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Abstract

This paper is about the colouring of greyscale images. More specifically, we
address the problem of learning to colour greyscale images from a set of examples
of true colour ones. We employ Genetic Programming to evolve computer programs
that take as input the Lightness channel of the training images and output the Hue
channel. The best programs evolved can then be used to give colour to greyscale
images. Due to the computational complexity of the learning task, we use a genome
compiler system, GenCo, specially suited to image processing tasks.

1 Introduction

The work presented here is part of a wider research project, NEVAr, whose aim is to build
a constructed artist (i.e. a program that generates artworks autonomously).

NEVAr is an Evolutionary Art Tool inspired on the work of K. Sims (Sims, 1991). It
relies on Genetic Programming (GP) (Koza, 1992) to evolve populations of images, based
on aesthetic principles. Fitness assignment plays, like in most Evolutionary Computation
systems, a key role since it guides the evolutionary process.

NEVAr can be used as an Interactive Evolution tool. In this mode of operation the user
supplies the fitness values to the evolved images. It can also be used as a fully autonomous
system. In this case fitness is assigned through an explicit fithess function, which takes
into consideration several complexity estimates of the images (Machado and Cardoso,
2002).

However, the fitness assignment procedure only takes into account the lightness in-
formation of the images, discarding the hue and saturation information. Therefore, in this
mode of execution, we are limited to greyscale images. A full description of NEvVAr and
of the automatic fithess assignment can be found in (Machado and Cardoso, 2002).

There are good theoretical and artistic reasons to deem colour less important than
lightness. The development of the colouring procedures of systems like AARON (Co-
hen, 1995) is, to some extent, based on this notion. However, this collides, at least ap-
parently, with the importance given to colour by some of the most prominent painters
(e.g. (Kandinsky, 1911)). Moreover, NEVAr’s limitation to greyscale images, in its au-
tonomous version, was frustrating, to say the least. In this paper we address the problem
of giving colour to greyscale images.

An analysis of the role of colour and the way colour is assigned, particularly in ab-
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proportion) usually work with a limited colour palette, and that the spatial relation be-
tween colours usually follows some rules. This is consistent with the view that each
artist constructs its own artistic language, which complies with an implicit grammar. It is
also consistent with the approach used in AARON to colour its drawings (Cohen, 1995;
Cohen, 1999).

The idea of creating a program to give colour to the greyscale images created by
NEVAr emerged naturally. Unfortunately this poses several problems. Our system is
based on a non-symbolic approach and produces bitmap images, hence there is no clear
definition of closed forms, shapes, etc.

Therefore, although we could define a palette to work with, assigning the colours of
that palette to specific forms would be difficult since we have no forms to begin with.
Even assuming that the forms could be properly identified by some sort of pre-processing
method, assigning the right colour to each shape and keeping a proper spatial relation
among colours would still be a problem, due to the unstructured nature of the output.

Additionally, the creation of a colouring system, by itself, doesn't appear to be an
easy task, involving the choice of an adequate set of palettes, establishing a consistent
colouring grammar, etc.

Taking these facts into consideration, and also the fact that the generality of this type
of approach would be limited, we decided to abandon this idea. Instead, we are trying to
create a system that learns to colour images from a set of training examples.

This approach has, potentially, several advantages over a built-in colouring procedure,
namely:

e We don't need to code by hand a set of colouring rules.
e The results of the system are less predictable.

e We can use paintings made by well-known artists as training set, hence learning to
colour images according to their style.

Furthermore, it’s also an indirect way of testing if the colouring procedures followed
by some artists can be formally expressed.

In the remainder of the paper we will describe our efforts to build a system to colour
greyscale images. The paper is structured as follows: in Section 2 we describe our ap-
proach, giving the necessary implementation details; in Section 3, we present some ex-
perimental results attained by this approach and make a brief analysis; finally, in Section
4, we will draw some conclusions and present our ideas for future research.

2 Our Approach

GP is one of the most recent Evolutionary Computation techniques. Its goal is to evolve
populations of computer programs, which improve automatically as evolution progresses
(Banzhaf et al., 1998).

Due to the outstanding influence of the work of Koza (Koza, 1992) it is common,
within the Machine Learning community, to associate the term GP to the evolution of tree
structures. In this paper we follow this "classical” definition. Therefore, when we talk
about GP we are talking about the evolution of tree structures, which are built from a set
of functions (f-set) and terminals (t-set). The internal nodes of the tree are members of
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In our approach we use GP to evolve populations of programs that give colour to
greyscale images. We start by selecting a true-colour training image (or set of images),
which is split in its Lightness, Hue and Saturation channels.

The evolved programs take the greyscale image corresponding to the Lightness chan-
nel as input, and output a greyscale image. The output is compared with the Hue channel
of the training image, the closer the output is to the desired one, the higher the fitness.
The same procedure can be applied using the Saturation channel, to evolve programs that
generate the saturation information.

As evolution progresses, the quality of the individuals increases and, eventually, we
find programs which generate colourings very close to the original ones.

It is important to notice, however, that this is not enough - the idea is to use these
programs to give colour to different images. The fact that a program produces an output
that exactly matches the training one does not guarantee that it will produce an interesting
colouring on differentimages. In other words, the evolved programs must generalise well.
To promote their generalising capabilities, we took some precautions in the selection of
the function set and also in the construction of the fithess function. In the remainder of
this section, we describe the options taken and give justification for these options.

2.1 Implementation details

A first word goes to how the output of each program is calculated: given a particular
individual, it is run for each of the pixels belonging to the training image (or images).
Therefore, assuming a training image of 100*100 pixels, each individual must be run
10000 times. Each execution of an individual implies the transversal of its tree and calling,
for each node, the corresponding function.

When we take into account that the individuals can easily reach sizes of several thou-
sand nodes, and that GP populations usually contain several hundred individuals, the con-
clusion that the execution step is of considerable computational weight clearly follows.
In order to minimize this problem we implemented our system with GenCo, a Genome
Compiler system specially suited for image processing tasks (Dias et al., 2002).

A Genome Compiler is a GP system that makes online compilation of the evolved
programs. In situations like the one previously described, i.e. in which each individual
must be executed several times, this type of system can provide significant speed improve-
ments, since each individual is compiled once and the resulting machine code executed
several times (10000 considering a training image of 100*100 pixels). In this scenario,
genome compiler systems are, typically, 50 to 100 times faster than standard C based GP
implementations (Fukunaga et al., 1998; Nordin, 1994; Nordin and Banzhaf, 1995; Dias
etal., 2002).

Next we describe the design options made in the selection of the function and terminal
set, and the reasons that justified them.

2.1.1 Function and Terminal Sets

Our problem has some similarities with the symbolic regression of functions or images
(Koza, 1992; Nordin and Banzhaf, 1995). There are, however, some important differ-
ences. In a symbolic regression task, one would usually resort to a function set composed
by the arithmetic operations and the if statement, and use as terminal set the variables
X, Y. This type of set-up unavoidably results in programs whose output depends exclu-
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In an attempt to solve this problem, we added to the terminal set the lightness value of
the pixel being evaluated, thus giving more information to the program. This allows the
output to vary in accordance to changes on the lightness channel. Additionally, we also
added the lightness values of the adjacent pixels, so that the programs have access to the
surrounding context of each pixel.

Inwhat concerns the function set, we decided to keep the "traditional” one. The reason
for this choice is threefold: it was deemed sufficient for a first approach; the inclusion of
more complex functions (e.g. for-next loops, or high level constructs) would severely
increase the computational weight of the evaluation step; the inclusion of this type of
functions doesn’t necessarily benefit the evolutionary process, in fact, the opposite can,
and frequently happens (see, e.g., (Banzhaf et al., 1998)).

Taking all these factors in consideration we used the following function and terminal
sets:

o F-set ={+, —, %, %, sin, cos, i f },where% stands for the protected division opera-
tor, and if for the if-less-then-else statement (Koza, 1992).

e T-set={X Y, A..I} whereX,Y are variables corresponding to the coordinates of
the pixel, andA..T are the lightness values of the pixel being calculated and of the
surrounding ones.

The results achieved were very disappointing, basically because the behaviour of pro-
grams continued to be determined, almost exclusively, by the values of taed Y
variables. This is clearly undesirable, since it means that we are not evolving programs
that give colour to images according to their lightness channel, we are merely evolving a
function that, when applied over an interval®f Y values, generates the hue channel of
the training image. Thus, we are only memorizing the training instance(s).

Taking theX, Y variables from the terminal set resulted in having poor evolution, and
convergence to trivial and uninteresting colourings (e.g. having as a result the predom-
inant colour of the training image, or always assigning to a specific lightness value the
same hue or saturation).

It was clear that the variableX, Y were not producing any desirable impact on the
programs. Therefore, we decided to delete them from the terminal set. It was also clear
that without these variables the programs hadn’t enough information to determine the ap-
propriate colour for each pixel, since the programs only have a local view of the lightness
channel (the pixel being evaluated and the nine surrounding ones). To compensate this
lack of information, we introduced a new functioget(Az, Ay), whose behaviour can
be described as follows: assuming that the current pixel has the coordinatéseturns
the lightness value of the pixel situated @+ Az, b + Ay).

Since the get function provides a way to access the lightness values of the surrounding
pixels, there was no reason to make these values as part of the terminal set. Accordingly,
our function and terminal sets became:

o F-set={+, —, *, %,sin, cos, if, get}
e T-set ={E}, whereFE stands for the lightness value of the pixel being evaluated.

This set-up proved to be adequate, allowing the evolution of suitable colouring pro-
grams with good generalization capabilities, as will be shown in section 3. In the follow-
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2.1.2 Fitness Functions

We start by describing the fitness function used when we are evolving the saturation chan-
nel of an image from the lightness one. In this situation we use the root mean square error
between the desired output and the real one to assign fitness, i.e. considerinlydlost

the desired saturation values and tFais the output of a program the fitness is given by

the following formula:

1

R 1)
o (I(z,y)—P(z,y))>

1+

maxg X maXy

When we are trying to evolve the Hue information, this formula must be slightly
altered due to the circular nature of the Hue channel. Assuming that the images take values
in the [0, 1] interval, the above formula yields a maximum distance wheny) = 1
and P(z,y) = 0 (or vice-versa). However, in this situation the difference in hue would
be quite small and probably unnoticeable to a human observer. Therefore, we use the
following formula:

1
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wherel holds the desired Hue valueB the program’s output, angingy(z, y) returns the
minimum angle distance betweerandy. This fitness function can be further improved

if we take into consideration that the perceived difference in hue depends on the lightness
of the pixel (e.g. if the pixel as lightness equal to zero it will always be black, no matter
what hue we assign to it; even when the lightness is only close to zero, giving to that pixel
a hue different than the desired one will hardly be noticeable to a human viewer). Taking
this into account, and considering thiatholds the lightness information we obtain the
following formula:

1
ha/ = Smp, My (3)
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1+

max, X maxy

The tests conducted using formulas 2 and 3 as fitness functions yield deceptively good
results. In the early steps of evolution fitness increases steadily and swiftly, giving the im-
pression that an adequate colouring program will be easily found. However, after a few
hundred generations, the improvements in fitness drop suddenly and evolution seems to
halt. This wouldn't be a cause for concern if the evolved programs solved the problem at
hand satisfactorily. To some extent they do, since they usually have high fitness values,
relatively close to the maximum attainable fithess. The problem is that a qualitative anal-
ysis of the results reveals that the colourings are usually uninteresting from an aesthetic
perspective - typically, only a small subset of the original colours is used, resulting in
the loss of nuances that make the original colouring work. This situation becomes more
severe when the training images have a large area filled with a particular hue value, and
other areas filled with hue values close to that one.

To better explain the problem we will use an example: consider, for instance, a land-
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and blue are relatively close in the colour spectrum); a program that outputs the hue cor-
responding to the green colour will have a relatively good fitness, since it is not penalised
in the dominant green area of the image and only suffers a little penalisation on the blue
area. To make things even worse, such a program is easy to evolve, so it will be found in a
small number of generations. Changing it by mutation or crossover will tend to decrease
its fithess, meaning that the fittest descendants will tend to be similar to it. Therefore,
in a few generations the population will be dominated by similar programs, which will
begin to increase in their size to protect themselves from destructive crossover and mu-
tation; soon the increase in size becomes exponential and evolution becomes impossible
(the exponential growth of program size is usually called bloat problem; a more detailed
explanation of why bloat occurs can be found in (Banzhaf et al., 1997).

In an attempt to force our system to evolve more interesting colourings, covering
a wider colour spectrum, we decided to add another factor to our fithess function. A
description of the procedure used to calculate that factor follows.

We start by taking thd image (that holds the desired hue values) and decrease its
colour depth, using the optimised median cut algorithm, obtaining an ifflagemposed
by only 16 different hue value@; ..v16). Then we count how many pixels exist of each
different hue and store the pixel count values in an arfgy, For each pixel of image
P, which holds the output of the program, we determine the closest hue valaed the
distanceAv between the pixel value ang. We add toA g/ [¢] the valuel — Awv, thus if the
pixel's hue matches exactly one of the sixteen hues present in the training image we add
one, when it doesn’t match exactly we add slightly less. After performing this procedure
for all the pixels of the output image we compute the following formula:

(4)

1)

hb = =
(A=A )2

1+ — 6

Thus, we are basically comparing the number of pixels of each hue value of the output
and target image. Returning to our previous example of the green and blue landscape, if
the output image has the same amount of blue pixels and green pixels than the original
(and also assuming that it is the exact blue and green tone), formula 4 will give a value
close to one. However, if the output image is dominated by the green colour there will
be a huge discrepancy between the amount of green and blue of the two images, and
thereforeH,, will be close to zero. Notice that, in whaf, is concerned, the placement of
the colours has no real influence on the resulting value. To further force a wider coverage
of the colour spectrum, we also used the following modification to this formula:

1
hy = e (5)

= .
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1+ 16

which ensures that all sixteen different hues have the same weight in the calculation.
Resorting again to our example, and considering that we have a small yellow area (for the
sun), when we use formula 5 having the correct number of yellow pixels is as important

as having the correct number of blue or green ones. In the next section we will present
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3 Experimental Results

In order to test our approach to the colouring of greyscale images we conducted a se-
ries of experiments. As training images we selected some of the early works of Wassily
Kandinsky. These images were reduced to a size of 96*96 pixels in order to allow a rea-
sonably fast evolution. In its current form our system is only capable of handling square
images, so the aspect ratio of the original pictures was altered in order to comply to this
constraint. The criteria for selection of the training images was, mainly, individual taste,
but we also took into consideration the complexity of the image and the original aspect
ratio, to ensure that the images would still be recognizable after being submitted to the
previously described operations.

Although our system is prepared to use several training images at the same time,
we decided to use, in each experiment, just one training image, since this allowed faster
testing and still gives a good indication of the potential of the system.The results presented
in this section concern the evolution of programs that take the lightness channel of an
image as input and generate the hue channel.

The experimental settings were the following:

e Population size = 100; Tournament selection, Tournament size = 5; Initialisation
method = Ramp half and half; Initial tree depth = 2-6, Maximum tree depth = 20;
Crossover rate = 0.7, Mutation rate = 0.25, Reproduction rate = 0.05;

The runs were stopped after 1000 generations. We luged i, as fitness function,
since preliminary testing indicated that this type of fithess yield better results.

The best way of presenting the results of our system would be to show the colourings
that it generates. Due to the impossibility of presenting true-colour images, we decided to
make the figures that should be included in the paper available at the following address:

o http://www.aisb.org.uk/aisbj/extra/1/2/learningtocolour.pdf

In the remainder of this section we will make a qualitative analysis of the results
achieved. To get a clear view of the system’s strengths and weakness the reader should
visit the indicated address.

In the appraisal of the results we must take two different aspects into consideration ,
namely: 1) How well do the evolved programs colour the training image; 2) How do they
behave when applied to different images.

In what concerns to the first criterion, an analysis of the results shows that the gener-
ated colourings match closely, although not exactly, the colourings of the training images.

Not having exact matches isn’t cause for concern. In fact, we were not expecting to,
nor particularly interested in, achieving them, since our primary goal is to obtain programs
that generalise well.

In the experimental results present here the maximum number of generations was
set to 1000. We did, however, conduct some experiments in which this number was
significantly higher. These tests showed that fitness continued to increase steadily (though
slower). However, after 50000 generations the exact match was still to be found, and at
this point, the size of the programs had increased enormously (the average size was close
to 15000 nodes) and the rate of fitness increase was extremely slow.

A careful analysis of the generated colourings will also reveal that, in some cases,
there are small areas of noise. These noise areas considerably affect the quality of colour-
ings, since it is possible for a human observer to identify these spots, without resorting to
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The fact that we are applying the programs to images significantly larger than 96*96,
contributes to the appearance of noise. There are, however, other factors involved.

We tried to identify in which situations evolution may lead to this kind of results. Ap-
parently, they occur when, in the early stages of the evolutionary process, an individual
is found that generates a reasonable colouring with some noise areas. Since the evolu-
tionary process is in the beginning, the average fitness is low, and the individual will have
a fitness value higher than average, and hence great chances of generating descendants.
When the areas of noise are relatively small, they will not hinder significantly the indi-
vidual’s fitness. In these circumstances evolution will tend to improve other areas of the
drawing (e.g. try to match exactly the hue of a certain area). The problem is that, after
a few generations, the portions of code generating noise will be, not only hidden in the
middle of the pieces of code that generate a positive effect on fitness, but, probably, also
mixed with them. Thus, it becomes extremely difficult to eliminate the undesirable pieces
of code.

This type of problem is not particular to our approach. Both natural and artificial
evolutionary systems show this type of shortcoming. In our particular case, the best way to
avoid it would be to introduce a penalty for the individuals that generate noise areas. This
involves, off course, implementing a procedure to identify these noise areas. Although,
we still haven't tried it, we feel that the application of a median filter to the target and
generated hue channels, followed by a comparison of the changes introduced by it, should
be enough to identify most of the noise areas.

More important than the performance of the programs when applied to the training, is
their performance when used to colour images that were not use in their training. After
all, this was the original goal of our research.

We weren’t, obviously, expecting the programs to reproduce the colourings of images
that weren't used in their training. Considering that in each experiment only one training
image was used, that could only occur by sheer luck.

Like we stated before, the original motivation for our work was to evolve programs
that could be later used to colour the greyscale images generated by NEVAr. Therefore,
what we wanted to verify was if the evolved programs could generate consistent, appeal-
ing and believable colourings.

The experimental results indicate that this is the case. Some of the colourings gener-
ated by the programs are quite striking. Moreover, they present a good and (at least in our
opinion) aesthetically sound combination of colours.

It's also interesting to notice that, in some cases, the generated images are surprisingly
close to the original ones. Like we stated before we were not expecting for this to happen.

We consider these results to be extremely promising, especially if we take into con-
sideration that there is still lot's of room for improvement. To allow a more equitable
assessment of the results, avoiding the bias induced by already knowing the original im-
age, we decided to present three alternative colourings of Wassily Kandinsky painting
"Interior (My Dining Room)”, without presenting the original painting.

A final word goes to the fact that, in some cases, the generated colourings exhibit
some of the already identified illnesses, the presence of noise areas. To some extent, this
was expected, since the problem lies somewhere in the individuals’ code. The application
of the programs to images other than the training one tends to make these problems more
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4 Conclusions and further work

In this paper we presented our ongoing research whose goal is to learn to colour greyscale
images from a set of training instances. This effort is part of a wider research project that
aims at building a fully autonomous constructed artist.

The results achieved so far concern, mostly, the evolution of programs that generate
the hue channel from the lightness one. The experiments performed on the evolution of
programs to generate the saturation channel seem to indicate that this task is quite simpler.
Nevertheless, the replacement of the original saturation channel by one generated through
a program will unavoidably imply the introduction of further noise. At the time of writing
we can't access exactly how much this will affect the quality of the generated colourings
(although we foresee little impact).

There is also the need to conduct additional experiments, especially to use several
training images simultaneously, which will hopefully increase the generalization capabil-
ities of the evolved programs. Another aspect that can be improved is the fithess function,
we are currently altering it so that it also takes into account the vicinity relations between
areas of colour, once again the idea is to promote the evolution of programs that assign
colour based in more general concepts.

A final word goes to other types of application of the proposed techniques, for in-
stance, the colouring of black and white movies. Assuming that one of the frames is
coloured (either by hand or by some other method) it should be possible to evolve a pro-
gram that gives correct colours to the surrounding frames.
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