
Persistent Caching in Information-Centric Net-
working

C. Anastasiades, A. Gomes, R. Gadow, T. Braun

Technischer Bericht IAM-15-001 vom 22. Mai 2015

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch





Persistent Caching in Information-Centric Net-
working

Carlos Anastasiades, Andre Gomes, Rene Gadow,
Torsten Braun

Technischer Bericht IAM-15-001 vom 22. Mai 2015

CR Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Architecture and
Design; C.4 [Computer Systems Organization]: Performance of Systems
- Design studies

General Terms:
Design, Measurement, Performance

Additional Key Words:
Information-centric networks, persistent caching, CCN, repository

Institut für Informatik und angewandte Mathematik, Universität Bern





Abstract
Information-centric networking (ICN) is a new communication paradigm
that aims at increasing security and efficiency of content delivery in com-
munication networks. In recent years, many research efforts in ICN have
focused on caching strategies to reduce traffic and increase overall perfor-
mance by decreasing download times. Since caches need to operate at
line-speed, they have only a limited size and content can only be stored
for a short time. However, if content needs to be available for a longer
time, e.g., for delay-tolerant networking or to provide high content avail-
ability similar to content delivery networks (CDNs), persistent caching is
required. We base our work on the Content-Centric Networking (CCN)
architecture and investigate persistent caching by extending the current
repository implementation in CCNx. We show by extensive evaluations
in a YouTube and webserver traffic scenario that repositories can be effi-
ciently used to increase content availability by significantly increasing the
cache hit rates.





Contents
1 Introduction 1

2 Content-Centric Networking 4
2.1 CCN Concepts and Implementation . . . . . . . . . . . . . 4
2.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Design and Implementation of Persistent Caching 6
3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Inclusion . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Queue Update . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Evaluation 10
4.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Hit and Miss Rates . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Deletion Times . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Discussion 16
5.1 Chunk-based vs. Object-based Persistent Caching . . . . . 16
5.2 Deletion Overhead . . . . . . . . . . . . . . . . . . . . . . . 16

6 Conclusions 18





Introduction 1

1 Introduction

Information-Centric Networking (ICN) has been proposed to address
shortcomings of the Internet Protocol, such as scalability for increasing
mobile data traffic [1] and security [2]. ICN messages are routed based
on names instead of endpoint identifiers. Content is identified by unique
names, which enable concurrent streams to be aggregated and content
to be cached in any node. Because content is signed, integrity and au-
thenticity of retrieved content is ensured and it is not important which node
provided the content copy.
In recent years, extensive research efforts, e.g., [3], [4], [5], [6], [7], [8],
[9], have been performed to address caching in wired information-centric
communication for the Future Internet. The basic idea of caching in ICN
is to keep received data in buffers to satisfy similar requests. The cache
is considered as short-term storage to avoid retransmissions over the en-
tire path to a content source in case of collisions or synchronize multiple
concurrent requesters of the same content. In the latter case, caches can
consolidate even slightly time shifted requests, depending on how long
content is cached, to reduce network traffic.
With the vast profileration of mobile devices in recent years, mobile data
traffic has increased drastically and is expected to increase even more in
the following years. According to Cisco’s Global Mobile Data Traffic Fore-
cast report [10], 4G will be more than half of the total mobile traffic by
2017 and the average traffic amount per smartphone will increase fivefold
by 2019. To reduce traffic and increase performance, ICN caching can be
integrated into LTE mobile networks [11]. However, caches need to oper-
ate at line-speed, thus, current memory technologies impose limitations.
Fast memory is expensive, power hungry and only available in small ca-
pacities [12]. Furthermore, caches are implemented in volatile storage,
which is cleared, i.e., data loss, in case of power outages.
Therefore, in some scenarios, short-term caching may not be enough and
content needs to be persistently stored (at the expense of slightly slower
access times). This is required, e.g., for delay-tolerant networking [13],
[14], custodian-based information sharing [15] or to enable high availabil-
ity and performance similar to content distribution networks (CDNs) by dy-
namically storing content in regions of high demand.
In this work, we investigate persistent caching for content distribution. Our
work is orthogonal to existing ICN research on caching, because it can
be combined with fast (short-term) caching. While received and forwarded
content will automatically be stored in the cache for a short time, persistent



2 IAM-15-001

storage can be used to store only a subset of it for a longer time. For
example, real-time audio streams from phone conferences may be stored
in the cache, but it may not be required to keep them for a long time.
In contrast, large static files, such as multimedia files or pictures may be
valid for a longer time and can be cached at persistent storage closer to
requesters.

P-GW

S-GW S-GW

eNodeB eNodeB eNodeB eNodeB

Content 

Source 

(Internet)

Figure 1: Hierarchical Caching in LTE Network.

We envision to extend hierarchical networks such as LTE mobile networks
by adding persistent caches as shown in Figure 1. Traffic from users is
forwarded in a hierarchical way from evolved Node Bs (eNBs) to Serving
Gateways (S-GWs) and from there to a PDN gateway (P-GW). The P-GW
provides connectivity to external networks such as the Internet. Persis-
tent storage may be deployed alongside content routers attached to eNBs,
S-GWs and P-GWs, and stores a subset of content forwarded through
these routers. This enables storing very popular content of the day, e.g.,
electronic newspapers or popular videos, at the edge of the network to
improve network performance. It also means that many requests of pop-
ular content may be satisfied already at edge routers, while requests for
less popular content may be forwarded further to the next content router,
which may hold a cached copy of the content. Therefore, only unpopular
content, for which caching would not yield any benefits, would need to be
retrieved all the way from the content source. Such an approach brings
multiple advantages from the perspective of both end users and Mobile
Network Operators (MNOs). For the former, perceived performance sig-
nificantly increases due to lower content access latency, either delivered
directly by caching or by one of its side effects, i.e. backhaul traffic expe-
riences a major reduction, allowing faster content downloads from more
distant sources. For the latter, Operational Expenditures (OPEX) can be
reduced up to 36% [16] due to the lower load of the network infrastructure.



Introduction 3

We base our investigations on Content-Centric Networking (CCN) [17],
which is a popular ICN architecture. Persistent storage in CCN is provided
by repositories. For this work, we extended the repository implementation
in CCNx, the open source reference implementation of CCN, to support
persistent caching and have evaluated its feasibility by extensive tests us-
ing various request models.
The remainder of this paper is organized as follows. In Section 2, we give
an overview on CCN and relevant work on caching. Our design for persis-
tent caching is described in Section 3. Evaluation results are presented in
Section 4 and discussed in Section 5. Finally, in Section 6, we conclude
our work and give an outline for future work.



4 IAM-15-001

2 Content-Centric Networking

2.1 CCN Concepts and Implementation
Content-Centric Networking (CCN) is based on two messages: Interests
to request content and Data to deliver content. Files are composed of
multiple segments, which are included in a Data message, and users need
to express Interests in every segment to retrieve a complete file. CCNx
[18] provides an open source reference implementation of CCN. The core
element of CCNx is the CCN daemon (CCND), which performs message
processing and forwarding decisions. Links from the CCND to applications
or other hosts are called faces.
The CCND has three main memory components: the Content Store (CS),
the Pending Interest Table (PIT) and the Forwarding Information Base
(FIB). When an Interest is processed, the CS, which is used as a cache,
is checked to verify whether the content is available locally. If not, the PIT,
which stores forwarded Interests in a soft state so that Data messages
can travel the same path back, is checked to verify if the content was al-
ready requested. If it was not, the FIB is used to forward the Interest as it
contains forwarding entries to direct it towards potential content sources.
Additionally, every received and forwarded Data message is temporarily
stored in the CS and Least Recently Used (LRU) replacement strategies
are applied for cache replacement.
Content sources can publish and persistently store content in repositories.
The content is stored in the wire-format, i.e., including headers and signa-
tures, in a file, the repofile. For fast access to content in the repofile, the
repository keeps references to content in a B-tree.
Currently, it is possible to publish new content in a repository with the cc-
nputfile application, retrieve content and store it in the repository with a
start-write Interest or synchronize collections among repositories with the
Sync Protocol. However, there is no way of deleting content from a repos-
itory besides resetting it, which results in the deletion of all stored content.

2.2 Caching
Caching in information-centric networking has been subject to extensive
research in recent years. In CCN, content is cached everywhere along the
downloading path resulting in high cache redundancy. It has been shown
that popular content tends to be cached at the leafs of the network [3] and,
therefore, allocating more storage resources to edge routers than core



Content-Centric Networking 5

routers is beneficial in terms of performance [4] and energy consumption
[19]. To avoid redundant caching, several strategies have been proposed
such as limiting the number of cached copies along the path to one [5],
probabilistic caching based on distance from the content source [4], or
apply network coding to ensure content diversity caches [8], [9]. Other
approaches are based on coordination for content deletion, e.g., pushing
deleted content one-level upstream the caching hierarchy [6] or adapting
the number of cached chunks based on the file’s popularity [7].
However, storage in the CS is limited and cached content is only avail-
able for a limited amount of time to support faster retransmissions in
case of collisions and to synchronize multiple concurrent (or slightly time
shifted) requests. If content should be available for a longer time, e.g., for
delay-tolerant networking or to ensure high availability and performance
similar to content distribution networks (CDNs), it should be persistently
stored. In this work, we investigate persistent caching based on the cur-
rent CCNx repository implementation. While every content in CCN needs
to go through the CS, repositories can monitor the network traffic and store
only a subset of content, e.g., non real-time data or large static files such
as pictures or videos.



6 IAM-15-001

3 Design and Implementation of Per-
sistent Caching

In CCN, persistent storage is provided by repositories. The current repos-
itory implementation in CCNx stores all content in the repofile and main-
tains references to the content in a B-tree.
Content sources publish content in repositories to make them available to
other nodes. To use repositories for caching, content deletion needs to
be introduced in an automatic way, e.g., based on popularity. However,
we do not maintain popularity counters for two reasons. First, popularity
counters would need aging mechanisms, introducing significant additional
complexity. For example, content that has been requested extensively one
year ago may be less popular in the near future than content that has been
frequently requested in the last hours, although the absolute number of re-
quests would be lower. We prefer simplicity over complex solutions to min-
imize the processing overhead in content routers. Second, since content
is also cached in non-persistent memory, request statistics at repositories
would still not reflect the effective number of requests by end-users. In
addition, deletion operations should only be performed if free space is re-
quired and not based on aging-based timers because it may still be useful.
Therefore, in this work, we maintain access information and delete content
that has not been requested recently. There are two main differences to
LRU strategies. First, deletion operations are performed based on content
and not individual chunk popularities. Second, multiple content objects
may be deleted at the same time to free space if a certain storage utiliza-
tion threshold is reached because deletions in the filesystem take more
time than in main memory.

3.1 Data Structures
Figure 2 illustrates data structures required to enable content deletion for
persistent storage. The delete queue maintains an element for every con-
tent object in the repofile. The basic idea is to move requested content to
the tail (bottom) of the queue such that unpopular content can be found at
the head (top) of the queue. Therefore, if content needs to be deleted, it
can be removed from the head.
Figure 2 shows that the delete queue is implemented as doubly linked list,
on which every element has a pointer to the previous and next elements.
In addition, every queue element has a pointer to another linked list of



Design and Implementation of Persistent Caching 7

hash_table

name queue_element *

delete_queue

queue_element 0

queue_element 1

queue_element 2

queue_element 3

queue_element 4

queue_element 5

...

queue_element n

*previous

queue_element

*next

queue_segment *last

number_of_segments

queue_segment *first

flatname

queue_segment

size

*next

Figure 2: Additional data structures for persistent storage

queue segments, i.e., the individual segments of the content. Besides a
pointer to the next element, we also maintain a pointer to the last segment
in the list to avoid long list traversals when including segments of large
content. The queue segment contains the flat name of a segment to find
the content (and its reference to the repofile) in the B-tree. When we need
to find a queue element quickly, we use a hash table to get its reference in
the delete queue based on a lookup of the base name, i.e., content name
without segment numbers.
In contrast to related work on CCN caching, we keep content based on
object granularity and do not make individual caching decisions for ev-
ery segment/chunk. Because content in CCN is requested sequentially
based on the pipeline size, high variability in chunk downloads would de-
grade overall download performance. More information on chunk-based
vs. object-based caching can be found in Section 5.

3.2 Processing
In this section, we describe processing procedures in the delete queue.

3.2.1 Inclusion

Content information is stored based on object granularity. When a seg-
ment is received, the content name, i.e., base name without segment
number, can be extracted. Based on a hash table lookup, delete queue
entries of existing content can be found quickly. In this case, only a new
queue segment needs to be added to the delete queue entry. If it is new
content, the content is included in the delete queue. As Figure 3a shows,
we include new entries in the middle of the lower half, i.e., at 75% of the
queue. If content would be included in the upper 50% of the delete queue,
new popular content could be deleted almost instantly, e.g., if the inclusion



8 IAM-15-001

delete_queue

queue_element 0

queue_element 1

queue_element 2

queue_element 3

queue_element 4

queue_element 5

queue_element 6

queue_element n

Insertion

7
5

 %

Request

queue_element 3

...

(a) Insertion and Update

Current 

delete_queue

queue_element 0

queue_element 1

queue_element 2

queue_element 3

queue_element 4

queue_element 5

...

queue_element n

New 

delete_queue

queue_element 4

queue_element 5

...

queue_element n

(b) Deletion

Figure 3: Delete Queue Processing.

is just before a content deletion, since up to 50% of the repofile is deleted
during a deletion operation (see subsection 3.2.3). In addition, it is not ap-
pended to the tail such that unpopular content can quickly reach the head
of the delete queue, while popular content can go to the tail.

3.2.2 Queue Update

Figure 3a illustrates also update operations on the delete queue. Every
time content is requested, the corresponding element in the delete queue
is pushed to the tail of the queue. This push operation can be performed for
every requested segment, every n-th segment or only the first segment. If
every n-th segment is processed, there would be a tendency of larger files
at the tail of the queue, since they have more segments and, thus, more
pushing operations. Therefore, despite some disadvantages (see Section
5), we decided to consider only the first segment of a content object as
trigger for pushing operations.

3.2.3 Deletion

A deletion operation is initiated, if the repofile has reached a certain size,
i.e., the repofile threshold. Then, a deletion operation is performed by
deleting a configurable percentage of the repofile, i.e., the deletion ratio. A
deletion operation is initiated after a file inclusion, if the repofile threshold
has been exceeded. Please note that in CCNx, file sizes are only known



Design and Implementation of Persistent Caching 9

when the last segment has been received with the final bit set. Therefore,
the repofile threshold is a soft threshold and the repofile size can become
slightly larger than the threshold depending on the size of included files,
i.e., we do not perform deletion operations during file inclusions but rather
afterwards.
Figure 3b shows modifications on the delete queue due to deletion opera-
tions. A deletion operation is performed by the following steps.

1. Prevent the repository daemon from accepting new content while the
deletion operation is being performed. If new content arrives during
local deletion operations, it will only be stored temporarily in the con-
tent store. However, other repositories on the path to the requester
will store it persistently.

2. Start at the head of the delete queue and iterate through the ele-
ments until the deletion ratio is reached. All content entries up to
this point will be deleted (red part in Figure 3b) and the lower part
becomes the new delete queue.

3. Every delete queue element contains multiple queue segments. The
queue segments of all deleted content objects need to be sorted
based on their position in the repofile such that every B-tree entry
and the repofile need only to be processed once (see next step). In
our current implementation, we use the O(n log n) merge-sort algo-
rithm for sorting.

4. All content from the repofile (except deleted segments) are copied to
a new repofile. This is required because file systems do not support
selective deletions inside files. Due to deletions, content is copied
to other positions in the new repofile, thus, reference values in the
B-tree need to be updated.

5. All B-tree entries of deleted content are removed.

6. Instruct the repository daemon to start accepting new content again.

To limit service interruptions from deletions, a (read-only) repository can be
started to provide content from the old repofile. Otherwise, Interests may
just be forwarded and satisfied by persistent caching at the next router
level. Thus, only in the worst case Interests would be forwarded all the
way to the content source.



10 IAM-15-001

4 Evaluation
Persistent caching has been implemented by extending the repository im-
plementation in CCNx 0.8.2, and extensive evaluations have been per-
formed in different scenarios on physical servers of a Linux cluster [20].

4.1 Scenarios
Figure 4 shows our evaluation topology. We evaluate the performance
of an edge router, e.g., at an eNB, that continously receives requests from
the network according to YouTube and webserver traffic models. The edge
router is connected to a local repository, which is responsible for persistent
caching. Independent of the network topology, an edge router has a down-
stream face from which file requests are received and content is returned
and an upstream face where received Interests are forwarded and new
content is received, i.e., file inclusions at the persistent cache of the edge
router. The evaluation parameters are listed in Table 1.

Router

File 

Inclusion

File 

Request

Network Network

Repository

Figure 4: Network Scenario.

Similar to existing ICN literature [21], we assume that content popular-
ity follows a Zipf distribution. We use 20 popularity classes and perform
evaluations with parameters α set to 1 and 2. A parameter of α = 1 is con-
sidered realistic for webserver traffic and α = 2 is used for YouTube traffic
[21]. Several studies have shown [22], [23] that most files are unpopu-
lar and only a few files are very popular. Therefore, we map the number
of files in all popularity classes to a Zipf distribution α = 1 with inverted
classes, i.e., most files are included in class 19 and fewest files in class 0.
The file sizes in each popularity class vary as well. Based on existing
YouTube models [24], we set the file size distribution for our YouTube sce-
nario to a gamma distribution with α = 1.8 and β = 5500. Our YouTube
files are between 500KB and 100MB, while most files are between 2 and
10MB (9.9MB mean). The file sizes for web server traffic are consider-
ably smaller [25]. File sizes have increased in the last years and we be-
lieve that file sizes will increase even more in future information-centric



Evaluation 11

Parameter YouTube Webserver
Requests every 5s

Request Popularity Zipf distribution with
α = 2 α = 1

File distribution Zipf distribution, α = 1
per popularity class mapped to inverse classes
New Files every 10s

File sizes
Gamma distribution, Gamma distribution,

per popularity class
α = 1.8, β = 5500 α = 1.8, β = 1200

min. 500KB min. 50KB
max. 100MB max. 50MB

Repofile thresholds 2GB, 4GB, 8GB 8GB, 12GB, 16GB
Deletion ratios 50%, 25%
Effective duration 86400s (1 day)

Table 1: Evaluation parameters.

networks. Transmitted ICN packets need to have a certain minimum size
to be efficient, e.g., segment size of 4096 bytes or more, to avoid too large
overhead for content headers including names and signatures. Therefore,
we believe that for future ICN traffic, many small files may be aggregated to
larger data packets or ICN would only be applied to large static files, e.g.,
pictures or embedded videos, and not small text files that may change fre-
quently. Therefore, we use a gamma distribution with α = 1.8 and β = 1200
for the webserver scenario. Our webserver files are between 50KB and
50MB, however, most files are between 750KB and 1250KB (2MB mean).
In our scenarios, requests are performed periodically, i.e., 1 new content
request every 5 seconds. The requested content from the popularity class
(Zipf distribution) is selected randomly among all created content objects
in that popularity class. To simulate a dynamically growing file catalog and
to evaluate the performance of persistent caching with regular deletion
operations, we create and request new files every 10s. These files are
included into the repository, i.e., file inclusions, as mentioned above.
For every scenario, we evaluate various repofile tresholds and deletion
ratios of 50% (DR50) and 25% (DR25) of the repofile. We measure the
performance of persistent caching during operation, i.e., the repository
is filled initially with content and we collect statistics after a first deletion
operation has been performed. The effective evaluation starts after the
first deletion and lasts 86400 seconds (1 day). Thus, in one day we create
approximately 85.54 GB of data in the YouTube scenario and 18.67GB of



12 IAM-15-001

data in the webserver scenario. Every configuration has been evaluated
and repeated 100 times on physical servers that run a CCN router with
persistent caching.

4.2 Hit and Miss Rates

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%

Miss rate, red. 50%
Miss rate, red. 25%

(a) webserver, repofile threshold
2GB

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%

Miss rate, red. 50%
Miss rate, red. 25%

(b) YouTube, repofile threshold
8GB

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%
Miss rate, red. 50%
Miss rate, red. 25%

(c) webserver, repofile threshold
4GB

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%
Miss rate, red. 50%
Miss rate, red. 25%

(d) YouTube, repofile threshold
12GB

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%
Miss rate, red. 50%
Miss rate, red. 25%

(e) webserver, repofile threshold
8GB

 0

 0.2

 0.4

 0.6

 0.8

 1

H
it/

M
is

s 
ra

te
 in

 P
er

ce
nt

Popularity Classes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hit rate, red. 50%
Hit rate, red. 25%
Miss rate, red. 50%
Miss rate, red. 25%

(f) YouTube, repofile threshold
16GB

Figure 5: Hit and Miss rates for webserver and YouTube scenarios.

In this subsection, we evaluate the cache hit rates of our repository im-
plementation in the YouTube and webserver scenario. Figure 5 shows
the cache hit and miss rates for all popularity classes in different configu-
rations. The y-axis shows the hit/miss rates and the x-axis indicates the
popularity class. The figures on the left side are obtained for our webserver
scenario, i.e., requests with Zipf distribution alpha = 1, and the figures on
the right side show the YouTube scenario with Zipf distribution alpha = 2.
Figure 5a shows the hit and miss rates in the webserver scenario with a
repofile threshold of 2GB. The dark green boxplots show the hit rates for



Evaluation 13

a deletion ratio of 50% (DR50) and the light green boxplots for a deletion
ratio of 25% (DR25). The overall hit rate of DR25 is slightly higher, i.e.,
81%, compared to 77.5% with DR50. For high popularity classes, such as
classes 0 and 1, the difference between DR50 and DR25 is smaller be-
cause files from these classes are barely deleted in both cases. However,
for classes 3-17, the difference between DR25 and DR50 is larger by up
to 6.3% because these files are kept more likely with DR25, while they are
deleted with DR50. The red boxplots show the miss rates for DR50 and
the orange boxplots for DR25. For DR50, hit rates are higher than miss
rates up to files from popularity class 11, while for DR25, hit rates are bet-
ter for more files, i.e., up to class 13. Even for the most unpopular content
in class 19, DR50 results in a slightly higher miss rate of 61.5% compared
to 58.1% with DR25. Therefore, freeing space too aggressively, i.e., DR50,
has a noticeable impact on cache hit rates in the webserver scenario.
Figure 5b shows the hit and miss rates for our YouTube scenario with a re-
pofile threshold of 8GB. Because file sizes are larger compared to the web-
server scenario, we use larger repofile thresholds for YouTube scenarios
than for webserver scenarios. With DR50, the overall hit rate is 95.3% and
with DR25 it is 96.9%. The relative differences between DR50 and DR25
are smaller compared to the webserver scenario. This is due to the fact
that the probability for requests in most popular files in classes 0 and 1 are
larger for a Zipf distribution with α = 2 (YouTube) than α = 1 (webserver),
i.e., 62.7% and 15.7% instead of 27.8% and 13.9%. Therefore, more than
78% of all requests in the YouTube scenarios request content from popu-
larity classes 0 and 1. Since our implementation keeps the most popular
files, there is no difference for DR50 and DR25 for most of the requests.
However, for class numbers larger than 2, DR25 results in 4.9% to 12%
higher hit rates than DR50. We notice a large variability in performance
for popularity class numbers larger than 3 in Figure 5b. The variability is
much larger than for the webserver scenario in Figure 5a. This can be
explained by two reasons. First, the request frequency of class numbers
larger than 3 is higher with Zipf distribution α = 1 compared to α = 2 due
to larger request probabilities. Second, the file ranges that we selected in
the YouTube scenario are larger than for the webserver scenario resulting
in higher variability. When considering the average values, DR25 results
in higher hit rates than miss rates up to popularity class 17, while for DR50
the miss rates become higher already at popularity class 11.
Figures 5c and 5d show the hit and miss rates for the webserver scenario
with a repofile threshold of 4GB and the YouTube scenario with a repofile
threshold of 12GB. Similarly as above, DR25 results in superior perfor-
mance compared to DR50. In the webserver scenario, DR25 results in



14 IAM-15-001

an overall hit ratio of 93%, while for DR50 it is 90.7%. In the YouTube
scenario, DR25 results in an overall hit rate of 99% and with DR50 it still
reaches 98.1%. Although these values are much higher than in the web-
server scenario, miss rates for popularity classes numbers larger than 12
may become larger than the hit rates in the YouTube scenario (worst case)
due to a large variability.
Figures 5e and 5f show that if we further increase the repofile threshold
to 8GB in the webserver scenario and 16GB in the YouTube scenario, the
average hit rates do not go below 80%. Even in the worst case in the
YouTube scenario, the hit rates are always higher than miss rates.

4.3 Deletion Times
In this section, we evaluate the time durations to perform deletion opera-
tions in the webserver and YouTube scenario.

 0
 50

 100
 150
 200
 250
 300
 350
 400

tim
e 

in
 [s

]

11 deletions

2GB
50%

21 deletions

25%

6 deletions

4GB
50%

11 deletions

25%

3 deletions

8GB
50%

5.8 deletions

25%

Sorting
Copying
Cleanup

(a) webserver scenarios

 0

 100

 200

 300

 400

 500

 600

tim
e 

in
 [s

]

8.5 deletions

8GB
50%

15.4 deletions

25%

5.2 deletions

12GB
50%

8.3 deletions

25%

3.2 deletions

16GB
50%

5.4 deletions

25%

Sorting
Copying
Cleanup

(b) YouTube scenarios

Figure 6: Deletion times and number of deletions

Figure 6 illustrates the overall times for deletions and the number of dele-
tions in each evaluated scenario. The deletion time is split into subparts
for sorting segments of deleted content, copying files from the repofile and
cleanup of the B-tree. The number on top of each bar denotes the average
number of deletions in the corresponding configuration.
Figure 6a illustrates the deletion times as well as the number of deletions
in webserver scenarios with repofile thresholds of 2GB, 4GB and 8GB. For
every repofile threshold, the percentage on the x-axis denotes deletion ra-
tio of 50% (DR50) and 25% (DR25). For small repofile thresholds of 2GB,



Evaluation 15

deletions with DR25 take only 16.2% less time than for DR50. This is be-
cause most of the time is required for updating file references and deleting
entries in the B-tree (cleanup). For DR50, B-tree cleanup requires 86% of
the total deletion time and for DR25, it requires even 92%. With increasing
repofile threshold, the time for sorting increases. For a repofile threshold
of 8GB and DR50, sorting is responsible for 41.5% of the deletion time and
for DR25 it is a smaller fraction of 18.6%. DR50 requires more than 300%
additional time for sorting and 24.8% more time for cleanup compared to
DR25, while their difference for copying is insignificant. For one deletion
operation with repofile threshold 8GB, DR25 requires 45% less time for the
deletion than DR50. Considering that DR25 requires nearly twice as many
deletions over one day, DR25 results only in 6% longer deletion times than
DR50. However, due to the increased hit rate for DR25 (see Section 4.2),
it may be worth investing 6% more time for deletion.
Figure 6b shows the deletion times for the YouTube scenario. A deletion
operation with a repofile threshold of 8GB takes considerably less time
than for the webserver scenario: for DR50, it is 36.4% less time and for
DR25 16.9% less time. Because files are larger in the YouTube scenario,
i.e., have more segments, fewer files are stored in the repository for the
same repofile threshold. Due to the sequential request strategy in CCN,
segments of the same file are already (more or less) ordered. However,
because popular files are continuously pushed down in the delete queue,
the sorting overhead increases with the number of deleted files, i.e., no
First-In-First-Out (FIFO) deletion strategy. Fewer files that contain more
ordered segments (YouTube scenario) result in a less fragmented reposi-
tory file than many files with fewer ordered segments (webserver scenario)
and can, therefore, be sorted faster. As a result, sorting requires only
18.1% for DR50 and only 7.5% for DR25. However, the larger the reposi-
tory file becomes, the higher is the overhead for sorting and cleanup. For
a repofile threshold of 16GB, sorting is responsible for 30.6% of the dele-
tion time for DR50 and 12.5% for DR25. Although sorting takes 3.5 times
more time with DR50 compared to DR25, a deletion operation with DR25
only requires 31.6% less time compared to DR50. This is because the
overhead from copying is not negligible anymore, i.e., 41.6% more time for
DR25, and cleanup becomes more expensive for DR25, i.e., only 16.9%
less time compared to DR50. When taking into account the number of
deletions, DR25 results in 15.6% longer deletion times. Considering that
the overall hit rate for DR50 and DR25 is almost the same (less than 1%
difference), it may be a better strategy to use DR50 instead of DR25 in the
YouTube scenario.



16 IAM-15-001

5 Discussion

5.1 Chunk-based vs. Object-based Persistent
Caching

We process content based on object granularity, which may have disad-
vantages in some cases. For example, if only the first few seconds of a 2
hours movie would be retrieved, the content would be considered as popu-
lar as if the entire 2 hours would be requested. However, because content
is requested sequentially, i.e., up to n segments at the same time depend-
ing on the pipeline size, high delay variability between segments would
drastically degrade download performance. As a consequence, storing
chunks individually may harm download performance.
However, please note that our approach is an extension for persistent stor-
age of static files, but it can be combined with regular caching in the con-
tent store, e.g., real-time data, which can be chunk-based. It may also be
possible to increase the granularity in the delete queue by splitting each
content into ranges of multiple consecutive segments, e.g., segments 0 -
100, 101 - 200, ... and so on, but it would result in a higher processing
complexity (tradeoff).
Another challenge of object-based granularity is the update process, i.e.,
when content needs to be pushed back to the end of the delete queue.
In our approach, we assume that the first segment is requested in every
download and, therefore, pushes content entries back based on requests
in the first segment. We decided to go with this strategy to avoid too
many push operations, e.g., for concurrent requests, and to not discrim-
inate small files with only a few segments compared to large files, which
would have much more update operations. However, if the first segment
is not requested, the content entry is not pushed back. This issue may
be alleviated when using higher content object granularity, e.g., ranges of
multiple consecutive segments as described above.

5.2 Deletion Overhead
Our evaluations have shown that deletion operations result in a large pro-
cessing overhead to update the B-tree, sort the deleted segments and
delete content from the repofile. For some applications, the processing
overhead may not be critical, e.g., delay-tolerant networking [13], [14]
or custodian-based information sharing [15], and it can be performed as



Discussion 17

maintenance operation during off-peak hours.
However, if persistent caching is used alongside content routers, service
interruptions (see Subsection 3.2.3) have a larger impact on caching per-
formance because no new content can be included during deletion op-
erations. In this case, a (read-only) repository could be used during the
deletion to continuously serve existing content. In addition, a router may
use multiple repositories at the same time (load balancing). Then, if one
repository performs a deletion, the other repository may still accept con-
tent. In the worst case, i.e., if only one repository is used and Interests
cannot be satisfied due to a local deletion, Interests may be forwarded to
the next content router on the path to the content source.



18 IAM-15-001

6 Conclusions

Persistent caching is required to support delay-tolerant networking or pro-
vide high content availability similar to content delivery networks (CDNs).
In this work, we have extended the current repository implementation in
CCNx to support persistent caching in repositories. A fundamental re-
quirement for persistent caching is content deletion during operation, i.e.,
without deleting or resetting the entire repository, which is not supported
by CCNx. Our approach for content deletion is based on a delete queue,
which keeps the most popular files at the tail of the queue. If disk space
needs to be released, content can be removed from the head of the queue.
We have performed extensive experimental evaluations for different config-
urations in a webserver and YouTube scenario. In every scenario, new con-
tent has been generated periodically such that deletion operations in the
repository were necessary due to limited space. Evaluations have shown
that our design can maintain high cache hit rates in both scenarios, but
performance depends on the reserved repofile size for caching. Although
repositories are slightly larger in the YouTube scenario due to larger file
sizes, the repositories need to store a smaller percentage of all content to
achieve high cache hit rates. For example, in webserver scenarios a re-
pofile size of 4GB, which corresponds to 21% of all included content during
a day, results in cache hit rates larger than 90%. In YouTube scenarios, a
repofile size of 12GB, which corresponds to 14% of all included content in
a day, results in cache hit rates larger than 98%. High cache hit rates at
the edge are beneficial for both users and network operators. While net-
work operators can reduce network traffic at the core network to improve
network availability and reduce operational costs, users may benefit from
faster content downloads (shorter delays, less RTT variability) as well as
partial service and content availability if the core network is overloaded.
In the webserver scenario, it is a better strategy to have more frequent
deletions of fewer content to obtain higher cache hit rates. More frequent
deletions of fewer files do not require much more time for deletions, i.e.,
longer service interruptions, than fewer deletions of many files. In the
YouTube scenario, fewer but larger deletions are better. Compared to the
webserver scenario, the sorting overhead is significantly smaller because
fewer files can be stored at the same space (files are larger) and segments
of the same file are already ordered. In addition, because most requests
are addressed to the most popular classes, the additional gain of keeping
less popular content in the repository is only minimal and may not justify
more frequent deletion operations.



Conclusions 19

We have implemented persistent caching based on the current repository
implementation in CCNx, which uses a B-tree to keep references to stored
content in the filesystem. For caching in delay-tolerant networking, the
overhead for deletions may be negligible but to increase efficiency in con-
tent routers, other repository implementations may be evaluated, e.g., stor-
ing files or even chunks in separate repofiles to reduce cleanup and sorting
overhead, or even develop a repository implementation with a database.
However, all of these solutions would come with their own disadvantages
that would need to be evaluated.



20 IAM-15-001

References
[1] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, and I. Yeom, “Mobility Sup-

port in Content Centric Networks,” in Proceedings of the Second Edi-
tion of the ICN Workshop on Information-centric Networking, ser. ICN
’12. New York, NY, USA: ACM, 2012, pp. 13–18.

[2] D. Smetters and V. Jacobson, “Securing network content,” PARC,
Tech. Rep., Oct. 2009. [Online]. Available: https://www.parc.com/
content/attachments/TR-2009-01.pdf

[3] I. Psaras, R. Clegg, R. Landa, W. Chai, and G. Pavlou, “Modelling and
evaluation of CCN-caching trees,” in Proceedings of the 10th inter-
national IFIP TC 6 conference on Networking, Valencia, Spain, May
2011, pp. 78–91.

[4] I. Psaras, W. Chai, and G. Pavlou, “Probabilistic In-Network
Caching for Information-Centric Networks,” in Proceedings of the 2nd
ACM SIGCOMM workshop on Information-centric networking (ICN),
Helsinki, Finland, August 2012, pp. 50–60.

[5] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga, “CATT:
potential based routing with content caching for ICN,” in Proceedings
of the 2nd ACM SIGCOMM workshop on Information-centric network-
ing (ICN), Helsinki, Finland, August 2012, pp. 49–54.

[6] Y. Li, T. Lin, H. Tang, and P. Sun, “A Chunk Caching Location and
Searching Scheme in Content Centric Networking,” in IEEE Interna-
tional Conference on Communications (ICC), Ottawa, Canada, June
2012, pp. 2655–2659.

[7] K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-networking caching for content-
oriented networks,” in IEEE INFOCOM workshop on Emerging De-
sign Choices in Name-Oriented Networking (NOMEN), Orlando, FL,
USA, March 2012, pp. 316–321.

[8] Q. Wu and Z. L. an G. Xie, “CodingCache: Multipath-aware CCN
Cache with Network Coding,” in Proceedings of the 3rd ACM SIG-
COMM workshop on Information-centric networking (ICN), Hong
Kong, China, August 2013, pp. 41–42.

https://www.parc.com/content/attachments/TR-2009-01.pdf
https://www.parc.com/content/attachments/TR-2009-01.pdf


References 21

[9] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, and C. Westphal, “An
Optimal Cache Management Framework for Information-Centric Net-
works with Network Coding,” in Proceedings of the 13th IFIP Network-
ing Conference, Trondheim, Norway, June 2014, pp. 1–9.

[10] Cisco, “Visual Networking Index (VNI): Global Mobile Data Traffic
Forecast Update, 2014 - 2019,” February 2015.

[11] A. Gomes and T. Braun, “Feasibility of Information-Centric Network-
ing Integration into LTE Mobile Networks,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing (SAC), Salamanca,
Spain, April 2015.

[12] D. Perino and M. Varvello, “A Reality Check for Content Centric
Networking,” in Proceedings of the ACM SIGCOMM workshop on
information-centric networking (ICN), Toronto, Canada, August 2011,
pp. 44–49.

[13] C. Anastasiades, T. Schmid, J. Weber, and T. Braun, “Opportunis-
tic Content-Centric Data Transmission During Short Network Con-
tacts,” in IEEE Wireless Communications and Networking Conference
(WCNC), Istanbul, Turkey, April 2014, pp. 2516–2521.

[14] C. Anastasiades, W. El Maudni El Alami, and T. Braun, “Agent-
based Content Retrieval for Opportunistic Content-Centric Networks,”
in 12th International Conference on Wired & Wireless Internet Com-
munications (WWIC), ser. LNCS 8458, Paris, France, May 2014, pp.
175–188.

[15] V. Jacobson, R. L. Braynard, T. Diebert, P. Mahadevan, M. Mosko,
N. Briggs, S. Barber, M. Plass, I. Solis, E. Uzun, B. Lee, M.-W. Jang,
D. Byun, D. K. Smetters, and J. D. Thornton, “Custodian-based infor-
mation sharing,” IEEE Communications Magazine, vol. 50, no. 7, pp.
p. 38–43, July 2012.

[16] H. Sarkissian, “The Business Case for Caching in 4G LTE Networks,”
http://www.wireless2020.com/docs/LSI WP Content Cach Cv3.pdf,
LSI Corporation, April 2013.

[17] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Network Named Content,” in Proceedings of the
5th ACM international conference on Emerging networking experi-
ments and technologies (CoNEXT), Rome, Italy, December 2009, pp.
1–12.

http://www.wireless2020.com/docs/LSI_WP_Content_Cach_Cv3.pdf


22 IAM-15-001

[18] CCNx. (2015, March) http://www.ccnx.org/.

[19] U. Lee, I. Rimac, and V. Hilt, “Greening the Internet with Content-
Centric Networking,” in Proceedings of the 1st International Con-
ference on Energy-Efficient Computing and Networking (e-Energy),
Passau, Germany, April 2010, pp. 179–182.

[20] UBELIX. University of Bern Linux Cluster. [Online]. Available:
http://www.ubelix.unibe.ch

[21] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[22] T. Yu, C. Tian, H. Jiang, and W. Liu, “Measurements and Analysis of
an Unconstrained User Generated Content System,” in IEEE Inter-
national Conference on Communications (ICC), Kyoto, Japan, June
2011, pp. 1–5.

[23] TubeMogul. (2009, May) Half of youtube videos get fewer than
500 views. [Online]. Available: http://www.businessinsider.com/
chart-of-the-day-youtube-videos-by-views-2009-5?IR=T

[24] A. Abhari and M. Soraya, “Workload generation for youtube,” Multi-
media Tools and Applications, vol. 46, no. 1, pp. 91–118, January
2010.

[25] A. Williams, M. Arlitt, C. Williamson, and K. Baker, “Web workload
characterization: Ten years later,” Web Content Delivery, vol. 2, no. 1,
pp. 3–21, 2005.

http://www.ubelix.unibe.ch
http://www.businessinsider.com/chart-of-the-day-youtube-videos-by-views-2009-5?IR=T
http://www.businessinsider.com/chart-of-the-day-youtube-videos-by-views-2009-5?IR=T

	Introduction
	Content-Centric Networking
	CCN Concepts and Implementation
	Caching

	Design and Implementation of Persistent Caching
	Data Structures
	Processing
	Inclusion
	Queue Update
	Deletion


	Evaluation
	Scenarios
	Hit and Miss Rates
	Deletion Times

	Discussion
	Chunk-based vs. Object-based Persistent Caching
	Deletion Overhead

	Conclusions

