the experiment, 
or relative, to the previous injected fault. In Fig. 2, a temporal 
diagram is depicted with the user-defined parameters for a 
time-triggered injection run. In the second case, an external 
trigger to the fault injector may be used. Besides the system 
settling time (TimePre), also used in the time-triggered 
approach, the user must also specify i) the number of events 
(Count triggers) after which the fault should be injected and 2) 
a post injection delay (TimePost) for error detection, as seen in 
Fig. 3.  

IV. FAULT INJECTOR OVERVIEW 
Besides injecting faults in the SRAM cells of the target 

FPGA, FIRED is able to monitor the behavior of the DUT in 
runtime while trying to reduce its intrusiveness to a minimum, 
so that the gathered results are still representative of a 
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production system. This led to the division of the FI tool in two 
major components: Injection Runtime Controller (IRC) and 
Experiment Management Environment (EME). As it can be 
seen in shaded areas of Fig. 4, the IRC runs side-by-side with 
the DUT and has direct access to the configuration memory 
where the DUT implementation is stored. The EME runs in a 
regular PC and holds a connection to a database engine to store 
experiment data (not only the experiment descriptions, but also 
all the collected experimental results).  

The parallel nature of the FPGA and the PDR properties of 
the device in use, allow the isolation between the IRC and the 
DUT, and let the IRC to precisely target the DUT configuration 
memory region. By running the EME in the PC, it is easier to 
define and faster to run the fault injection campaigns, by 
relieving the IRC from some intensive processing tasks of 
mapping the fault definition with the targeted bits. The two 
components communicate using a proprietary protocol, which 
runs over a TCP/IP stack. 

 
Fig. 4. FPGA fault injector architecture 

A. Injection Runtime Controller (IRC) 
The Injection Runtime Controller is responsible for the 

effective injection of faults in the DUT configuration memory. 
In order to inject faults in such memory cells, it needs access to 
one of the available configuration memory interfaces: 
SelectMAP, Joint Test Action Group (JTAG) or Internal 
Configuration Access Port (ICAP). The strict time 
requirements of critical real-time systems led us to select 
ICAP. Being an internal port, it is only available to hard-wired 
PowerPC cores or to soft-cores, such as Microblaze. 

The current version of IRC runs in a Microblaze soft-core; 
it receives instructions from EME using a push/pull protocol 
and sends asynchronous events back; it also includes I/O 
logging facilities. To reduce the interference of the EME to 
IRC communication channel in the experiment outcome, the 
IRC includes a small internal cache memory for storing the 
description of the upcoming faults in the current experiment, 
and an external DDR2 RAM memory to locally log the I/O 
data and send it back only when requested for. Figure 5 
presents the main interactions between the modules of FIRED. 

The actual fault injection is performed using PDR though 
ICAP, which allows the IRC to change only a few 
configuration memory frames in a Read-Modify-Write (RMW) 
approach. 

 
Fig. 5. FPGA fault injector module interaction 

The IRC also uses the ICAP interface to restore the DUT 
bitstream after each Injection Run (IR) in an experiment, in 
order to start from a clean state.  

B. Experiment Management Environment (EME) 
The Experiment Management Environment is the fault 

injector user interface and is executed in a PC. It is responsible 
for the experiment definition, experiment execution and 
analysis of the results. Currently, all these functionalities are 
implemented as command line tools that are called from a 
script to automate the tasks.  

1) Fault Generator 
The Fault Generator (FG) is responsible for generating an 

XML file that describes the experiment according to the 
information provided by the user. The input data is validated 
against a model of the FPGA device in use, included in the 
FG. This tool will generate random values within limits, 
specified by the user. The accepted parameters are: 

� Pre time range; 
� Post time range; 
� Injection run duration; 
� Frame address range (major address, minor address, 

half, column, and type);  
� Frame offset range; 
� Fault type (stuck-at-0, stuck-at-1 or bitflip); 
� Number of affected bits per injected fault; and  
� 8-by-8 bits mask. 
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Fig. 6. FIRED external database structure 

The generated XML file includes all the information 
needed by the IRC to actually perform the fault injection. If 
needed, the user can tweak this file to select specific injection 
runs or faults, in order to crosscheck previous results.  

1) Experiment Execution 
The EME is also responsible for the management of the 

experiments. It uses an SQL relational database to store all the 
experiment descriptions together with the collected 
experimental outcomes.  

In the first stage, it reads and uploads an XML file with the 
experiment description data to the database. Secondly, it enters 
the setup phase where it connects to the IRC and issues a reset 
command, followed by a sequence of write commands which 
include the first faults to be injected in the current injection 
run, and then sends a run command to instruct the IRC to 
effectively start the injection run. Each time a fault is actually 
injected, the IRC notifies the EME, by sending an event 
command with the injection result. In this case, an entry in the 
IRC fault buffer is freed and the EME is allowed to send 
another fault for later injection. As soon as the EME detects the 
end of the injection run, triggered by a timer, it sends a stop to 

halt the DUT execution. After the execution of each injection 
run, the EME issues a sequence of read commands to the IRC 
to request the experiment I/O results. This data is then 
uploaded to the database for later analysis. These steps are 
repeated until all the injection runs of a single experiment have 
been performed.  

In order to analyze the outcome of the fault injection 
campaign, the first injection run of each experiment is always a 
goldrun. This goldrun is identical to the other injection runs of 
the experiment, with the exception that it does not contain any 
faults to be injected. Its output will be compared with the 
output generated during other injection runs. 

2) Result Analysis 
By considering the DUT as a black box with inputs and 

outputs, containing some logic and internal state, the solution 
devised to analyze its sensitivity to the injected faults was to 
compare its outputs against a fault-free run. In this context, the 
goldrun reproduces the normal behavior of the DUT, by means 
of the collected I/O data.  

5



Therefore, if an injected fault produces an error in the DUT 
and if it eventually reaches the boundary of the system, it is 
perceived as an erroneous output. In this situation the 
functionality of the DUT has been compromised and thus is 
considered as a system failure.  

By using a tool to extract the data from the database and a 
Matlab script, each injection run is compared against the 
goldrun, and any deviation from the expected output is 
signaled. The final results of a fault injection campaign may 
contain information related to the failure rate, globally or per 
FPGA basic component; the error latency; the location of the 
faults that produced the failures; etc. From the collected data it 
is possible to extract system metrics (e.g. reliability, error 
latency, etc.) that characterize its dependability. 

It is worth mentioning that this comparison with the golden 
run is only valid if the system is deterministic. For example, in 
the case of a controller interacting with a physical system, the 
the correct outputs of the DUT must be asserted with a 
reasonability analysis, e.g. by checking if they are inside some 
bounds. 

C. Database 
The diagram in Fig. 6 shows the data model of the FIRED 

database. The experiment entity identifies one fault injection 
campaign. Each experiment is composed by at least one 
injection run, which may have any number of injections, each 
of which represents a single fault. For example, when 
performing a fault injection campaign in a PID controller, an 
injection run is a single run of the controller, which begins with 
the start and ends with the stop commands, sent by EME to 
IRC. Each experiment has a single workload, and all the 
experimental data collected during the experiments is held by 
the entities injection run input and injection run output. 

V. CASE STUDY 
To evaluate the FI properties of FIRED, we tested the tool 

in a VHDL implementation of PID-based cruise control 
system. This controller is used to command the speed of a DC 
motor while monitoring the shaft rotation. Besides the 
controller itself, other modules (like quadrature decoder, PWM 
signal generation and clock generator) were implemented in the 
same FPGA. 

The overall system is implemented in a Xilinx University 
Program development board (XUPV5), which includes a 
Xilinx Virtex-5 VLX110 FPGA, as an IP Core. This core 
interfaces with the IRC module, running bare-metal on a 
Microblaze processor, through a Processor Local Bus (PLC). 
The communication between these subsystems is accomplished 
using memory-mapped registers. 

A. Device Under Test 
The PID controller is implemented in a Reconfigurable 

Partition of the FPGA and has a fixed interface. This allows 
changing the DUT, without the need to adapt the other 
components that support the FI. The controller can be seen as a 
black box with inputs (clock, enable, reset and 32-bit signal 
input) and outputs (32-bit signal output). In the specific case of 
the cruise control system, depicted in Fig. 7, the controller has 
a 16-bit reference (R) and 16-bit feedback (Y) inputs, and one 

16-bit control signal (U) output. The FIRED logging module 
monitors and registers all these signals throughout the 
experiments.  

 
Fig. 7. PID-based controller module (DUT) 

For this type of systems, the PI variant of the PID controller 
is known to be well suited for the task [16]. The controller in 
use has a proportional (Kp) and an integral (Ki) constant of 100 
and 2, respectively. It also has an anti-windup feature to avoid 
the saturation of the integral part, by placing an upper limit to 
this controller component. The sampling time of the controller 
is set at 10ms. 

 
Fig. 8. FPGA slice occupancy of the PID controller. 

A graphical view of the PID controller used logic resources 
on the RP, is depicted in Fig. 8. To avoid, as much as possible, 
injecting faults in unused location, the RP region was defined 
as the smallest area of the FPGA where the PID controller 
could fit in. In this case, only four major columns, spanning a 
single row, were needed – three CLB columns (with block 
coordinates from X28Y140 to X33Y159) and one DSP column 
(with block coordinates from X0Y56 to X0Y63). The 
configuration memory space occupied by the controller is 136 
frames (22304 bytes) 

PID
controller

RECONFIGURABLE
PARTITION
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This specific device, Xilinx Virtex-5 VLX110 [18], is 
divided in two halves, each with four rows numbered between 
0 and 3, starting form the center. Each row is composed by a 
fixed number of columns, identified by a major column 
number. Each one of these includes only a single type of an 
FPGA basic element (CLB, DSP, IOB, etc.), and is subdivided 
into a variable number of minor columns elements (CLB and 
DSP blocks are composed by 36 and 28 frames, respectively). 
The first 25 frames map routing resources of the FPGA, while 
the remaining ones map specific block type elements. The 
frame is the smallest addressing element of an FPGA and, in 
this specific device, has a size of 1312 bits. 

 
Fig. 9. Xilinx tools detailed information about the FPGA resources allocated 

to the PID controller. 

The detailed information about the number of used 
resources by the PID controller, from the Xilinx tools, is 
presented in Fig. 9. 

B. Simulator vs Real System 
A simulator of a DC motor was also implemented in VHDL 

and is located inside the FPGA (but obviously outside the 
reconfigurable partition). This approach allows implementing 
everything as a System-On-a-Chip (SoC), which doesn’t need 
any external component to run the FI experiments. This is of 
tremendous value in the first FI experiments, not only to get 
some insight of the controller behavior, but also because it is 
possible to speedup the simulation by reprogramming the clock 
module that feeds the CLK signal to the simulator. In the 
current setup the simulator is fed with a 100KHz clock 
frequency. 

Some components, namely the quadrature decoder and the 
PWM signal generator, are not needed when interfacing the 
controller with the simulator. These components are only used 
when a physical system is connected to the devboard.  In the 
this case, the interface with the real system is accomplished by 
using one digital output pin, for the PWM signal, and two 
digital input pins, for both the Channels A and B of the 
quadrature decoder. 

C. Experiments 
To better evaluate the fault injection capabilities and the 

possible undesired interferences of the FIRED tool in the 
system, we designed several experiments that encompass the 
most frequent fault models. The first five experiments were run 
against the VHDL simulator, while in the last one we 
connected the DUT to a real system (it is effectively 

controlling the shaft rotational velocity of a mobile robot 
wheel). 

The fault list was created through the fault generator, which 
was instructed to randomly generate one hundred injection 
runs, per experiment. The total duration of each injection run is 
12s and the controller was set to follow a square wave 
reference signal with 10s period. The faults are injected only 
when the controller reaches the high-speed section of the 
reference wave, and after a one second settling phase. In 
multiple-fault experiments, the successive faults, with sum-up 
effects, are injected in intervals between 400ms to 500ms.  

As described in Section IV, each experiment contains an 
additional injection run, a goldrun (a fault-free IR), which is 
used for controller failure detection by output data cross 
comparison. 

Due to the lack of information from the manufacturer about 
the mapping between the VHDL code and the contents of the 
configuration memory, the fault location was randomly 
selected among the RP area of the PID controller.  

 
Fig. 10. Failure-free IR reference – R (square wave) and output – Y (curved 

line) signals, with 1 injected fault (vertical line). 

1) Single-fault – bitflip (one bit) 
For the first experiment, we inject one bitflip fault in each 

injection run, by toggling the logic value of an isolated 
configuration memory bit. In Fig. 10 we can see an extracted 
IR from this experiment, where a vertical line marks the fault 
injection time. In this case, no failure has been observed. 
However, for the 100 injection runs, 13 resulted in a failure, 
meaning that the output of the controller differed from the 
goldrun. Table I resumes the results from this and the 
following experiments.  

It is worth noting that the images in Fig.10 and following 
represent the reference (R) and output signal (Y) from the 
controlled process, since it represents the behavior of the whole 
system as could be seen by an observer. However, our tool is 
currently detecting deviations from the control signal (U), 
which eventually affects the controlled process.  

 

Area Group Information 
---------------------- 
 
Area Group "pblock_motor_0_USER_LOGIC_I_iRP" 
  No COMPRESSION specified for Area Group 
  RANGE: DSP48_X0Y56:DSP48_X0Y63 
  RANGE: SLICE_X28Y140:SLICE_X33Y159 
  Slice Logic Utilization: 
    Number of Slice Registers:              45 out of    480    9% 
    Number of Slice LUTs:                  307 out of    480   63% 

  Number used as logic:                307 
  Slice Logic Distribution: 

Number of occupied Slices:              92 out of    120   76% 
Number of LUT Flip Flop pairs used:    308 
  Number with an unused Flip Flop:     263 out of    308   85% 
  Number with an unused LUT:             0 out of    308    0% 
  Number of fully used LUT-FF pairs:    45 out of    308   14% 

  Number of DSP48E:                          3 out of      8   37% 
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2) Single-fault – stuck-at (one bit) 
We define a stuck-at fault that affects the configuration 

memory, as a fault that forces a specific bit to logic value of 
one (stuck-at-1) or zero (stuck-at-0).  

Two identical experiments were run using the same fault 
list that was used in 1). In the first experiment we injected 
stuck-at-0 faults, while on the second one we replaced them by 
stuck-at-1 faults. Respectively 8% and 5% of the faults in the 
experiments resulted in failures. 

3) Single-fault – bitflip (multiple bits) 
In this this experiment we used a fault list identical to the 

one used in experiment 1), kept the same injection time and 
location, but replaced the single-bit mask by a 3-by-3 square 
mask. Thus, each injected fault toggles nine adjacent 
configuration memory bits. As expected, the results are more 
severe, as 19% of the injection runs resulted in failures. 

4) Repeated-fault – bitflip (single bit, at distinct locations) 
In this experiment we inject a total of 10 faults per injection 

run, in accumulation (sum-up effects). Each of these faults is 
injected at randomly selected locations and toggles a single 
configuration memory bit. By the end of the experiment, 1000 
faults were injected and 31% of the injection runs (each with 
10 faults) resulted in failures. Figure 11 shows the result of one 
injection run which caused a system failure.  

5) Intermittent fault – bitflip (one bit, at the same location) 
The aging of the device components, the stress of the 

materials and the manufacturing defects (e.g. fractures in BGA 
solder joints used in FPGAs) are known [19, 20] to produce 
intermittent faults in electronics devices.  

 
Fig. 11. Faulty IR reference – R (square wave) and output – Y (curved and 

then noisy) signals, with 10 injected faults (vertical lines). 

We define an intermittent fault in an FPGA configuration 
memory cell as a fault that affects a fixed memory location, at 
distinct instants in time, with varying activation times. The 
activation time is the duration of the fault effects, every time it 
is triggered. 

In this experiment we used a fault list identical to the one 
used in experiment 1), kept the same fault location, and 

triggered the fault 10 times. Each trigger is separated by a 
minimum of 400ms and the activation time is randomly 
selected, between 10ms and 100ms. This experiment end-up 
with 14% of failures. 

6) Single-fault – bitflip (one bit), real system 
To test FIRED with a real system, we reused the fault list of 

experiment 1). The reference (R) and output of the physical DC 
motor (Y), are depicted in Fig. 12. The observed fluctuation of 
Y is perfectly normal in such physical system. In this case, 
FIRED did not interfere with the process control. Due to the 
non-deterministic nature of a physical system, there was no 
comparison of the outputs of these tests with the goldrun.   

 
Fig. 12. Failure-free IR reference – R (square wave) and output – Y (noisy) 

signals from the real system, with 1 injected fault (vertical line). 

D. Results 
The collected data of each injection run was compared 

against the goldrun to detect any deviation of the controller 
output from the expected behavior. The results of the fault 
injection experiments 1 to 5 are presented in Table I. 

TABLE I.  PERCENTAGE OF FAULTY INJECTION RUNS  

ID FAULT IRa FAULTb BITc FAULTYd 
1 Single Bitflip 100 1 1 13% 

2 i) Stuck-at-0 100 1 1 8% 
2 ii) Stuck-at-1 100 1 1 5% 

3 Multiple bits 100 1 9 19% 
4 Repeated faults 100 10 1 31% 
5 Intermittent 100 1 1 14% 

a. Injection Runs per Experiment 
b. Faults per Injection Run 

c. Bits per Fault 
d. Percentage of faulty Injection Runs 

 

In multiple-fault IR, every time a failure was detected, 
additional injection runs were executed to identify which of the 
fault(s) from that particular injection run caused the failure. 
This way it was possible to get a map of sensitive configuration 
memory cells.   
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1) Sensitive bits 
The results obtained allowed us to classify the sensitivity of 

the CM cells to SEUs, i.e. the percentage of bits that produced 
system failures if affected by a fault. Due to the huge amount 
of CM cells, most of them related to routing and overly unused, 
it is not practical to test all the bits of a design. The results 
presented in Table II were gathered from the fourth 
experiment.  

TABLE II.  PERCENTAGE OF EFFECTIVE FAULTS PER LOCATION TYPE 

ID 

MAJOR COLUMNS 
CLB (17) CLB (18) DSP (19) CLB (20) 

Routea Spec.b Route Spec. Route Spec. Route Spec. 

4 3,59% 3,33% 3,11% 0,00% 3,74% 2,70% 4,50% 0,00% 
a. Interconnecting 

b. Specific to column type 

 

These results show that from a universe of 1000 injected 
faults, only 3,1% manifested as failures of the controller. This 
result is inline with the device manufacturer information, which 
states that a huge amount of resources in the FPGA are used for 
routing, and that a significant amount of these are unused [11], 
even in designs that occupy a high percentage of FPGA logic 
resources (~85%).  

2) Accuracy of the fault injector tool 
The analysis of the single-fault injection runs showed that 

most of the injected faults had a small latency, of around 
80,4ms. The minimum latency observed was 11,9ms.  

A couple of failure and failure-free injection runs where 
also analyzed to get some insight of FIRED repeatability and 
system interference. In all these situations, there was a perfect 
match between the goldrun and each injection run, for the 
failure-free case, and between each single-fault IR and the 
original 10-fault IR, for the other. This proved that the tool is 
able to repeat experiments with consistent results, and has no 
interference in the system execution. 

VI. ANALYSIS OF FIRED 
There are many different properties used to characterize the 
fault injection techniques [17], and specifically fault injectors. 
In this section we analyze the properties of FIRED, based on 
the results obtained from the previous case study. 

A. Reachability  
This property stands for the ability to reach all possible 

fault locations. The current version of the FPGA fault injector 
is able to inject faults in the configuration memory of the target 
device. This way it is possible to simulate the effects of SEUs 
in the memory cells of reconfigurable devices, which stand for 
the implemented logic. It is however unable to inject faults in 
the system state, as for this it needs to instrument the target 
device to add hookups.  

B. Controllability 
FIRED can inject faults in the configuration memory with a 

high precision, both in space and time.  

By using the ICAP interface it can reach all the 
configuration memory cells of the target device. Due to the 
addressing mode used by Xilinx, the minimum 
readable/writable unit of the configuration memory is one 
frame. The used approach of Read-Modify-Write allows the 
injection of faults in each single bit location. The overhead in 
time of the RMW approach is approximately 50μs for a single 
frame. 

C. Repeatability 
By running the same fault injection run it is expected that 

the results be the same. 

The experiments performed with FIRED have shown a 
perfect match of the target outputs (see Fig. 10 and 11). Also, 
when a single-fault injection run, which resulted in a failure, 
was repeated several times, the results were consistent. 

D. Reproducibility 
From the experiments conducted the results were 

statistically coherent throughout experiments for the specific 
case of the PID controller.  

E. Intrusiveness 
At the moment no efforts have been done to reduce the 

spatial overhead of the fault injector. The processor-based IRC 
could be substituted, with a reduction in the overall flexibility 
of FIRED, by a finite state-machine with a smaller footprint, in 
terms of used PL cells. Regarding the FPGA area used by the 
DUT, there isn’t, however, any spatial intrusiveness. 

Regarding time intrusiveness, experiments have shown that 
the impact of the fault injector in the execution time of the 
target system is negligible due to the parallel nature of the 
FPGAs. The only drawback of the RMW approach is the need 
to share the same bus with target implementations that take 
advantage of LUTs as distributed memory, which may impose 
small delays. 

F. Flexibility  
To isolate the target device from the IRC and allow the 

partial dynamic reconfiguration, the DUT has been confined to 
a reconfigurable partition. In this case, the only fixed part is 
the interface with the other modules, which support the fault 
injection, and the interface of the DUT with the real 
world/simulator. Due to this, the fault injector can be easily 
used with other target devices that have a similar interface: 
clock, reset, enable, input (32 bits), output (32 bits). 

G. Efficiency 
The use of the ICAP interface to access the CM allows a 

huge improvement in the overall FI campaign execution times, 
when compared to boundary scan fault injection approaches 
[21].  

The FIRED supporting components, described in Section 
IV, reduce the effort needed to perform a fault injection 
campaign, relieving the user conducting the experiments from 
those tasks. 

H. Observability  
Without instrumenting the target device, and with the 

sparse information available about the mapping between the 
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bitstream and the actual components of the target, the present 
system is only capable o monitoring the target interfaces.  

The logging capacity of FIRED is constrained by the size of 
the external memory available at the devboard (used to store 
each injection run I/O data), while the logging frequency, 
specified by the user, is only limited by the speed of the 
Microblaze processor.  

VII. CONCLUSIONS 
FIRED fault injector was created to test the dependability 

properties of SRAM-based FPGA embedded systems. The 
target is implemented in a reconfigurable partition of the FPGA 
programmable logic area, while the parallel nature of the 
FPGA allows the inclusion of specific components to support 
the fault injection campaign. Presently the system is 
implemented in a Virtex-5 device and the fault injection is 
supported by a soft-core processor (Xilinx Microblaze), as the 
devboard in use does not include an embedded hard-wired 
processor. To port this fault injector to other architectures, it is 
necessary to add the new device architecture description to the 
fault generator and result analysis tools, and synthetize the fault 
injector and controller bitstreams. 

The evaluation of this fault injector using a simulation of a 
physical system gave us valuable information about the 
properties of the tool and its capabilities. By demonstrating low 
intrusiveness in the system execution time, it is possible to use 
it online, with physical systems, thus avoiding the need to halt 
the system to inject each fault. The use of dynamic partial 
reconfiguration for fault injection makes it feasible to use the 
production system without any additional artifact to support the 
fault injection. It has limited effectiveness in exercising fault 
tolerant mechanisms due to the lack of information about the 
mapping between the bitstream and the VHDL representation 
of the DUT. The reachability is limited to the configuration 
memory cells, whereas we experienced a high controllability, 
repeatability and reproducibility. The modularity of the FI and 
the isolation of the controller in a RP also improve its 
efficiency and flexibility.   

In the future there are plans to use the new Zynq devboard, 
to take advantage of the hard-wired ARM processor and thus 
reduce, not only the spatial overhead, but also the duration of 
the fault injection campaign. In the first case, by removing all 
the logic that support the fault injection, with the exception of 
the DUT and the logging module, and in the second case by 
taking advantage of a faster dual-core A7 processor which is 
able to dynamically reprogram the PL area through the Parallel 
Configuration Access Port (PCAP). We also plan on using 
other controllers as test cases for better assessment of FIRED.   
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