
FIRED – Fault Injector for
Reconfigurable Embedded Devices

José Luís Nunes1,2, Tamás Pecserke3, João Carlos Cunha1,4, Mário Zenha-Rela2,4
1Instituto Politécnico de Coimbra, ISEC, DEIS

Coimbra, Portugal
{jnunes, jcunha}@isec.pt

2University of Coimbra, Dept. of Informatics Engineering
Coimbra, Portugal
mzrela@dei.uc.pt

3Prolan Co.
Budakalász, Hungary
pecserke@prolan.hu

4Centre for Informatics and Systems of the University of Coimbra
Coimbra, Portugal

Abstract—Reconfigurable embedded devices built on SRAM-

based Field Programmable Gate Arrays (FPGA) are being
increasingly used in critical embedded applications. However, the
susceptibility of such memory cells to Single Event Upsets (SEU)
requires the use of fault tolerant designs, for which fault injection
is still the most accepted verification technique. This paper
describes FIRED, a fault injector targeted at SRAM-based
FPGAs for dependability evaluation of critical systems. This tool
is able to perform hardware fault injection in real-time, by
inserting bitflips at the SRAM cells through partial dynamic
reconfiguration. These faults may produce errors in the design of
the VHDL or Verilog modules deployed in the FPGA. A case
study of a fault injection campaign in a PID-based cruise control
system is used to evaluate the capabilities of FIRED, namely its
capacity of injecting faults while a physical application is being
controlled.

Keywords—dependability, fault injection, embedded systems,
FPGA, SEU

I. INTRODUCTION
There is an increasing demand for in-system reconfigurable

devices as part of embedded systems, specifically Field
Programmable Gate Arrays (FPGA). This need is driven by the
ever-strict requirements imposed by aggressive market timings,
by the needs of energy-efficient computation, or by the
demands for adaptive systems due to the dynamic nature of the
deployment environments.

It’s of no surprise that the reduced cost and the low power
consumption of recent devices have had a strong impact on the
use of reconfigurable systems. What started as a minor market,
the use of FPGA devices in communication equipment, has
now become widely spread all over different fields such as
wireless sensor networks [1], automotive [2], industrial control
applications [3], space [4], etc.

The possibility of having a hardware system tailored to
optimize a specific function, as opposed to a generic processor-

based embedded system, has a major effect on device
efficiency. The verification and validation of hardware-
implemented critical system is also simpler for FPGA-based
systems than for processor-based software implemented
approaches, due to the needs for certification of not only the
application software, but also operating system, CPU, etc.
Finally, FPGAs are also hitting the Application Specific
Integrated Circuit (ASIC) market, since manufacturers are
reducing the gap in both price and performance, which gives
ASICS an advantage only when significantly larger quantities
and higher speed are required.

Recently some manufacturers have extended the in-system
reconfiguration capabilities of FPGA devices to support
runtime reconfiguration. Xilinx introduced this in Virtex device
family and named it Partial Dynamic Reconfiguration (PDR).
In the Programmable Logic (PL) area of such devices the
system designer can define static as well as dynamic regions.
As the name states, a static region is permanent and does not
change throughout execution time, whereas a dynamic region
can be reconfigured at runtime, while the remaining logic of
the FPGA continue to run. The use of dynamic reconfigurable
systems also allows a reduction in power consumption as, in
most systems, not all the modules are needed simultaneously.
Therefore, the system designer is able to select a device with a
smaller footprint, with lower power consumption, and switch-
on and -off hardware modules as needed. Being performed at
runtime, the reconfiguration delay is critical, so these systems
rely on fast access memory technologies, namely SRAM, as
opposed to Flash memory, for storing the implemented
hardware description – the Configuration Memory (CM).

However, the drawback of SRAM memory cells lies in its
susceptibility to interferences from heavy ions or
electromagnetic radiation, causing Single Event Upsets (SEU).
Hence the design of dependable systems requires the use of
fault tolerant mechanisms, such as Scrubbing, Triple Module
Redundancy (TMR), Error Detection and Correction Codes

2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing

978-1-4673-9376-8/15 $31.00 © 2015 IEEE

DOI 10.1109/PRDC.2015.43

1

(EDAC), etc. In critical systems, such mechanisms need to be
verified to evaluate the system fault tolerant capabilities. Fault
injection (FI) is the most accepted technique for experimental
dependability evaluation of critical systems.

It is possible to find in the literature a few examples of
FPGA-based fault injectors, but they are mainly targeted at
testing the resilience of ASIC designs before the production
phase [5, 6]. The approach followed in our study assumes that
the system is to be deployed in an FPGA device, thus the need
to evaluate its resilience to faults affecting the most sensitive
underlying hardware: the SRAM memory cells.

This paper presents FIRED, a fault injection tool for
dependability evaluation of SRAM FPGA-based embedded
systems, whose main capabilities are i) to inject faults at
SRAM cells of the configuration memory of an FPGA; ii) to
inject faults in a running system without the need to halt and
resume; iii) to assess the dependability properties of SRAM-
based FPGA embedded systems; and iv) to inject faults in a
production system without any additional artifact.

In the next section we look at some of the available FPGA
fault injectors and their applications. In section three, we
introduce the extensive fault model supported by FIRED, and
in section four we describe its architecture and the interaction
between its major components. In section five we present a
case study of a fault injection campaign, targeting an FPGA
running a VHDL model of a PID cruise control system. In
section six we finish the description of FIRED by analyzing its
fault injection properties. Finally, in section seven, we
conclude the paper presenting future developments of this tool.

II. STATE OF THE ART
To assess the dependability of an embedded system and the

fault tolerant mechanisms in place, a very common approach is
to inject faults or errors in the system and then monitor its
behavior. In SRAM FPGA-based systems, these errors usually
corrupt the implemented user design stored in configuration
memory or, with lower probability due to a smaller area
occupation, the system state. Depending on the technology
used for the injection of errors in the FPGA configuration
memory, the methods found in the literature are grouped in
hardware-based FI and software-based FI [7]. The high
maintenance costs of hardware-based FI facilities, capable of
simulating the radiation effects in FPGAs through heavy-ion
and proton beaming, restrict its use to a few manufacturing
companies and research institutions. A cheaper alternative is to
use a laser beam to simulate the radiation effects, but some
preparation of the device surface is needed before the FI
campaign. To overcome these high costs, some researchers
took advantage of Xilinx FPGA Partial Dynamic
Reconfiguration properties to simulate the effects of SEUs in
their configuration memory, assuming a bitflip fault model.
This form of software-based FI, when compared to physical
methods, has higher precision, better controllability and lower
cost. The major drawbacks are the representativeness of the
injected faults compared with the radiation-induced SEUs and
also the higher intrusiveness.

There are only a few FPGA software-based fault injectors,
resulting from academia research projects. Since these tools are

targeted at specific families of FPGAs, their use on different or
updated versions of FPGAs implies major changes in the
internal design. All of these fault injectors use some form of
bitstream instrumentation, either before system startup (offline)
or during system execution (online).

The FLIPPER [5] fault injectors, developed by the Italian
National Institute for Astrophysics, under a contract with ESA,
are composed by a hardware platform (based on Xilinx
XQR2V6000 device) and a software application running on a
PC. Targeted at Xilinx Virtex-2 (FLIPPER 2004-08) and
recently Virtex-4 (FLIPPER2 2010-12), they use partial
reconfiguration to inject single and multiple bitflips in
configuration memory. Both FLIPPERs mimic the radiation
experiments and allow the identification of design sensitive bits
and the evaluation of SEU sensitivity in an FPGA
implementation of an ASIC prototype. The injection can be
random, sequential, or user defined and is performed in
accumulation (adding up the effects).

The FT-UNSHADES [6] fault injector, developed by the
University of Seville, with the support of the European Space
Agency (ESA), was created to study the effects of radiation-
induced faults in an ASIC, assuming a bitflip fault model. This
system is able to inject bitflips in Flip-Flops through the use of
dynamic partial reconfiguration of a Xilinx FPGA. The FPGA
implements both the "faulty system" and the "fault-free
system" and compares their output to inform the host computer
that a failure occurred. To inject bitflip faults, the host just has
to exchange a few thousand bits (two FPGA frames) with the
FPGA configuration memory.

Gokhale [8] developed a SEU Simulator for assessing
dependability through fault injection. The simulator uses PDR
to corrupt the FPGA frames while the system is running. It is
composed of three FPGAs, two running the user circuit in
parallel (golden design and design under test) and a third one
responsible for real-time output comparison. The simulator can
be used to classify the user design configuration bits as being
sensitive or non-sensitive. It is also capable of differentiating
the sensitive bits from persistent, associated with system state
and control function, or non-persistent, which could be
recovered by just restoring the original bit value.

The goal of FIRED is not to evaluate dependability
properties of ASIC designs prior to production, as with the
FLIPPERs and FT-UNSHADES, but to assess the properties of
FPGA-based production systems. It also tries to improve the
resource usage and the performance of the approach followed
by Gokhale, which uses multiple FPGAs to isolate the
interference between each system component, leading to higher
reconfiguration delays due to the use of slower external
interfaces.

III. FAULT MODEL
FIRED was created to investigate the feasibility of using

COTS SRAM-based FPGA devices in harsh environments.
The use of generic devices instead of radiation-hardened
versions and the fast access memory technology used as
configuration memory, makes them more prone to upsets [9].
The effects of these upsets include the corruption of the system
state, which affect both ASICS and FPGA devices, and

2

changes in the implemented design, which are specific to
FPGAs, as they rely in SRAM cell for configuration memory.
There has been a strong effort on evaluating the devised fault
tolerant approaches to recover the system state, but only
recently the researchers have focused on improving the
resilience of reconfigurable devices, through configuration
memory protection [10, 11].

A. Fault Type
SRAM-based reconfigurable devices suffer from the same

sensitiveness to radiation-induced faults as the SRAM memory
used in non-reconfigurable systems. This can be predominantly
seen in areas were the FPGAs are experiencing an increased
usage, namely space applications. The radiation effects in
SRAM memory cells are manifested as SEUs and have been
extensively reviewed in the literature [12]. Experimental
studies, like Rosetta [13] from Xilinx, where all sorts of
FPGAs are exposed to radiation, have shown that most upsets
take the form of bitflips in memory cells. Similar results were
gathered by Gunneflo through hardware-based FPGA fault
injection campaigns [14]. The incidence of radiation in these
devices may produce multiple bitflip, in which case it is
common to observe a circular pattern around the hit point [15].

Therefore, to realistically mimic the radiation-induced
faults in SRAM-based FPGAs, FIRED is capable of injecting
both single and multiple adjacent bitflip errors, as presented in
Fig. 1. Besides this, FIRED is also able to inject suck-at-0 and
stuck-at-1 faults, i.e., all the bits embraced by the injection
mask take the value 0 or 1.

B. Fault Location
All the errors injected by FIRED are targeted at the FPGA

configuration memory, specifically the location of the Device
Under Test (DUT) hardware implementation, as defined by the
manufacturer design tools. Although there is no detailed
information available from FPGA manufactures about the
mapping between the user design and the contents of the CM in
the form of a bitstream, they provide some information about
the structure and basic elements of the device: Configuration
Logic Block (CLB), Digital Signal Processor (DSP),
Input/output Block (IOB), etc.

Transient faults that affect these CM cells introduce
permanent changes in the DUT design that will remain until the
contents of the affected cells are restored. This usually happens
when the device is power cycled, at the startup phase.

In the FIRED tool, the location of a single bitflip fault is
simply defined by an address location inside of the FPGA
configuration memory. For multiple bitflips, an additional 8-
by-8 bits mask has to be specified, as shown in Fig. 1.

C. Trigger
In order to emulate radiation bursts, resulting in transient

faults with cumulative effects on the FPGA, FIRED is capable
of injecting multiple faults at distinct instants throughout a
single experiment. In this case the DUT is not reset after each
injected fault, and the permanent effects of the upcoming faults
are added to the effects of the ones already injected, which may
eventually be perceived at the DUT interface as a device
failure.

Fig. 1. Mutliple bitflip fault injection pattern

Fig. 2. Specification of a time-triggered fault injection: a) absolute time, b)

relative time.

Fig. 3. Specification of an event-triggered fault injection.

The fault injection trigger was designed to be highly
configurable, allowing the person conducting the FI
experiments to precisely define the injection instants.

Triggers can be specified based on time (time-triggered) or
in an external event (event-triggered). In the former case, the
injection time of each fault (TimePre) may be specified as an
absolute value, with respect to the beginning of the experiment,
or relative, to the previous injected fault. In Fig. 2, a temporal
diagram is depicted with the user-defined parameters for a
time-triggered injection run. In the second case, an external
trigger to the fault injector may be used. Besides the system
settling time (TimePre), also used in the time-triggered
approach, the user must also specify i) the number of events
(Count triggers) after which the fault should be injected and 2)
a post injection delay (TimePost) for error detection, as seen in
Fig. 3.

IV. FAULT INJECTOR OVERVIEW
Besides injecting faults in the SRAM cells of the target

FPGA, FIRED is able to monitor the behavior of the DUT in
runtime while trying to reduce its intrusiveness to a minimum,
so that the gathered results are still representative of a

0 0 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 1 1 1 1 1 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8-bit

8-
bi

t

Fault Mask (8-by-8 bits)

t

Fault
Injection

TimePre1

TimePre2

Fault
Injection

t

Fault
Injection

Fault
Injection

TimePre1

TimePre2

a.) absolute b.) relative

3

production system. This led to the division of the FI tool in two
major components: Injection Runtime Controller (IRC) and
Experiment Management Environment (EME). As it can be
seen in shaded areas of Fig. 4, the IRC runs side-by-side with
the DUT and has direct access to the configuration memory
where the DUT implementation is stored. The EME runs in a
regular PC and holds a connection to a database engine to store
experiment data (not only the experiment descriptions, but also
all the collected experimental results).

The parallel nature of the FPGA and the PDR properties of
the device in use, allow the isolation between the IRC and the
DUT, and let the IRC to precisely target the DUT configuration
memory region. By running the EME in the PC, it is easier to
define and faster to run the fault injection campaigns, by
relieving the IRC from some intensive processing tasks of
mapping the fault definition with the targeted bits. The two
components communicate using a proprietary protocol, which
runs over a TCP/IP stack.

Fig. 4. FPGA fault injector architecture

A. Injection Runtime Controller (IRC)
The Injection Runtime Controller is responsible for the

effective injection of faults in the DUT configuration memory.
In order to inject faults in such memory cells, it needs access to
one of the available configuration memory interfaces:
SelectMAP, Joint Test Action Group (JTAG) or Internal
Configuration Access Port (ICAP). The strict time
requirements of critical real-time systems led us to select
ICAP. Being an internal port, it is only available to hard-wired
PowerPC cores or to soft-cores, such as Microblaze.

The current version of IRC runs in a Microblaze soft-core;
it receives instructions from EME using a push/pull protocol
and sends asynchronous events back; it also includes I/O
logging facilities. To reduce the interference of the EME to
IRC communication channel in the experiment outcome, the
IRC includes a small internal cache memory for storing the
description of the upcoming faults in the current experiment,
and an external DDR2 RAM memory to locally log the I/O
data and send it back only when requested for. Figure 5
presents the main interactions between the modules of FIRED.

The actual fault injection is performed using PDR though
ICAP, which allows the IRC to change only a few
configuration memory frames in a Read-Modify-Write (RMW)
approach.

Fig. 5. FPGA fault injector module interaction

The IRC also uses the ICAP interface to restore the DUT
bitstream after each Injection Run (IR) in an experiment, in
order to start from a clean state.

B. Experiment Management Environment (EME)
The Experiment Management Environment is the fault

injector user interface and is executed in a PC. It is responsible
for the experiment definition, experiment execution and
analysis of the results. Currently, all these functionalities are
implemented as command line tools that are called from a
script to automate the tasks.

1) Fault Generator
The Fault Generator (FG) is responsible for generating an

XML file that describes the experiment according to the
information provided by the user. The input data is validated
against a model of the FPGA device in use, included in the
FG. This tool will generate random values within limits,
specified by the user. The accepted parameters are:

� Pre time range;
� Post time range;
� Injection run duration;
� Frame address range (major address, minor address,

half, column, and type);
� Frame offset range;
� Fault type (stuck-at-0, stuck-at-1 or bitflip);
� Number of affected bits per injected fault; and
� 8-by-8 bits mask.

EME

Host Computer Target System

FPGA

Database

DUT

Controlled Device

ICAP

DDR2 RAM

TCP/IP

EME

IRC

I/O

XML file
Fault list

Experiment Execution

Fault Generator

HOST COMPUTER

TARGET SYSTEM

Injection Runtime Controller

Sends commands and
receives experiment data

Experiment description

ICAP IP Core (DUT)

Stores experiment
data and description

SQL database

RMW Configuration
Memory (DUT)

Configure DUT and log
experimental I/O data

Cache experimental
I/O data

BITSTREAM file
DUT

configuration

ELF file
Microblaze

IRC program

PWM / Quadrature
encoder

DDR2 RAM

Motor

4

Fig. 6. FIRED external database structure

The generated XML file includes all the information
needed by the IRC to actually perform the fault injection. If
needed, the user can tweak this file to select specific injection
runs or faults, in order to crosscheck previous results.

1) Experiment Execution
The EME is also responsible for the management of the

experiments. It uses an SQL relational database to store all the
experiment descriptions together with the collected
experimental outcomes.

In the first stage, it reads and uploads an XML file with the
experiment description data to the database. Secondly, it enters
the setup phase where it connects to the IRC and issues a reset
command, followed by a sequence of write commands which
include the first faults to be injected in the current injection
run, and then sends a run command to instruct the IRC to
effectively start the injection run. Each time a fault is actually
injected, the IRC notifies the EME, by sending an event
command with the injection result. In this case, an entry in the
IRC fault buffer is freed and the EME is allowed to send
another fault for later injection. As soon as the EME detects the
end of the injection run, triggered by a timer, it sends a stop to

halt the DUT execution. After the execution of each injection
run, the EME issues a sequence of read commands to the IRC
to request the experiment I/O results. This data is then
uploaded to the database for later analysis. These steps are
repeated until all the injection runs of a single experiment have
been performed.

In order to analyze the outcome of the fault injection
campaign, the first injection run of each experiment is always a
goldrun. This goldrun is identical to the other injection runs of
the experiment, with the exception that it does not contain any
faults to be injected. Its output will be compared with the
output generated during other injection runs.

2) Result Analysis
By considering the DUT as a black box with inputs and

outputs, containing some logic and internal state, the solution
devised to analyze its sensitivity to the injected faults was to
compare its outputs against a fault-free run. In this context, the
goldrun reproduces the normal behavior of the DUT, by means
of the collected I/O data.

5

Therefore, if an injected fault produces an error in the DUT
and if it eventually reaches the boundary of the system, it is
perceived as an erroneous output. In this situation the
functionality of the DUT has been compromised and thus is
considered as a system failure.

By using a tool to extract the data from the database and a
Matlab script, each injection run is compared against the
goldrun, and any deviation from the expected output is
signaled. The final results of a fault injection campaign may
contain information related to the failure rate, globally or per
FPGA basic component; the error latency; the location of the
faults that produced the failures; etc. From the collected data it
is possible to extract system metrics (e.g. reliability, error
latency, etc.) that characterize its dependability.

It is worth mentioning that this comparison with the golden
run is only valid if the system is deterministic. For example, in
the case of a controller interacting with a physical system, the
the correct outputs of the DUT must be asserted with a
reasonability analysis, e.g. by checking if they are inside some
bounds.

C. Database
The diagram in Fig. 6 shows the data model of the FIRED

database. The experiment entity identifies one fault injection
campaign. Each experiment is composed by at least one
injection run, which may have any number of injections, each
of which represents a single fault. For example, when
performing a fault injection campaign in a PID controller, an
injection run is a single run of the controller, which begins with
the start and ends with the stop commands, sent by EME to
IRC. Each experiment has a single workload, and all the
experimental data collected during the experiments is held by
the entities injection run input and injection run output.

V. CASE STUDY
To evaluate the FI properties of FIRED, we tested the tool

in a VHDL implementation of PID-based cruise control
system. This controller is used to command the speed of a DC
motor while monitoring the shaft rotation. Besides the
controller itself, other modules (like quadrature decoder, PWM
signal generation and clock generator) were implemented in the
same FPGA.

The overall system is implemented in a Xilinx University
Program development board (XUPV5), which includes a
Xilinx Virtex-5 VLX110 FPGA, as an IP Core. This core
interfaces with the IRC module, running bare-metal on a
Microblaze processor, through a Processor Local Bus (PLC).
The communication between these subsystems is accomplished
using memory-mapped registers.

A. Device Under Test
The PID controller is implemented in a Reconfigurable

Partition of the FPGA and has a fixed interface. This allows
changing the DUT, without the need to adapt the other
components that support the FI. The controller can be seen as a
black box with inputs (clock, enable, reset and 32-bit signal
input) and outputs (32-bit signal output). In the specific case of
the cruise control system, depicted in Fig. 7, the controller has
a 16-bit reference (R) and 16-bit feedback (Y) inputs, and one

16-bit control signal (U) output. The FIRED logging module
monitors and registers all these signals throughout the
experiments.

Fig. 7. PID-based controller module (DUT)

For this type of systems, the PI variant of the PID controller
is known to be well suited for the task [16]. The controller in
use has a proportional (Kp) and an integral (Ki) constant of 100
and 2, respectively. It also has an anti-windup feature to avoid
the saturation of the integral part, by placing an upper limit to
this controller component. The sampling time of the controller
is set at 10ms.

Fig. 8. FPGA slice occupancy of the PID controller.

A graphical view of the PID controller used logic resources
on the RP, is depicted in Fig. 8. To avoid, as much as possible,
injecting faults in unused location, the RP region was defined
as the smallest area of the FPGA where the PID controller
could fit in. In this case, only four major columns, spanning a
single row, were needed – three CLB columns (with block
coordinates from X28Y140 to X33Y159) and one DSP column
(with block coordinates from X0Y56 to X0Y63). The
configuration memory space occupied by the controller is 136
frames (22304 bytes)

PID
controller

RECONFIGURABLE
PARTITION

CLK

Enable

Reset

R [15:0]

Y [15:0]

U [15:0]

6

This specific device, Xilinx Virtex-5 VLX110 [18], is
divided in two halves, each with four rows numbered between
0 and 3, starting form the center. Each row is composed by a
fixed number of columns, identified by a major column
number. Each one of these includes only a single type of an
FPGA basic element (CLB, DSP, IOB, etc.), and is subdivided
into a variable number of minor columns elements (CLB and
DSP blocks are composed by 36 and 28 frames, respectively).
The first 25 frames map routing resources of the FPGA, while
the remaining ones map specific block type elements. The
frame is the smallest addressing element of an FPGA and, in
this specific device, has a size of 1312 bits.

Fig. 9. Xilinx tools detailed information about the FPGA resources allocated

to the PID controller.

The detailed information about the number of used
resources by the PID controller, from the Xilinx tools, is
presented in Fig. 9.

B. Simulator vs Real System
A simulator of a DC motor was also implemented in VHDL

and is located inside the FPGA (but obviously outside the
reconfigurable partition). This approach allows implementing
everything as a System-On-a-Chip (SoC), which doesn’t need
any external component to run the FI experiments. This is of
tremendous value in the first FI experiments, not only to get
some insight of the controller behavior, but also because it is
possible to speedup the simulation by reprogramming the clock
module that feeds the CLK signal to the simulator. In the
current setup the simulator is fed with a 100KHz clock
frequency.

Some components, namely the quadrature decoder and the
PWM signal generator, are not needed when interfacing the
controller with the simulator. These components are only used
when a physical system is connected to the devboard. In the
this case, the interface with the real system is accomplished by
using one digital output pin, for the PWM signal, and two
digital input pins, for both the Channels A and B of the
quadrature decoder.

C. Experiments
To better evaluate the fault injection capabilities and the

possible undesired interferences of the FIRED tool in the
system, we designed several experiments that encompass the
most frequent fault models. The first five experiments were run
against the VHDL simulator, while in the last one we
connected the DUT to a real system (it is effectively

controlling the shaft rotational velocity of a mobile robot
wheel).

The fault list was created through the fault generator, which
was instructed to randomly generate one hundred injection
runs, per experiment. The total duration of each injection run is
12s and the controller was set to follow a square wave
reference signal with 10s period. The faults are injected only
when the controller reaches the high-speed section of the
reference wave, and after a one second settling phase. In
multiple-fault experiments, the successive faults, with sum-up
effects, are injected in intervals between 400ms to 500ms.

As described in Section IV, each experiment contains an
additional injection run, a goldrun (a fault-free IR), which is
used for controller failure detection by output data cross
comparison.

Due to the lack of information from the manufacturer about
the mapping between the VHDL code and the contents of the
configuration memory, the fault location was randomly
selected among the RP area of the PID controller.

Fig. 10. Failure-free IR reference – R (square wave) and output – Y (curved

line) signals, with 1 injected fault (vertical line).

1) Single-fault – bitflip (one bit)
For the first experiment, we inject one bitflip fault in each

injection run, by toggling the logic value of an isolated
configuration memory bit. In Fig. 10 we can see an extracted
IR from this experiment, where a vertical line marks the fault
injection time. In this case, no failure has been observed.
However, for the 100 injection runs, 13 resulted in a failure,
meaning that the output of the controller differed from the
goldrun. Table I resumes the results from this and the
following experiments.

It is worth noting that the images in Fig.10 and following
represent the reference (R) and output signal (Y) from the
controlled process, since it represents the behavior of the whole
system as could be seen by an observer. However, our tool is
currently detecting deviations from the control signal (U),
which eventually affects the controlled process.

Area Group Information

Area Group "pblock_motor_0_USER_LOGIC_I_iRP"
 No COMPRESSION specified for Area Group
 RANGE: DSP48_X0Y56:DSP48_X0Y63
 RANGE: SLICE_X28Y140:SLICE_X33Y159
 Slice Logic Utilization:
 Number of Slice Registers: 45 out of 480 9%
 Number of Slice LUTs: 307 out of 480 63%

 Number used as logic: 307
 Slice Logic Distribution:

Number of occupied Slices: 92 out of 120 76%
Number of LUT Flip Flop pairs used: 308
 Number with an unused Flip Flop: 263 out of 308 85%
 Number with an unused LUT: 0 out of 308 0%
 Number of fully used LUT-FF pairs: 45 out of 308 14%

 Number of DSP48E: 3 out of 8 37%

0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35
R / Y / Fault

Time (Ts=10ms)

V
el

oc
ity

 (
rp

m
)

7

2) Single-fault – stuck-at (one bit)
We define a stuck-at fault that affects the configuration

memory, as a fault that forces a specific bit to logic value of
one (stuck-at-1) or zero (stuck-at-0).

Two identical experiments were run using the same fault
list that was used in 1). In the first experiment we injected
stuck-at-0 faults, while on the second one we replaced them by
stuck-at-1 faults. Respectively 8% and 5% of the faults in the
experiments resulted in failures.

3) Single-fault – bitflip (multiple bits)
In this this experiment we used a fault list identical to the

one used in experiment 1), kept the same injection time and
location, but replaced the single-bit mask by a 3-by-3 square
mask. Thus, each injected fault toggles nine adjacent
configuration memory bits. As expected, the results are more
severe, as 19% of the injection runs resulted in failures.

4) Repeated-fault – bitflip (single bit, at distinct locations)
In this experiment we inject a total of 10 faults per injection

run, in accumulation (sum-up effects). Each of these faults is
injected at randomly selected locations and toggles a single
configuration memory bit. By the end of the experiment, 1000
faults were injected and 31% of the injection runs (each with
10 faults) resulted in failures. Figure 11 shows the result of one
injection run which caused a system failure.

5) Intermittent fault – bitflip (one bit, at the same location)
The aging of the device components, the stress of the

materials and the manufacturing defects (e.g. fractures in BGA
solder joints used in FPGAs) are known [19, 20] to produce
intermittent faults in electronics devices.

Fig. 11. Faulty IR reference – R (square wave) and output – Y (curved and

then noisy) signals, with 10 injected faults (vertical lines).

We define an intermittent fault in an FPGA configuration
memory cell as a fault that affects a fixed memory location, at
distinct instants in time, with varying activation times. The
activation time is the duration of the fault effects, every time it
is triggered.

In this experiment we used a fault list identical to the one
used in experiment 1), kept the same fault location, and

triggered the fault 10 times. Each trigger is separated by a
minimum of 400ms and the activation time is randomly
selected, between 10ms and 100ms. This experiment end-up
with 14% of failures.

6) Single-fault – bitflip (one bit), real system
To test FIRED with a real system, we reused the fault list of

experiment 1). The reference (R) and output of the physical DC
motor (Y), are depicted in Fig. 12. The observed fluctuation of
Y is perfectly normal in such physical system. In this case,
FIRED did not interfere with the process control. Due to the
non-deterministic nature of a physical system, there was no
comparison of the outputs of these tests with the goldrun.

Fig. 12. Failure-free IR reference – R (square wave) and output – Y (noisy)

signals from the real system, with 1 injected fault (vertical line).

D. Results
The collected data of each injection run was compared

against the goldrun to detect any deviation of the controller
output from the expected behavior. The results of the fault
injection experiments 1 to 5 are presented in Table I.

TABLE I. PERCENTAGE OF FAULTY INJECTION RUNS

ID FAULT IRa FAULTb BITc FAULTYd
1 Single Bitflip 100 1 1 13%

2 i) Stuck-at-0 100 1 1 8%
2 ii) Stuck-at-1 100 1 1 5%

3 Multiple bits 100 1 9 19%
4 Repeated faults 100 10 1 31%
5 Intermittent 100 1 1 14%

a. Injection Runs per Experiment
b. Faults per Injection Run

c. Bits per Fault
d. Percentage of faulty Injection Runs

In multiple-fault IR, every time a failure was detected,
additional injection runs were executed to identify which of the
fault(s) from that particular injection run caused the failure.
This way it was possible to get a map of sensitive configuration
memory cells.

0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35

40

45

50

55
R / Y / Faults

Time (Ts=10ms)

V
el

oc
ity

 (
rp

m
)

0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35
R / Y / Fault

Time (Ts=10ms)

V
el

oc
ity

 (
rp

m
)

8

1) Sensitive bits
The results obtained allowed us to classify the sensitivity of

the CM cells to SEUs, i.e. the percentage of bits that produced
system failures if affected by a fault. Due to the huge amount
of CM cells, most of them related to routing and overly unused,
it is not practical to test all the bits of a design. The results
presented in Table II were gathered from the fourth
experiment.

TABLE II. PERCENTAGE OF EFFECTIVE FAULTS PER LOCATION TYPE

ID

MAJOR COLUMNS
CLB (17) CLB (18) DSP (19) CLB (20)

Routea Spec.b Route Spec. Route Spec. Route Spec.

4 3,59% 3,33% 3,11% 0,00% 3,74% 2,70% 4,50% 0,00%
a. Interconnecting

b. Specific to column type

These results show that from a universe of 1000 injected
faults, only 3,1% manifested as failures of the controller. This
result is inline with the device manufacturer information, which
states that a huge amount of resources in the FPGA are used for
routing, and that a significant amount of these are unused [11],
even in designs that occupy a high percentage of FPGA logic
resources (~85%).

2) Accuracy of the fault injector tool
The analysis of the single-fault injection runs showed that

most of the injected faults had a small latency, of around
80,4ms. The minimum latency observed was 11,9ms.

A couple of failure and failure-free injection runs where
also analyzed to get some insight of FIRED repeatability and
system interference. In all these situations, there was a perfect
match between the goldrun and each injection run, for the
failure-free case, and between each single-fault IR and the
original 10-fault IR, for the other. This proved that the tool is
able to repeat experiments with consistent results, and has no
interference in the system execution.

VI. ANALYSIS OF FIRED
There are many different properties used to characterize the
fault injection techniques [17], and specifically fault injectors.
In this section we analyze the properties of FIRED, based on
the results obtained from the previous case study.

A. Reachability
This property stands for the ability to reach all possible

fault locations. The current version of the FPGA fault injector
is able to inject faults in the configuration memory of the target
device. This way it is possible to simulate the effects of SEUs
in the memory cells of reconfigurable devices, which stand for
the implemented logic. It is however unable to inject faults in
the system state, as for this it needs to instrument the target
device to add hookups.

B. Controllability
FIRED can inject faults in the configuration memory with a

high precision, both in space and time.

By using the ICAP interface it can reach all the
configuration memory cells of the target device. Due to the
addressing mode used by Xilinx, the minimum
readable/writable unit of the configuration memory is one
frame. The used approach of Read-Modify-Write allows the
injection of faults in each single bit location. The overhead in
time of the RMW approach is approximately 50μs for a single
frame.

C. Repeatability
By running the same fault injection run it is expected that

the results be the same.

The experiments performed with FIRED have shown a
perfect match of the target outputs (see Fig. 10 and 11). Also,
when a single-fault injection run, which resulted in a failure,
was repeated several times, the results were consistent.

D. Reproducibility
From the experiments conducted the results were

statistically coherent throughout experiments for the specific
case of the PID controller.

E. Intrusiveness
At the moment no efforts have been done to reduce the

spatial overhead of the fault injector. The processor-based IRC
could be substituted, with a reduction in the overall flexibility
of FIRED, by a finite state-machine with a smaller footprint, in
terms of used PL cells. Regarding the FPGA area used by the
DUT, there isn’t, however, any spatial intrusiveness.

Regarding time intrusiveness, experiments have shown that
the impact of the fault injector in the execution time of the
target system is negligible due to the parallel nature of the
FPGAs. The only drawback of the RMW approach is the need
to share the same bus with target implementations that take
advantage of LUTs as distributed memory, which may impose
small delays.

F. Flexibility
To isolate the target device from the IRC and allow the

partial dynamic reconfiguration, the DUT has been confined to
a reconfigurable partition. In this case, the only fixed part is
the interface with the other modules, which support the fault
injection, and the interface of the DUT with the real
world/simulator. Due to this, the fault injector can be easily
used with other target devices that have a similar interface:
clock, reset, enable, input (32 bits), output (32 bits).

G. Efficiency
The use of the ICAP interface to access the CM allows a

huge improvement in the overall FI campaign execution times,
when compared to boundary scan fault injection approaches
[21].

The FIRED supporting components, described in Section
IV, reduce the effort needed to perform a fault injection
campaign, relieving the user conducting the experiments from
those tasks.

H. Observability
Without instrumenting the target device, and with the

sparse information available about the mapping between the

9

bitstream and the actual components of the target, the present
system is only capable o monitoring the target interfaces.

The logging capacity of FIRED is constrained by the size of
the external memory available at the devboard (used to store
each injection run I/O data), while the logging frequency,
specified by the user, is only limited by the speed of the
Microblaze processor.

VII. CONCLUSIONS
FIRED fault injector was created to test the dependability

properties of SRAM-based FPGA embedded systems. The
target is implemented in a reconfigurable partition of the FPGA
programmable logic area, while the parallel nature of the
FPGA allows the inclusion of specific components to support
the fault injection campaign. Presently the system is
implemented in a Virtex-5 device and the fault injection is
supported by a soft-core processor (Xilinx Microblaze), as the
devboard in use does not include an embedded hard-wired
processor. To port this fault injector to other architectures, it is
necessary to add the new device architecture description to the
fault generator and result analysis tools, and synthetize the fault
injector and controller bitstreams.

The evaluation of this fault injector using a simulation of a
physical system gave us valuable information about the
properties of the tool and its capabilities. By demonstrating low
intrusiveness in the system execution time, it is possible to use
it online, with physical systems, thus avoiding the need to halt
the system to inject each fault. The use of dynamic partial
reconfiguration for fault injection makes it feasible to use the
production system without any additional artifact to support the
fault injection. It has limited effectiveness in exercising fault
tolerant mechanisms due to the lack of information about the
mapping between the bitstream and the VHDL representation
of the DUT. The reachability is limited to the configuration
memory cells, whereas we experienced a high controllability,
repeatability and reproducibility. The modularity of the FI and
the isolation of the controller in a RP also improve its
efficiency and flexibility.

In the future there are plans to use the new Zynq devboard,
to take advantage of the hard-wired ARM processor and thus
reduce, not only the spatial overhead, but also the duration of
the fault injection campaign. In the first case, by removing all
the logic that support the fault injection, with the exception of
the DUT and the logging module, and in the second case by
taking advantage of a faster dual-core A7 processor which is
able to dynamically reprogram the PL area through the Parallel
Configuration Access Port (PCAP). We also plan on using
other controllers as test cases for better assessment of FIRED.

ACKNOWLEDGMENT
This work has been partially supported by CECRIS

(http://www.cecris-project.eu, FP7-PEOPLE-2012-IAPP).

REFERENCES
[1] R. Garcia, A. Gordon-Ross, and A.D. George, Exploiting Partially

Reconfigurable FPGAs for Situation-Based Reconfiguration in Wireless
Sensor Networks. 17th IEEE Symposium on Field Programmable
Custom Computing Machines, 2009.

[2] J. Yu, and B.M. Wilamowski, Recent advances in in-vehicle embedded
systems. 37th Annual Conference on IEEE Industrial Electronics
Society, pp. 4623-4625, 2011.

[3] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.
W. Naouar, FPGAs in Industrial Control Applications. IEEE
Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224-243, May
2011.

[4] J.J. Wang, R.B. Katz, J.S. Sun, B.E. Cronquist, J.L. McCollum, T.M.
Speers, and W.C. Plants, SRAM based re-programmable FPGA for
space applications. IEEE Transactions on Nuclear Science, vol. 46, no.
6, pp. 1728-1735, 2002.

[5] M. Alderighi, F. Casini, M. Citterio, S. D'Angelo, M. Mancini, S.
Pastore, G. R. Sechi and G. Sorrenti, Using FLIPPER to predict
irradiation results for Virtex 2 devices. Radiation and Its Effects on
Components and Systems (RADECS), pp. 300-305, 2008.

[6] H. Guzman-Miranda, J. N. Tombs, M. A. Aguirre, FT-UNSHADES-uP:
A platform for the analysis and optimal hardening of embedded systems
in radiation environments. IEEE International Symposium on Industrial
Electronics, pp. 2276-2281, 2008.

[7] R. Barbosa, J. Karlsson, H. Madeira, and M. Vieira, Fault Injection.
Resilience Assessment and Evaluation, vol. 1, pp. 263-282, 2012.

[8] M. Gokhale, P. Graham, M. Wirthlin, D. E. Johnson, and N. Rollins,
Dynamic reconfiguration for management of radiation-induced faults in
FPGAs. International Journal of Embedded Systems, pp. 1-10, 2004.

[9] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia, A.
Paccagnella, M. Rebaudengo, M. Sonza Reorda, M. Violante, and P.
Zambolin, Evaluating the effects of SEUs affecting the configuration
memory of an SRAM-based FPGA. Conference on Design, Automation
and Test in Europe, pp. 584-589, 2004.

[10] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, J. Fabula, Radiation
characterization, and SEU mitigation, of the virtex FPGA for space-
based reconfigurable computing. IEEE Nuclear and Space Radiation
Effects Conference, 2000

[11] K. Chapman, “SEU strategies for Virtex-5 devices”. Xilinx XAPP864
(v2.0), April 2010.

[12] H. Asadi, M. B. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, Soft
Error Susceptibility Analysis of SRAM-Based FPGAs in High-
Performance Information Systems. In IEEE Transactions on Nuclear
Science, 2007, vol. 54, no. 6, pp. 2714-2726

[13] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, The Rosetta
Experiment: atmospheric Soft Error Rate testing in different technology
FPGAs. IEEE Trans. Device Mater. Rel., pp. 317-328, 2005.

[14] U. Gunneflo, J. Karlsson, and R. Johansson, Using Heavy-Ion Radiation
to Validate Fault Handling Mechanisms. IEEE Micro, vol. 14, no. 1, pp.
8-23, 1994

[15] H. Quinn, P. Graham, J. Krone, M. Caffrey, S. Rezgui, C. Carmichael,
Radiation-Induced Multi-Bit Upsets in Xilinx SRAM-Based FPGAs.
IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2455-2461,
2005.

[16] S. Singh, A. K. Pandey, and Dipraj, Design of PI Controller to Minimize
the Speed Error of DC Servo Motor. International Journal of Scientific
& Technology Research, vol. 1, no. 10, 2012.

[17] J. Vinter, J. Aidemark, D. Skarin, R. Barbosa, P. Folkesson, and J.
Karlsson, An Overview of GOOFI – A Generic Object-Oriented Fault
Injection Framework. Technical Report No. 05-07, Chalmers University
of Technology, 2005.

[18] Xilinx, Inc., “Virtex-5 configuration user guide”. Xilinx User Guide 191
v3.11, 2012.

[19] C. Constantinescu, Impact of deep submicron technology on
dependability of VLSI circuits. International Conference on Dependable
Systems and Networks (DSN), Bethesda, USA, pp. 205-209, 2002.

[20] C. Constantinescu, Impact of intermittent faults on nanocomputing
devices. IEEE/IFIP DSN (Suplemental Volume), Edinburgh, UK, pp.
238-241, 2007.

[21] T.J. Chakraborty, and C. Chiang, A Novel Fault Injection Method for
System Verification Based on FPGA Boundary Scan Architecture. IEEE
International Test Conference, Baltimore, USA, pp. 923-929, 2002.

10

