
Studying the Propagation of Failures in SOAs

Cristiana Areias, João Carlos Cunha
Instituto Politécnico de Coimbra, ISEC, DEIS

Coimbra, Portugal

cris@isec.pt, jcunha@isec.pt,

Marco Vieira
CISUC, Department of Informatics Engineering

University of Coimbra, Portugal

mvieira@dei.uc.pt

Abstract—Although Service Oriented Architectures (SOAs)
are being increasingly used in business-critical scenarios, the
applicability of Verification and Validation (V&V) is still very
limited. The problem is that V&V activities have to be im-
plemented at runtime to fit the characteristics of SOA. Recent
proposals of runtime V&V techniques specific to SOA domain are
far from being complete and a key issue lies in understanding
how the “failures propagate” in a dynamic system and how to
continuously verify its evolving elements. This paper introduces
an approach to deal with the propagation of failures in a SOA
environment. The proposed technique is based on three key steps:
estimating the failure rate of the individual services, using fault
injection to find the exposure of each service to failures from the
invoked services, and estimating the impact of each service in
the overall architecture. The overall approach is presented with
a brief demonstration of its application.

Keywords—failure propagation, fault injection, FMEA, Run-
time V&V, SOA

I. INTRODUCTION

Service Oriented Architectures (SOAs) are a paradigm for
organizing and utilizing distributed functionalities whose main
emphasis is on the loose coupling among interacting ser-
vices [1]. These services are deployed in a distributed way, and
are consumed by other services and applications, frequently
over a network. SOAs present particular characteristics as
high complexity, extreme dynamicity, and a very large scale
of composability. The increasing usage of SOAs in business-
critical applications calls for quality assurance approaches that
allow continuously asserting their trustworthiness.

Verification and Validation (V&V) is in the foundation of
critical applications’ development, providing a quality assur-
ance process for checking if a system meets the specifications
and fulfills the intended purpose [2]. Besides the functional
behavior, it also considers non-functional features such as
dependability and security aspects. A plethora of V&V tech-
niques can be used, and although testing is probably the most
used, in the context of critical systems other more stringent
activities are recommended or even required [2]. One of the
most used activities in the context of safety-critical systems is
the Failure Mode and Effect Analysis (FMEA) [3].

The typical V&V lifecycle in critical system assumes a
structured and highly documented development process that
allows gathering the required quality evidences, and presumes
that the system does not evolve after deployment. The problem
is that this approach does not fit the characteristics of service
oriented environments, where a multitude of services is
continuously being deployed, interconnected and updated,
following software development approaches that favor rapid

deployment and frequent updates of services. In fact, the
dynamic nature of SOAs, together with the demand from
organizations for rapid changes in business requirements, result
in an overlapping between the design and usage phases.

To overcome these problems, new V&V approaches must
be applied at runtime to continuously assure the required
quality and thus improve trustworthiness. One of the recent
efforts towards this was the proposal of a preliminary approach
to apply FMEA in SOA domain [4]. The approach considers
the specific characteristics, focusing on the analysis of services
and on dealing with the dynamicity of the environment.
However, understanding the effects of service failures is
the first step towards its applicability. Before this, it is not
possible to determine the parts of the system that need to be
re-V&Ved when some part of the architecture changes, and
thus it is not be possible to deal with dynamicity, evolvability
and composability of SOAs.

Failure propagation only makes sense in this kind of
domain, as there are different system boundaries at different
levels. In practice, in a SOA environment, when a service fails,
at 1) Service Level it represents a failure and an interface fault
to the invoking service, while at the 2) SOA System Level it
represents an error being propagated.

The idealized approach is based on the following phases:
i) Design phase – for each individual service, use traditional
V&V techniques to estimate its failure rates and also use fault
injection techniques to determine its exposure to its invoking
services; ii) Analysis Phase – considering the architecture,
estimate for each service the total probability of each service
to fail and also the impact of failures in the remaining
services. This analysis can even affect the decisions before
deployment of parts of the system; iii) Runtime phase –
monitor the infrastructure to detect changes in services or in
the architecture that require repetition of the process and also
to verify if real failure rates match the estimated ones.

Upon completion, this process will allow understanding:
1) which are the most critical services for the architecture; 2)
which are the services that need more improvement; 3) which
are the services whose improvement would benefit the most the
complete infrastructure; 4) which services must be re-V&Ved
when there are changes in a service or in the architecture;

The outline of the paper is as follows. The next section
presents relevant background and related work. Section III
presents the overall proposal for the preliminary approach
while the Section IV presents the details of each phase, the
key challenges and the plans to overcome each one of them.
Finally, Section V concludes the paper.

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

978-0-7695-5533-1/15 $31.00 © 2015 IEEE

DOI 10.1109/DSN-W.2015.18

81

II. BACKGROUND AND RELATED WORK

SOAs are increasingly being used as an approach to
make business critical systems more efficient and agile [5].
SOAs are composed by several services, which are delivered
through standardized interfaces and message exchanging pro-
tocols that create dynamic and distributed software systems.
Also, services can be invoked and distributed across several
organizations over the Internet allowing the interoperability,
flexibility and dynamicity provided by SOA systems [6].

To assure that software achieves the required levels of de-
pendability and security, business critical organizations spend a
portion of the system development budget on V&V activities.
In fact, the cost to preventively find and remove defects is
usually smaller than it is a system failure repair. Even worse,
a system failure can have disastrous consequences on the
reputation and sustainability of the organization. V&V is the
process for checking if a system meets the specifications and
fulfills the intended purpose [2]. While verification checks the
conformance to the specifications, trying to identify product
faults or errors, which give rise to failures, validation is used to
get the necessary evidences to ensure that the system satisfies
the intended needs [2].

Several V&V techniques have been applied during software
development, ranging from static to dynamic techniques [2],
such as walkthroughs, inspections, traceability analysis and
testing [2]. RAMS analysis usually designate processes that
that attempt to assess the system according to its properties of
Reliability, Availability, Maintainability and Safety and include
diverse techniques such as Failure Mode and Effects Analysis
(FMEA), its extension to Failure Mode, Effects and Criticality
Analysis (FMECA), or Fault Tree Analysis (FTA) among
others. These activities aim at evaluating the critical parts of the
system and directing the efforts of V&V where consequences
of failure are the most severe [2]. Software FMEA [3] is an
example of a widely used activity in the context of safety-
critical systems.

Looking into SOA context, its highly dynamic nature poses
serious challenges on applying traditional V&V techniques. In
fact, as the system is always evolving, some configurations
can only be seen at runtime [1], meaning that V&V should be
applied not only during system development, but also after
deployment [7]. The current state of the art on V&V for
service-oriented environments focuses mainly in techniques
for verifying the correctness of single or composed services
across formal methods [8] and testing [1], [9]. Although very
useful and effective, these techniques are essentially applied to
individual services, based on assumptions that may not hold
in SOA environments. Furthermore, SOAs are such a complex
environment that it is impracticable (due to time and resource
constraints) to apply V&V to all the services at runtime.

Software FMEA offers a way to systematically analyze all
the structure of the SOA environment and determine which
parts are the most critical in order to prioritize the employment
of further V&V. An example of the application of a FMECA
to a service based system is presented in [10], but the runtime
requirements of the system were disregarded, which renders
the approach almost useless in this environment. Conversely,
the proposal in [4] introduces the use of FMEA as a tool to
provide an extensive knowledge of the overall environment of

the system through the identification of the dependencies and
interactions between services, and ranking them according to
their relative risks. After this analysis, more V&V efforts can
be directed towards the services with higher risk and also to
plan effective integration of new services. As discussed in the
paper, the approach still presents many challenges that must be
overcome to become usable and effective in SOA domain [4].

A risk-based approach for selecting and prioritizing test
cases for semantic web services is proposed in [11]. The
analysis focuses on two factors of risk estimation, failure
probability and importance, and from three aspects, ontology
data, service and composite service. This means that the
success of this approach lies in the information provided by
the semantic web services. Conversely, our approach takes
advantage of fault injection techniques that we believe may
help us to understand better the behavior of each service, and
it is not dependent on the information provided.

The authors of [12] review the mathematical foundations
of reliability modeling of a SOA as a function of the reliability
characteristics of its basic elements. Although it provides in-
teresting insight, the analysis is limited by the model adopted,
a “fail-stop with no repair model”. Applying a different
approach, the authors of [13] propose a collaborative reliability
prediction approach for SOAs, which employs the past failure
data of other similar users to predict the Web service reliability
for the current user. Although this does not solve the problems
that we are addressing here, it provides interesting techniques
to help us in overcoming some of the gaps in our approach.

III. ANALYSIS OF FAILURE PROPAGATION IN SOAS

Our methodology was designed to fit the requirements
of the targeted domain: the three-phase design allows the
system integrator to apply effective V&V strategies, to analyze
the effectiveness of the system, and to be prepared for the
problems or changes that can be faced at runtime. At the same
time, the cyclic and iterative process is prepared to commute
between offline and runtime contexts, without requiring the
infrastructure to stop. In fact, as will be presented, the approach
considers the use of shadowing techniques to analyze the “to
be deployed” versions of the services without harming the
remaining infrastructure. Meanwhile, it aims at estimating the
impact of each service in the overall architecture, both through
experimental and theoretical analysis that will allow to define
boundaries of the parts that need to be re-V&Ved in case some
change occurs.

From the perspective of our approach, each service is con-
sidered as having one public operation. A composed service,
if there is knowledge and access to its internals, should be
decomposed in multiple interconnected services. Additionally,
the elements as orchestrator and messages queues are also
abstracted as services. It is known that, in SOA environments,
the systems can be very large, both in size and complexity, with
the possibility of even losing the notion of their boundaries.
This way, it is necessary that our analysis focuses only on
a predefined scope that encompasses the services that the
interested party has access to and is concerned in performing
V&V. Later, we will discuss how we can deal with the services
outside of this scope, but most of the necessary information is
available in Service Level Agreementss (SLAs).

82

FAULT
INJECTION

V&V

Conceptual representation of dependencies B Service A invokes B : data flows from left to right A

Fig. 1. Overall representation of the Failure Propagation Analysis approach and usage lifecycle.

Fig. 1 presents an overview of the preliminary approach
for analysis of failure propagation in SOAs. This approach is
based in three main phases, each involving several steps, in a
total of 6, as depicted in Fig. 1 and described as follows:

Design phase – for each individual service:

(1) Use traditional V&V techniques (tests, RAMS analysis,
inspections, etc.) to estimate its individual failure rate;

(2) Use fault injection technique to determine its exposure to
each of the services that it invokes;

Analysis Phase – considering the complete architecture, for
each service:

(3) Calculate the total probability of failure (considering all
services, dependencies, failure rates, exposures);

(4) Calculate the impact of each failure mode in the remain-
ing services;

Runtime phase – and monitor the infrastructure in order to:

(5) Understand if the real failure rates match the estimated
ones and when the sample is large enough, use the data
to adjust the failure probabilities;

(6) Detect potential changes that require repetition of the
process in one or more services;

In case changes are planned, detected, or even hypothesized
it is necessary that the new services or the ones with modifica-
tions in the implementation go back to the step (1). When the
changes are only in the relationships of the architecture and
not in implementations, it is necessary only to go back to the
step (3).

IV. STRATEGY TO DEAL WITH FAILURE PROPAGATION

The following subsections present the planned strategy for
each of the formerly listed steps, as well as the main challenges
that are foreseeable from where we stand now.

Before starting with the first step, it is necessary to define
the possible failure modes that will be considered for the
services, i.e. the way in which they deviate from their correct
functioning [14]. Existing lists of failure modes for this type of
environments (e.g. [9]) may be used as a basis for the definition
of a more specific one.

A. Design Phase

As already mentioned, this phase considers each service
individually and independently from the others. However, it
is assumed that we have information about its interfaces,
including the ones used to invoke the services it depends upon.
With this information and some specification, the strategy is
to use mocking or stubbing [9] techniques to potentiate the
following two steps.

(1) Estimating the failure rates

The goal of this phase is to obtain a table with the proba-
bility of occurrence of each of the previously specified failure
modes, assuming that every dependency works correctly. There
are two alternatives to obtain this probability, as follows.

The easiest one is to assume that these values are provided
to us. In some cases, this can be the only alternative, as it is
in the case of third party services to which we do not have
access to the internals, and thus we cannot test to estimate the

83

probability of failure. However, it is reasonable that we have
at least SLAs from which we can get important information.

The alternative, more challenging, is to determine this
probability using V&V techniques. Indeed, using techniques
as tests, inspections, code analysis, etc. it is possible to create
models that provide us with reliability predictions of the
software [13]. However, this option raises some important
challenges for which we still do not have solutions:

Challenge #1: Define which are the necessary activities to
perform in order to obtain these values.

What V&V activities are necessary? Is testing enough, or
do we need other techniques? How confident can we be
in the obtained results?

Challenge #2: For testing activities, it is necessary to develop
automated testing environments. It is also necessary to
determine when to finish testing.

The difficulty here is that it is not possible to provide a
generic workload that fits the purposes of every service.
Thus, we need dynamic ways to generate different types of
workloads, and we must take advantage of the available
specification and test cases. Additionally, we can use past
failure data to help us configuring the testing activities.

Independently from how the values are determined, during
runtime these values can be adjusted based on the real failure
rates presented by the services, but only after gathering a
significant number of service requests.

(2) Estimating the exposure to other failures

In this step, we will need to estimate the exposure of the
service to the failures of the services that it invokes or that it
depends upon. By exposure of S1 to Sx or exp(S1,Sx) we
mean the probability of S1 presents a failure mode given that
Sx presents a failure mode. As it is possible that a failure mode
in Sx causes a different failure mode in S1, the exp(S1,
Sx) represents a matrix of values with f*f dimensions, where
f is the number of failure modes considered, as explained
previously.

In the end, as each service under study has d dependencies
(in case of S1 in Fig. 1, d=2), the output of this phase is
a three-dimensional matrix with the dimensions f*f*d, as
shown in Fig. 2.

Fig. 2. Exemplification of the f*f*d matrix obtained in (2).

The challenge here is to obtain the values to fill this matrix.
The information about the interfaces between services can
easily be discovered from the specification or even from the
analysis of the artifacts. With this information, our goal is to
create an environment where the service can be inserted and
then we emulate its dependencies.

Challenge #3: Build an automated testing environment that
can emulate the dependencies of a service and also inject
faults.

The difficulty here is to create a generic emulating envi-
ronment that is dynamic enough to emulate dependencies
according to the specifications of each service. The strat-
egy will be to create a sandboxing-like system which is
able to use mocking and stubbing strategies to emulate the
correct dependencies and that can be trained to behave
as expected. The final problem is the definition of the
workloads and faultloads to submit in each test.

Afterwards, we will be able to easily inject the previously
defined failure modes and observe how S1 performs. Basically,
we will repeat each failure mode the necessary number of times
to have statistically relevant results regarding the behavior
of S1, both correct and incorrect. As already discussed, the
injected faults intend to emulate failures in the interactions of
S1 with other services or resources.

B. Analysis Phase

In this phase a model of the whole system architecture
will be considered to calculate the probability and impact of
failures at the services’ level. Based on the data collected
from the previous phase and on the interconnections between
the services, we intend to build a mathematical model that
allows the estimation of the probabilities of failure of each
service, as well as its impact in the other services. This will
allow the system integrator to understand which services of
the architecture have the highest probability to fail and also
which ones have the highest impact in the success of overall
infrastructure.

Although the obtained values are just an estimation, they
will allow the integrator to take more informed decisions and
also to understand how to direct his V&V activities. It will also
allow planning of changes in the architecture, as it will allow
dealing with hypothesized changes. Basically, the integrator
will have at his disposal information that will help him to
decide which parts of the architecture should he improve, how
much effort should he put on it, and what return of investment
could he expect.

(3) Calculate total probability of failure

This step should provide a table containing the probabilities
of each service presenting each failure mode, resulting in a
matrix of dimension s*f, (where s is the total number of
services, and f the number of considered failure modes). These
values are computed from the values obtained in (1) and (2).

Challenge #4: Detail the mathematical models to estimate
these values based on the ones provided by (1) and (2).

Although we are still working on this definition, we
believe that we can follow a strategy based on Bayesian
Networks, similarly to what is presented in [11] to esti-
mate risk.

Challenge #5: Find ways to mathematically represent more
complex constructs as recovery blocks, N-version pro-
gramming, etc.

These constructs are hard to represent mathematically,
but are unavoidable as they are essential in fault tolerant
software. It is thus necessary to study which abstractions
better represent them, and to understand if it is possible

84

to develop models that can be parameterized based on
the experimental values obtained in the previous steps.

The resulting values can help ranking the services by fail-
ure probability, allowing the system integrators to understand
if the estimated failure rates are inside an acceptable range
and, if not, focus on improving them, with special attention
those that are more likely to fail. As a corollary, it allows
the estimation of the probabilities of failure in the boundaries
of the system, meaning that it will be possible to assess the
probabilities of failure of the overall system.

(4) Calculate the impact of failures

This step builds on top of the previous to do a much more
comprehensive and advantageous analysis. Basically, for each
service under study (Su) we repeat the previous computation
f times, setting the probability of a failure mode under study
(FMu) to 1. To measure the impact of this change, we compare
the obtained probabilities of failure with the original ones,
by calculating the difference between the obtained tables and
those computed in (3). This difference represents the variation
in the total probabilities of failure, and thus it is named delta
(Δ). It is obtained for each service a set of f tables similar to
those obtained in (3), as shown in Fig. 3.

∆ ∆

∆ ∆

Fig. 3. Delta (Δ) between the probabilities given that a service presents a
failure mode and the original ones.

The probabilities obtained represent the impact of each
failure mode from each service in the overall infrastructure. As
the resulting matrices will contain numbers that will be hard to
analyze manually, we are working on metrics that will allow
us to reduce the amount of values that we need to analyze.

Again, as we are doing this for each service, by the end we
obtain s “cubes” like the one represented in Fig.3, with our
values organized according to four dimensions: service under
study (Su), failure mode under study (FMu), affected services
(Sa), affected failure modes (FMa). With this data we can
proceed to compute metrics using the Δ values and according
the multiple dimensions, each with different meaning.

Challenge #6: Find metrics to characterize the impact of
changes in the architecture.

We are still working on defining the metrics, but these
can include at least statistical analysis of the Δ values,
including means, standard deviation, etc. We also plan to
develop variations of the metrics based on the experience
of the final user, i.e. that evaluate the impact of failures
in the boundaries of the system.

Analyzing the data by FMu allows to predict the most
damaging failure modes. In a similar way, analyzing the data
by FMa, we can predict the most frequent failure modes,
guiding us to select which ones the system must be more

prepared to tolerate. It is also possible to understand which
services are the most sensitive to the failure modes in the
architecture through the analysis of the delta values by affected
service (Sa).

Finally, it is necessary to perform the analysis by Su. This
may be the most important analysis, as it makes possible
to select the services with the highest impact in the overall
architecture, understanding how failures propagate and which
parts should be re-V&Ved when the Su suffers modifications.

In terms of planning and decision support, all this informa-
tion allows the system integrator to select the most important
services for system improvement. Moreover, by estimating the
hypothetical probability of failure of a new version of some
part of the architecture, the system integrator can calculate its
impact in the infrastructure, allowing him to better understand
if the planned modifications are the most effective in the
concrete scenario.

C. Runtime Phase

This third phase occurs after system deployment, where
traditional application of V&V does not apply. This phase
copes with the dynamicity of the environment, providing the
detection of changes and the consequent context switch for
V&V every time some modification is necessary or requested.

In such dynamic and large systems, scalability may become
an issue influencing the monitoring process. An efficient mon-
itoring system should be developed as a distributed network
of probes that spread in parallel with the services of the
SOA providing all the necessary information regarding system
modifications.

(5) Monitor real failure rates

This step represents primarily a monitoring activity in
which an efficient solution provides relevant information to the
integrator. Besides the information regarding system modifica-
tions, it should be also collected data about failures and their
frequency, which can later be used to check if the real failure
rates match the estimated ones and, if not, adjust estimates for
future use.

Challenge #7: Gather the relevant data without harming the
performance of the infrastructure.

Obviously, it is undesirable to have performance penalties
caused by the monitoring activities. Our goal is to develop
a parallel infrastructure that is based on distributed
set of sensors or probes that feed the data about the
running system to a monitor, which processes the activity
of the infrastructure. The information collected is then
rendered, filtered, analyzed and then stored for future
activities. Some techniques to acquire information are
already known and consist on using network sniffing or
proxy-based solutions.

Challenge #8: Collect large enough samples to allow the
adjustment of the failure rate estimates.

Depending on the type of the system and of the considered
service, in some situations the generated load may not be
frequent of stressful enough to allow gathering enough
information to adjust the failure rates. Therefore, it will

85

be necessary to define thresholds that will allow us to
weight the adjustments to be done over time.

For the services in which significant samples of data are
collected, the goal is to adjust the calculated failure rates with
the real data This way, there will be a slow adjustment of the
failure rates towards the numbers found in the wild. We are still
discovering how to do this. We need also to deal with situation
when the services with adjusted failure rates are upgraded and
thus have new data coming from the repeated phase of design.

(6) Deal with changes

Changes in the running system can happen from different
ways: 1) planned, meaning that there is a new version of the
software, and the analysis is performed before deploying it into
the infrastructure; 2) detected, meaning that some part internal
or external to the system has been modified, so it is necessary
to react to these changes; 3) hypothesized, meaning that there
is the possibility that something changed, so this situation must
be analyzed before investing resources in dealing with it.

The first scenario is the type that one would expect is
more common and that our approach fits better. However, the
approach can be very useful in the other two scenarios and
should be prepared to deal with them. In every scenario, it is
necessary to understand the changes in order to decide which
parts of the processes would be necessary to repeat for each
of the affected services

Challenge #9: Build effective interfaces to deal with the
system and the user, to react accordingly.

The information provided by the monitoring system (5)
must be handled properly to automatize some of the
processes. However, it is also important to allow the
system integrator to visualize and input information in
order to take maximum advantage of the system.

Challenge #10: Perform the necessary analysis in the shortest
time window possible.

The execution of the process must be as fast as possible,
as the system may be waiting to be upgraded or even
running without the proper trustworthiness assurance.
The problem is that the testing or other V&V activities
described in steps (1) and (2) may need some time to be
executed.

In operational terms, the hypothesized changes will allow
the integrator to take advantage of this approach for planning
and evaluation of the cost and benefit of different scenarios.

V. CONCLUSION

Understanding how failures propagate in SOA environ-
ments is essential to adapt V&V techniques to the domain.
It allows determining which services must be re-V&Ved when
there are changes in a service or in the architecture and also
which services need extra attention.

This paper proposes a preliminary approach to do this,
using traditional V&V techniques such as testing and fault
injection together with analysis and monitoring. Such approach
will in the future enable implementation of V&V techniques

specific for the domain, and allow that the stakeholders to have
more confidence in the SOAs they are using for their business.

Our future steps will focus on overcoming the listed
challenges, in such way that we are able to experimentally
evaluate the solution as we develop them.

ACKNOWLEDGMENT

This work has been partially supported by the project
DEVASSES - DEsign, Verification and VAlidation of large-
scale (PIRSES-GA-2013-612569, www.devasses.eu), by the
project CECRIS - CErtification of CRItical Systems (FP7-
PEOPLE-2012-IAPP 324334, www.cecris-project.eu), both
within the context of the European Union’s Seventh Frame-
work Programme (FP7), and the project ICIS - Intelligent
Computing in the Internet of Services (CENTRO-07-ST24-
FEDER-002003, icis.uc.pt), co-financed by QREN, in the
scope of the Mais Centro Program and EU’s FEDER.

REFERENCES

[1] G. Canfora and M. D. Penta, “Service-Oriented Architectures Testing:
A Survey,” in Software Engineering, A. D. Lucia and F. Ferrucci, Eds.
Springer Berlin Heidelberg, 2009, no. 5413, pp. 78–105.

[2] D. R. Wallace, L. M. Ippolito, and B. B. Cuthill, Reference Information
for the Software Verification and Validation Process. DIANE Publish-
ing, 1996.

[3] D. Reifer, “Software Failure Modes and Effects Analysis,” IEEE Trans-
actions on Reliability, vol. R-28, no. 3, pp. 247–249, Aug. 1979.

[4] C. Areias, N. Antunes, and J. C. Cunha, “On Applying FMEA to
SOAs: A Proposal and Open Challenges,” in Software Engineering for
Resilient Systems, I. Majzik and M. Vieira, Eds. Springer International
Publishing, 2014, no. 8785, pp. 86–100.

[5] H. Tesselaar, “The future of financial services may be banking on
SOA,” Oct. 2012. [Online]. Available: http://searchsoa.techtarget.com/
opinion/The-future-of-financial-services-may-be-banking-on-SOA

[6] G. A. Lewis, “Is SOA Being Pushed Beyond Its Limits?” Advances in
Computer Science: an International Journal, vol. 2, no. 1, pp. 17–23,
2013.

[7] C. Areias, “A Framework for Runtime V&V in Business-Critical Ser-
vice Oriented Architectures,” in 43rd Annual IEEE/IFIP Conference on
Dependable Systems and Networks Workshop (DSN-W 2013), Budapest,
Hungary, 2013, pp. 1–4.

[8] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293–303, 2009.

[9] A. Bertolino, G. Angelis, L. Frantzen, and A. Polini, “The PLASTIC
Framework and Tools for Testing Service-Oriented Applications,” in
Software Engineering, A. Lucia and F. Ferrucci, Eds. Springer Berlin
Heidelberg, 2009, no. 5413, pp. 106–139.

[10] A. Zalewski, “A FMECA framework for Service Oriented Systems
based on Web Services,” in 2nd International Conference on Depend-
ability of Computer Systems, 2007. DepCoS-RELCOMEX ’07. IEEE,
2007, pp. 286–293.

[11] X. Bai and R. Kenett, “Risk-Based Adaptive Group Testing of Semantic
Web Services,” in 33rd IEEE International Computer Software and
Applications Conference (COMPSAC’09), vol. 2, 2009, pp. 485–490.

[12] V. Cortellessa and V. Grassi, “Reliability Modeling and Analysis of
Service-Oriented Architectures,” in Test and Analysis of Web Services,
L. Baresi and E. D. Nitto, Eds. Springer, 2007, pp. 339–362.

[13] Z. Zheng and M. R. Lyu, “Collaborative Reliability Prediction of
Service-oriented Systems,” in 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 35–44.

[14] A. Aviienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33,
2004.

86

