
A Taxonomy of Reliable Request-Response Protocols

Naghmeh Ivaki

CISUC, Department of

Informatics Engineering

University of Coimbra,

Portugal

naghmeh@dei.uc.pt

Nuno Laranjeiro

CISUC, Department of

Informatics Engineering

University of Coimbra,

Portugal

cnl@dei.uc.pt

Filipe Araujo

CISUC, Department of

Informatics Engineering

University of Coimbra,

Portugal

filipius@uc.pt

ABSTRACT
Reliable request-response interactions, in which the server
never executes a given request more than once, are being
used to support business and safety-critical operations in di-
verse sectors, such as banking, E-commerce, or healthcare.
This form of interactions can be quite di�cult to imple-
ment, because the client, server, or communication channel
may fail, potentially requiring diverse and complex recovery
procedures, which may result in duplicate messages being
processed at the server. In this paper we address the fol-
lowing question: could we provide a meaningful taxonomy
of reliable request-response protocols? We generate valid se-
quences of client and server actions, organize the generated
sequences into a prefix tree, and classify them according to
their reliability semantics and memory requirements. The
tree reveals three families of protocols matching common
real-world implementations that try to deliver exactly-once
or at-most-once. The strict organization of the protocols
provides a solid foundation for creating correct services, and
we show that it also serves to easily identify fallacies and
pitfalls of existing implementations.

Keywords
Reliability, Exactly-Once, At-Most-Once, Taxonomy

1. INTRODUCTION
Most of the interactions in distributed systems are based

on the request-response messaging paradigm, where a client
uses a channel to send a request to a server that, in turn,
sends back a response. Thus, such pattern typically involves
three di↵erent roles (client, server, and channel), which must
engage in a very rigid manner, to ensure that the interac-
tion succeeds. However, the notion of success depends on
the application. Some common invocation semantics are at-
least-once, at-most-once, and exactly-once, where the server
executes the request once or more than once; once and not
more than once; and once and only once, respectively.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SAC’15, April 13 - 17 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.

http://dx.doi.org/10.1145/2695664.2695898.

In its simplest form, the at-most-once semantics can be
simple to achieve: the client sends the request and the re-
sponse may or may not arrive. To achieve the at-least-once
guarantee, the client must re-send the same request until it
gets back a response, but risking multiple executions of the
service. However, neither the simplest at-most-once, nor the
at-least-once semantics can be used in bank transfers or on-
line purchases. These operations are non-idempotent and
should not occur more than once. A lack of response is also
not acceptable, because clients need to know whether the
operation succeeded or not. Only the exactly-once seman-
tics is entirely appropriate for such operations. However,
this semantics is hard to achieve, because, depending on
the assumptions, failures might be di�cult or impossible to
distinguish from slow transmission and processing of mes-
sages [1].

Given the di�culty, the importance and the unreliability
of solutions found in practice for the problem, we propose
a taxonomy of reliable request-response protocols reaching
beyond Spector’s request-response-acknowledgment (RRA)
[2]. In this taxonomy, we cover a large spectrum of reliable
interactions over unreliable channels (including non-FIFO).

To create this taxonomy, we generate an exhaustive list
of protocols based on a sequence of alternating client and
server actions. We assume that servers eventually recover,
but accept the possibility that clients may not recover (e.g.,
browsers). For this reason, we include, not only exactly-
once, but also at-most-once interactions. We then eliminate
all invalid protocols and organize the remaining into a prefix
tree. Finally, we classify the protocols according to their re-
liability semantics (at-most-once or exactly-once) and mem-
ory requirements (bounded vs. unbounded).

We illustrate the application of our taxonomy to real cases
and analyze several common implementations of online ser-
vices that match protocols of our taxonomy tree. The anal-
ysis shows the applicability of the taxonomy and points out
several pitfalls in the implementation of services that try to
ensure at-most-once semantics. We also analyze the imple-
mentation complexity of the protocols and observe that the
performance impact of running these reliable protocols on a
server is negligible. In summary, the main contributions of
this paper are the following:

• A taxonomy for reliable protocols with three di↵erent fami-
lies that clearly match common real-world implementations
that might be used by developers, to select the right pro-
tocol for their services.

• An analysis of the protocols considering their use with un-
reliable and non-FIFO channels and with respect to mem-

ory requirements (memory is used for keeping connection
state). This analysis can be vital for developers to imple-
ment services according to specific requirements or resource
restrictions.

• The application of the taxonomy to real on-line services (a
phone operator, a social network, and a Bank), showing its
usefulness in helping to analyze this type of services.

• An analysis of implementation complexity of the operations
involved in a reliable request-response interaction, based on
the jTPCC benchmarking tool [3].

This paper is organized as follows. In Section 2 we present
related work. In Section 3 we present the approach we used
to create the taxonomy. In Section 4 we analyze real ser-
vices, match their communication mechanisms to our tree,
and evaluate the throughput overhead of a popular family
of reliable protocols. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section we review the state of the art on protocols

for reliable client-server communication and mechanisms for
exactly-once execution of the requests at the server.

2.1 Reliable Communication Protocols
Developers usually resort to the Transmission Control Pro-

tocol (TCP) for reliability. However, despite providing im-
portant features, such as message integrity and message or-
dering, TCP cannot overcome long communication outages
and endpoint crashes. This problem is so important that
researchers proposed a large range of solutions at di↵erent
levels of the communication stack.

At the transport layer, we can find e↵orts as SCTP [4],
created to supersede TCP; and Multipath TCP [5] with the
ability to explore multiple paths, when available. But com-
munication failures may still exist when using these proto-
cols. A few session-layer protocols [6, 7] try to mitigate
the limitations of TCP, by introducing transparent bu↵er-
ing and retransmission mechanisms. At the application layer
level we can find a quite large number of solutions. Web ser-
vices [8] typically use HTTP to invoke remote operations,
but HTTP cannot ensure invocation reliability. To over-
come this, protocols like HTTPR [9] log messages and re-
liably transport them, even in the presence of network and
endpoints failures. HTTPR also ensures that each message
is delivered to its destination exactly once, or is reliably
reported as undelivered. Other e↵orts that reached stan-
dardization were WS-Reliability [10] and its successor WS-
ReliableMessaging (WS-RM) [11]. The WS-RM protocol
supports a set of delivery assurances including at-least-once
and exactly-once. However, these focus only on message
delivery and ignore the (re)execution of requests.

The exactly-once semantics was addressed by Spector in [2].
Spector presented e�cient communication techniques for high
speed local networks and introduced a basic communication
model. The work describes request (R), request-response
(RR), and request-response-acknowledge (RRA) protocols.
The latter enables the server to release memory, by letting
the server know that the client received the response. This
work was extensively explored later, namely in [12, 13], in
which idempotent messaging protocols, that ensure message
delivery, are described.

A subtle problem, that is of utmost importance in the
context of this paper, has to do with the ordering properties

required from the communication channel. Some well-known
protocols, such as the User Datagram Protocol (UDP), are
assumedly not FIFO; however, even TCP does not really
o↵er a FIFO channel, because TCP connections may crash.
Consider the case where a client sends a request and later
gets an exception informing that the TCP connection is no
longer working. If the client tries to open a second TCP
connection and the server does not close the first connection
on time, old messages may reach the server out of order.
Likewise, in HTTP, a client may discard an HTTP session,
while messages are still in transit.

2.2 Exactly-Once Execution of Requests
Any implementation providing exactly-once over non-FIFO

lossy channels requires stable storage [14, 15]. As we will see
in Section 3, this is the case of all protocols included in our
taxonomy. Many authors resort precisely to stable storage
to tolerate crashes of servers that maintain active TCP con-
nections. As an example, a fault-tolerant TCP server that
uses message logging is proposed in [16], as an approach to
recover from faults. The server logs all requests and, in the
case of failure, some other replica will replay the log to reach
the same state of the original server. Phoenix/APP [17] and
iSAGA [18] are also interesting cases that use logging mech-
anisms to release developers from the burden of managing
faults occurring in business-oriented web applications.

ACID transactions and distributed ACID transactions [19],
which ensure that multiple parties agree on the outcome
of a given interaction, also play a key role in servers that
must execute requests only once. The large body of work on
the atomic commit and consensus problems [20] is a funda-
mental part of the solution for distributed transactions. A
widely popular protocol for distributed transactions is the
Two-Phase Commit [21] (2PC). However, 2PC is heavy and
blocking, forcing all parties to lock the resources involved
until they take the final decision.

To avoid the overhead of distributed transactions, Queued
Transaction Processing techniques [22, 23] provide solutions
that ensure server execution. For instance, in [24] the server
queues each request, providing it a unique identifier. At
commit time, the server saves the request identifier in the
database. Upon recovery from a failure, the server reads the
database to determine which requests remain unattended.
Some authors extended this e↵ort to ensure delivery for mul-
tiple subscribers in messaging systems [25].The idea of us-
ing a unique identifier explores the notion of idempotence,
which is also quite common. Since many operations are not
idempotent, developers often add identifiers to prevent their
re-execution. For example, web developers may use hidden
fields in HTML forms. In [26] JavaScript is used to pro-
vide logs that enable web browsers to resume from crashes
and to relieve web developers from this e↵ort. Preventing
re-execution is also addressed in [27] in which generalized
“idempotent” requests are used to enable persistence of exe-
cution state.

3. TAXONOMY OF PROTOCOLS
In this section we present the assumptions, definitions,

and the approach used to build our taxonomy of reliable
protocols. The approach includes the following key steps:

• Generation of all protocols: Starting with a set of basic
constraints (e.g., the first action must be the generation of

a request by a client), we define all possible sequences of
actions for both client and server. We then exhaustively
combine them in interleaved sequences.

• Removal of invalid protocols: We remove invalid pro-
tocols, which, for instance, cause multiple processing of the
same request or lead peers into inconsistent states.

• Organization of the protocols into a prefix tree: The
generated protocols are organized in a tree structure (each
node of the tree is a protocol), according to the similarity
of their actions. For instance, two protocols will be placed
under the same parent if both share the same initial actions.

• Classification and analysis of the protocols: The
identified protocols are classified based on reliability se-
mantics (i.e., at-most-once or exactly-once) and analyzed
according to memory requirements (bounded or unbounded).

3.1 Definitions and Assumptions
In this work, we consider the presence of a client, a server

and a channel, all of which might be faulty. Client and server
execute actions, such as generating a request or performing
some computation. Each client or server may execute mul-
tiple consecutive actions. The term protocol refers to a se-
quence of interleaving client and server actions. For each of
the interleaving points in a protocol, a message exchange is
needed. This can be accomplished by giving the initiative
of sending a message to the client and making the server
acknowledge. Hence, the message exchange starts with the
client sending a request to the server, then the server replies
with another message and so on. If the protocol terminates
with a client action, no further message is required. If the
protocol terminates with a server action instead, the server
acknowledges (this lets the client repeat the message if it
misses a timely acknowledgment).

We assume the following failure scenarios. The server
must always recover from crashes; however, the client may or
may not recover (i.e., the client may be either crash-recovery
or crash-stop). To be able to recover from failures, crash-
recovery clients and servers use stable storage to save their
actions, so that the recovery process can resume from the
last saved state. In the case of crash-stop clients, all data
can be kept in volatile memory instead of stable storage. We
do not assume atomic save and send actions (which can be
quite complex to implement): saving to stable storage is one
action, sending a message is a di↵erent separate action. This
means that endpoint crashes may cause duplicate messages.

Channels are assumed to be fair but unreliable. They
may lose messages, but will deliver a message that is sent a
su�cient number of times. However, this may result in mes-
sage delivery failures, as endpoints stop re-sending a message
once they delete all resources associated with a request. We
also assume that the channel may reorder messages (i.e., it is
non-FIFO), but does not change their contents. Finally, we
assume that the channel, crash-recovery client, and server
eventually work in a fault-free period for a su�ciently long
time to complete the interaction. Without this assumption,
achieving exactly-once semantics is impossible [28].

To generate the reliable protocols, we define a set of pos-
sible client and server actions (see Table 1) that will be
later aggregated and combined in sequences. The client ac-
tions include: generating a request that will be later sent to
the server (g); performing computation using volatile or sta-
ble storage (c); atomically saving a response and any system
state changes to stable storage (.); releasing all state related

to a request from memory (r). The client may need more
than one (c) action if it needs to exchange multiple messages
with the server. This may result in changes to the system
state, thus crash-recovery clients must atomically save these
changes and each response in the storage. The release (r)
ends the request, by releasing any memory references asso-
ciated with it (e.g., using a free() or equivalent operation)
and also, in crash-recovery clients, by deleting the related
state from storage. After the client atomically saves a re-
sponse to stable storage (.), when it crashes and resumes it
will not generate (and send) the original request again, since
it already has the corresponding response in stable storage.

As we can see in Table 1, the server executes slightly dif-
ferent operations. When possible, we use capital letters to
distinguish the server from the client. The “C” action refers
to perform computation using volatile or stable storage that
may or may not result in the generation of a message for
the client; “;” refers to atomically saving a response and any
system state changes to stable storage; and “D” refers to
deleting all state associated with a given request from sta-
ble storage. Note that this di↵ers from the release operation
(r), where the client releases all references to a given request
(although crash-recovery clients may also optionally delete
state from stable storage). Since a server must recover from
failures, all state associated with a request is saved in stable
storage, thus the“D”operation (used, for instance, when the
server has been informed that the client received a response)
must delete that information from the storage.

Table 1: Client and server set of actions

Action Endpoint Description

g client Generate a request
c client Perform computation using volatile/stable storage
. client Atomically save a response and any system state

changes to storage (only in crash-recovery clients)
r client Release all memory references to a request. Crash-

recovery clients may delete all state related to the
request from stable storage

C server Perform computation using volatile or stable stor-
age, which may result in generating a response

; server Atomically save a response and any system state
changes to stable storage

D server Delete request-related state from stable storage

There is no symbol to identify a send operation because
each interleaving point in the protocols means that a mes-
sage is sent from one endpoint to another. A final remark
regarding the unique identifier of the requests ir necessary,
at this point. Although we could expect the “g” action to
generate the identifier, we found cases where the server cre-
ates such identifier (e.g., in a “C” operation, see Section 4).

In Table 2 we identify the actions that require the use
of stable storage, with respect to crash-stop clients (in at-
most-once interactions), crash-recovery clients (in exactly-
once interactions), and also the server. In Table 2 “Y es”
means that stable storage must be used and “No” means
that it is not used. The term “Maybe” means that it may
or may not be used. Note that, in addition to the normal
case (i.e., no failure), we also consider (when applicable) the
action in the context of a recovery procedure and this may
have implications on the use of stable storage.

As we can see in Table 2, the request generation (“g”) does
not need stable storage in crash-stop clients. Their nature

disallows them from saving requests or state (i.e., at least
with the goal of using them for recovery) and, they will not
read the request or any other data necessary to generate it
from stable storage. In the case of crash-recovery clients, this
operation may need to read some data (or even the entire
request) from stable storage to regenerate the request, upon
recovery. Since reading from stable storage is not manda-
tory (other mechanisms may be used), we use “Maybe” for
exactly-once semantics in crash-recovery clients.

Table 2: Storage actions for the reliable protocols

Action
Crash-stop client
(at-most-once)

Crash-recovery
client (exactly-once)

Server

g No Maybe —
. or ; — Yes Yes
c or C Maybe Maybe Maybe
r or D No Maybe Yes

The “.” action is used only in crash-recovery clients (to
save state for recovery purposes), thus the need for stable
storage is mandatory in this type of clients (and not used in
crash-stop clients). The server must also keep the state in
stable storage to be able to recover after a failure. Thus, “;”
always requires stable storage. Computation actions “c” and
“C” can either involve computation using stable storage or
simply in-memory manipulation of data, this depends on the
specific applications. Note that these actions are just generic
computation and do not account for operations executed in
a recovery procedure. For this reason, crash-stop clients are
marked with “Maybe” (since they do not try to recover, use
of stable storage depends on the application).

We also mark crash-recovery clients with “Maybe”. When
recovering from failure, these clients will go back to the pre-
vious commit point. Thus, although the commit operation
and the recovery procedure require access to stable storage,
the computation may not (its use depends on the applica-
tion). The same applies to the server. Note that if a failure
has occurred after a commit, upon reception of the same
request, the server does no computation (“C”) and simply
sends a response. “r” simply releases the references to a
request from memory and crash-recovery clients may also
need to delete state associated with the request from stable
storage. The “D” also releases references from memory and
permanently deletes the associated state from stable storage.

3.2 Generating the Protocols
A first obstacle to provide a taxonomy of exactly-once

protocols is that their number is infinite, as the client and
server could keep exchanging messages forever. To limit the
number of protocols, we consider the following restrictions:
1) the client must start with a“g”operation; 2) the client and
server can only save once (“.” or “;”) — this minimizes the
number of operations that involve stable storage; 3) once
both client and server save, they do not engage in more
message exchanges (except possibly for releasing memory
and deleting state); 4) their interaction prior to saving is
limited to two rounds of exchanges1; 5) the server does not
do any computation after saving response and deleting state.

Based on the above restrictions, we can define “gcc.cr” as
the largest sequence of client actions. A client may not exe-
cute some of the actions in this sequence (only the “g”must

1Note, however, that in faulty runs, client and server may
repeat messages, thus engaging in more than two rounds of
exchanges.

always be present). For example, crash-stop clients do not
need to save data (.). Computation steps (c) and releasing
memory (r) are also not mandatory. A crash-recovery client
may re-generate the request if it crashes between “g” and “.”
(i.e., by returning back to the “g” operation). Otherwise, if
the crash occurs after “.”, the client will return to “.”, but
does not need to continue the protocol because the crash
would work as a release (r). Considering “gcc.cr” as the
largest sequence of client actions, we can have the following
variants: CLIENT SEQ = {“g”, “gcccr”, “gc”, “gc.r”, “gc.”,
“gcc.r”, “gcc”, “g.cr”, “g.c”, “gcc.”, “gcc.cr”, “g.”, “gr”, “gc.cr”,
“gc.c”, “gcc.c”, “gcr”, “g.r”, “gccr”, “gccc”}. As an example, a
sequence like “gc” can be applicable to crash-stop clients, as
they simply do computation, without saving state. On the
other hand, a crash-recovery client could use “gc.”, which
means that the client does some computation (c) and saves
the state or the result of the computation (.).

Considering the above restrictions, we can define the largest
sequence of server actions as “CC;D”. Again, a server may
not execute all actions, which results in the following pos-
sible sequences: SERV ER SEQ = {“CC;”, “C;”, “CC;D”,
“C;D”}. As we can see, in some cases the server does not
delete state (e.g., when memory is unbounded).

In order to enumerate all protocols, we compute the Carte-
sian product between the client and server set of action se-
quences (CLIENT SEQ and SERV ER SEQ). For each
element in the resulting set we generate combinations be-
tween client and server actions. These combinations follow
two restrictions: 1) The first action must be executed by
the client and followed by a server action; 2) The order of
client and server actions must be the same before and after
the combinations. For instance, given the element (gc., C;)
generated by the Cartesian product, we may have the pro-
tocols “gCc.;”, “gC; c.”, “gCc; .” , but not “Cgc.;” or “g;Cc.”.
Thus, for each set in the Cartesian product, the number of
protocols started by “g” and followed by the first action of
the server is

�
ls+lc�2
ls�1

�
, where ls and lc are the length of the

server and client sequences, respectively. Considering the
entire product set we have 1, 646 possible protocols.

3.3 Eliminating Invalid Protocols
After generating the protocols (as described in the pre-

vious section), we eliminate invalid or redundant protocols.
Although this step could be integrated in the first step, we
have separated them to decrease implementation complex-
ity. The (non mutually exclusive) rules for elimination are
the following: 1) “.” must not happen before “;”, because at
save time (.) the client cannot be sure that the server will
commit; for the same reason, if “.” does not exist, the client
cannot release (r) before “;” (“gC.;” or “gCr;” are incorrect);
2) the server cannot delete (D) before the client saves (“.”)
(e.g. “gC; cD.” is incorrect) and also before the client uses
the result with“c”or“r”(e.g. “gC;Dc” is incorrect), because
the client may re-send or regenerate the request causing a
second execution on the server; and 3)sequences that repeat
actions on the same side, such as “.c”, “cc”, “;C” are useless
and can be removed. In this step we also remove sequences
finishing with a “c”, because the final c is implicit (the pro-
tocol must finish with a reply from the server and the client
can continue with any computation from that point on). Re-
strictions 1), 2), and 3) respectively delete 855, 254, and 507
protocols, for a total of 1646�855�254�507 = 30 protocols.

g

gCc;

gCcCc;

gC;

gCc;.

gCc;cD

gCc;r

gCc;.D

gCc;.r

gCc;.Dr

gCc;.rD

gCc;cDr

gCc;rD

gCcCc;.

gCcCc;cD

gCcCc;r

gCcCc;.D

gCcCc;.r

gCcCc;.Dr

gCcCc;.rD

gCcCc;cDr

gCcCc;rD

gC;.

gC;cD

gC;r

gC;.D

gC;.r

gC;.Dr

gC;.rD

gC;cDr

gC;rD

g gCcCc;
T

gCcCc;r

gCcCc;.

gCc;r

gCc;.

gC;.
gC;

gC;r

gC;.r

gCc;

gCcCc;.r

gCc;.Dr

gCc;.rD

gCc;cDr

gCc;rD

gCcCc;.Dr

gCcCc;.rD

gCcCc;cDr

gCcCc;rD

gCc;.D

gCcCc;.D

gCc;cD

gCcCc;cD

gC;.D

gC;cD

gC;.Dr

gC;.rD

gC;cDr

gC;rD

gCc;.r

Incomplete

At-Most-Once

Legend

Unbounded
Server Memory

Unbounded
Client Memory

 Timeout-
Based Deletion

Exactly-Once

Explicit
Deletion

Node Type

Memory
Utilization

Legend

Node Type

Incomplete

At-Most-Once

Exactly-Once

Memory
Utilization

Unbounded
Server Mem.

Unbounded
Client Mem.

Timeout-based
Deletion

Explicit
Deletion

Figure 1: Exactly-once and at-most-once protocols

3.4 Organizing the Valid Protocols
In this step we organize the protocols in a prefix tree,

based on the similarity of their actions. Those with similar
initial actions will be under the same branch (e.g., “gC; .”,
“gC; cD” , and “gC; r”). Figure 1 presents the prefix tree
of protocols. As we can see, the prefix tree has three main
branches that correspond to three families of protocols: “gCc;”
on top, “gCcCc;” in the middle, and “gC;” below (which is
similar to Request-Reply [2]). At level 2 (i.e., the direct
children of the root), all protocols reach the point where the
server commits and saves the state to stable storage (“;”)
and may send a message to the client, if necessary. Then,
level 3 adds one of three options for the client: “.”, “c” or
“r”. From that level on we have di↵erent deletion variants.
Their su�xes are “r”, “D”, “rD” and “Dr” and are common
to all families.

3.5 Classifying and Analyzing the Protocols
We first classify the protocols, according to their reliability

semantics, as exactly-once or at-most-once. The protocols
where crash-stop clients do not save response and state (i.e.,
without “.”) are shown as octagon nodes. Since the client
does not save state, the exactly-once semantics can be vi-
olated when the client crashes, thus these nodes represent
at-most-once protocols. The remaining nodes, where crash-
recovery clients (that save state changes) are included, are
exactly-once. As visible in Figure 1, the su�xes for at-most-
once and exactly-once protocols are similar among families.

The second part of the classification considers memory
usage in each protocol. Classification according to memory
requirements is quite important in reliable request-response
interactions with unreliable and non-FIFO channels. In fact,
one of the main challenges to address is the deletion of mem-
ory used to keep information regarding the messages, as an
improper deletion of a given message may easily violate the
desired semantics. Thus, the following paragraphs discuss
timeout-based solutions for deletion.

3.5.1 Causes for Unlimited Memory Utilization
To avoid re-execution of a request, the server needs to save

the state. It can delete the state whenever it knows that the
client received the response and no duplicate request will
arrive later on. The implementation of this scenario is easy
using a FIFO channel, but most channels are non-FIFO.
Here, we need to emphasize the common TCP and HTTP
FIFO fallacy, as both, TCP and HTTP plus client sessions,
may reorder messages in the presence of channel failures or
client failures, respectively. This may break naive imple-
mentations of exactly-once request-response interactions.

If we consider a non-FIFO channel, it is impossible to
know (excluding specific cases) if a duplicate request will ar-
rive later or not. This turns deletion of state into a problem
for the server, as it needs to avoid re-execution. Consider
the following case with the “gC; .D” protocol: the initial
“Request” (transition from g to C, written as g ! C) of
the client does not pass through the channel. The client
re-sends the request, receives the reply and acknowledges
(. ! D), letting the server delete all associated state. Then,
the first request finally arrives at the server, causing an un-
desired re-execution. On the other hand, memory conserva-
tion demands for the deletion of state concerning processed
and completed requests on the server. Hence, we may say
that deleting state is challenging, because: 1) channels may
deliver repeated messages out of order and there is no guar-
antee that the server will not receive the same request after
deleting its state; 2) even in protocols where the client sends
a deletion order to the server (! D) (e.g., “gC; .D”), deletion
may not occur, because the client may crash before sending
the message.

3.5.2 Timeout-Based Deletion of the State for Non-
FIFO Channels

The solution for the problem described in the previous sec-
tion is to use timeouts. Timeouts can help releasing mem-
ory in protocols where the deletion of state cannot be easily
guaranteed (e.g., due to a client failure). In fact, clocks can
be used for harmlessly deleting the state in the “gC;” fam-
ily of protocols; obviously, only if they have bounded drifts
and if client and server synchronize beforehand, using some
mechanisms like NTP [29], or Christian’s algorithm [30].

In a timeout-based scenario, at the moment “g ! C” the
client sends a timestamp with the request and keeps both.
The server receives the message and associates a timeout
past this timestamp. Once the timeout expires, the server
may delete all data associated with the request and refuse
to re-execute afterwards. The client can help the server re-
leasing memory earlier if it knows that there are no pending
messages in the channel for that request (e.g., because it re-
ceived all replies). This corresponds to the“! D”part of the
protocols. Also, the server may use the timeout to delete the
state, even if the client does not send the deletion message.
In the next paragraphs we prove that this “timeout-based
deletion” of server state prevents re-execution of requests.

Theorem 1. In the “gC;” prefix protocols with timeout-

based deletion, the server executes each request at most once.

Proof. For a request sent by the client at time tc, the
server sets a timeout that expires at tc +�, where � is the
duration of the timeout. Before this timeout, the server has
the state of the request and does not execute it a second
time. After the timeout, the server discards the requests.
Since the client cannot change the timestamp tc of further
copies, no duplicate execution can occur.

� should be much larger than clock skews and chan-
nel delivery time, otherwise the request could fail to reach
the server before tc + � according to the server’s clock.
The initial exchange of the “gCc;” family can o↵er better
solutions for the deletion problem. When the server first
replies (“gC ! c”), it can insert a deadline for the commit
(“gCc !;”). If duplicate messages of the same request ar-
rive, the server will respond with the same timestamp (or
even with the reply, if available). Any client commit order
must include this timestamp. If the client fails to meet the
deadline, the server aborts the request, deletes its state, and
refuses to commit thereon. The server will also not com-
mit if it has no previous information on the commit request.
In this family, the server can delete the state as soon as
it receives a delete order (“! D”), which we name as “ex-
plicit deletion”. Nonetheless, to limit memory utilization,
the server may delete the state if the client fails to commit
within a time frame �. For this reason, even crash-recovery
clients must ensure that they do not repeat requests that
arrive at the server spaced by an interval larger than �.

Theorem 2. In the “gCc;” prefix protocols with explicit

deletion, the server executes each request at most once.

Proof. Assume that the server committed orders with
timestamps ts1 and ts2 for the same request. Note that
the server does not lose committed state even if it crashes.
Hence, the server must have explicitly deleted the state of
the request. If this resulted from a client delete message
(“! D”), by definition of the protocols, the client must not
generate new commit orders (even if it crashes). Any other
commit order, must still have been in the channel, and would
therefore not match any future timestamp set by the server
for this request, in case the server received an old “g ! C”
message, also still in the channel. If the server deleted the
state after time ts1 +�, then ts2 > ts1 +�.

Demonstrating the at-least-once part (to ensure exactly-
once) depends on many implementation details. We already
assumed a fair channel and a crash-recovery server, but we
need the following additional properties: 1) the client must
recover from crashes or it must not fail; 2) the server must
get the request within the timeout �; and 3) client and
server must agree to execute the protocol. For instance, in
banking operations, banks may request security codes before
committing (see Section 4). If the client fails to provide the
correct code, the request will go unanswered. Nonetheless,
if we assume that all the three previous conditions hold,
we can discard the intermediate “Cc” or “CcCc” operations
before commitment and restrict our analysis to the “gC;” as
the head of family (because the structure of the tree is the
same in the three main families mentioned). In this case, the
evaluation is simple: if the client crashes before sending the
request, it will resume to re-generate and resend the request,
according to the definition of “g”. Since the channel is fair
and the server is crash-recovery, it will receive and commit
the request in “;” at least once.

We can now explain the di↵erent gray tones in Figure 1,
from darker to lighter. Protocols that do not release server
memory are the darkest; protocols that do not release client
memory have the second darkest tone; protocols that re-
lease client memory but depend on timeout-based deletion
at the server are next (these belong to the “gC;” family);
finally, protocols that delete client memory and enable ex-
plicit deletion of server memory are white and have solid

lines. Note that in this latter case, the server should also
use timeouts, to clean data from clients that crash and do
not recover.

As previously discussed, both TCP and HTTP with ses-
sions can easily fail to provide FIFO ordering, when connec-
tions or endpoints crash. To avoid depending on properties
that the channel cannot easily o↵er (which must be care-
fully added by the programmer), reliable protocols should
resist to message reordering even when the server deletes
the state of requests. We showed three families of exactly-
once protocols that can do this, with di↵erent tradeo↵s. The
extra initial exchange of messages in the “gCc;” family (or
“gCcCc;”) enables immediate deletion of server data, at the
cost of requiring a previous round of messages per request
(“g ! C ! c”), whereas the “gC;” family requires synchro-
nized clocks and does not allow immediate deletion of data,
usually forcing the server to keep data up to a timeout.

4. CASE STUDIES AND COST ANALYSIS
In this section we present a set of experiments, which tar-

get the following goals: 1) show the applicability of our tax-
onomy to real services, including its usefulness in disclosing
pitfalls and fallacies, which may occur when implementing
the protocols; and 2) Understanding the overhead of using
a popular reliable protocol.

4.1 Reliable Interaction in Real Services
The protocols presented in Figure 1 (Section 3) match

di↵erent types of real software and on-line services. The
simplicity of the shortest family (“gC;”), makes it appealing
to be used in many cases. For instance, the Exactly-Once
E-Service Middleware (EOS) [26] uses the protocol “gC; .”of
this family. In the [26] implementation, the server does not
delete the state and the client, which is crash-recovery, saves
all the requests but not their responses. Thus, the client has
to send all the requests again upon recovery. Since the server
does not delete the state, exactly-once is achieved.

Protocols with deletion, such as “gC; .D”, which corre-
spond to Spector’s RRA [2], are found implemented in [12].
We are also aware of a metropolitan-scale ticketing system,
where clients are pieces of equipment that periodically send
data to a central database. Since this set of equipments does
not grow too large, the server may keep a version number
per client indefinitely, thus not needing to delete state.

We can find implementations similar to the sequences start-
ing with “gCc;” in on-line services, although their main goal
might be to prevent over-usage of the service and not to pre-
vent duplicate executions of the same request. For example,
many sites use captchas to prevent automatic submission of
forms. The user requests a page (g), the server computes
the page and sends a captcha (C), the user enters the data
and the captcha text (c). Then the server processes the data
and replies to the client. These captchas are usually associ-
ated to a timeout window, which is similar to the � timeout
mechanism of the “gCc;” family discussed earlier.

However, we can easily find cases where captchas change
on reload, thus breaking any possibility of ensuring exactly-
once semantics. In a cell phone operator (uzo.pt) we found
a “gCc;”-like implementation of a service providing on-line
text messages (SMS). After submitting an SMS and receiv-
ing a response, if we press the back button of the Safari
7.0.3 web browser and accept to reload the page, the forms
are entirely filled as before, but the captcha text is not the

same anymore (it changes on reload). This happens regard-
less of the response. If we switch o↵ the network and the
response is an error message from the browser, the behavior
is exactly the same, once we turn the network back on. If
a page reload returned the same captcha, we would know
that the previous message did not get through. This type of
implementation is simply best-e↵ort, from the point of view
of the invocation semantics.

Longer sequences serve to provide better protection, by
using the additional interactions to request security codes.
Banking systems tend to use these more complex protocols,
often of the“gCcCc;” family. In fact, once the client requests
a money transfer (g), the bank will ask for the details (first
C), the client will fill them in (first c), the server will respond
with a test (second C) and the client will reply to that test
(second c). After this point, the server can commit (;) and
respond, to let the client change page (r). Only then should
the server delete the request (D). This can ensure an at-
most-once semantics, by providing some clues to the user
about the success of his previous attempts. Note however
that the first goal of the developers is likely to be security.

We also tested an on-line banking site (name not disclosed
due to security issues), to observe to which extent they force
the security code repetition. We can refer that within the
same login session, the bank keeps requesting the same code
until one uses it. This lets the user know if the request got
through and enables the server to filter duplicates. However,
if the user logs out and then logs in, or if he uses a di↵erent
browser in a simultaneous login, the code will be di↵erent2.

Another excellent study for the at-most-once semantics
comes from big social networks, such as Facebook and Twit-
ter. They do not delete server state, to ensure that each
post is new. They apparently follow a simple “gC; r”, where
the “g” actually creates a unique message identifier (unlike
the banking). However, we tried to submit the same mes-
sage twice, faster than it would be possible to a human.
For this we wrote a browser extension in JavaScript that
submits the same form twice within a configurable interval.
With an interval of 10 ms we managed to replicate posts in
one social network (we omit its name for security reasons).
Why exactly this happens is beyond the scope of this pa-
per, but hugely popular sites are typically backed by NoSQL
databases that do not preserve all the ACID properties.

Some protocols used in real systems may elude our tax-
onomy. For example, banking sites may send two messages
instead of one: one for the browser and a confirmation code
for the user’s cell phone. Many developers will also rely
on hand-shaking, from TCP connections to HTTP cook-
ies. They would first set up a session, before repeatedly
invoking reliable operations. This sort of solution is halfway
between the “gCc;” (or even “gCcCc;”) and the “gC;” fami-
lies, because it requires a single handshake, before invoking
operations in single messages, possibly multiple times.

4.2 Implementation and Overhead Analysis
The commit operation (;) might be complex to implement,

but developers may use a single commit to simultaneously
change their state and save the response. Deletion of re-
sponses (D) is simpler, as it involves a single database ta-
ble. On the client, the generation (g) may require a unique

2Nevertheless, the bank had a security scheme that sus-
pended the account of one of the authors around the 5th

code without response.

identifier, but the identifier may also come from the server
(e.g., when the client is a browser). To implement the save
operation (.), the client can first save and then send a mes-
sage to let the server delete (if the protocol requires so), in
a separate step. We never require an atomic disk write and
message send.

However, we still need to know the cost to provide reliable
invocations, from the server perspective. The cost for the
client is clearer: in the “gCc;” family it involves two round-
trip times, or even a third one, if the client must send a
deletion order and does not use an additional thread for
that; the “gCcCc;” will take even longer. Memory costs for
the server depend on the size of the responses and on the
time the server keeps them on disk (and possibly memory),
before deleting them.

To evaluate the throughput overhead, we ran a simple
benchmark with the “gCc;” reliable interaction. We did not
consider “gCcCc;”, because in the cases we are aware of,
the extra “Cc” serves to ensure that the correct human is
in the loop, thus making throughput less important. Fur-
thermore, this extra round-trip might a↵ect latency more
than throughput. The other family (gC;) is too simple for
conducting a realistic test.

To evaluate the impact of adding reliable interaction se-
mantics to a service, we carried out an experimental eval-
uation using three versions of jTPCC v5.4, an implementa-
tion of the well-known TPC-C benchmark [31]. The versions
used are: a) the default version of jTPCC; b) a best-e↵ort
Java RMI client-server version of jTPCC; c) a reliable ver-
sion of jTPCC.

Table 3: Systems used in the experiments
Endpoint OS CPU Memory

Client
Mac OS X

version 10.6.7
2.4 GHz Intel
Core 2 Duo

4 GiB RAM, 3
MiB cache

Server
Linux

version 2.6.34.8
2.8 GHz Intel 4

Cores
12 GiB RAM, 8

MiB cache

The standard form of jTPCC is a monolithic application
(version a), with multiple terminals simulating operations
on the database. We split the standard jTPCC, to run the
client terminals and the server on di↵erent machines, using
RMI for the communication (version b). The TCP connec-
tion that RMI first sets up between client and server is not
a problem for us. On the contrary, RMI will try itself to
ensure the at-most once semantics for each exchange of the
protocol, for example, the “g ! C” part of the protocol,
which involves a client-to-server message and its response.

In our reliable version of TPC-C (version c), all terminals
at the client-side request transactions to the same remote
object of the server. Notice that most RMI implementa-
tions, namely our Oracle Java 1.7.0 51 implementation, will
provide multi-thread access to this remote object and will
therefore create parallel requests to the OLTP system. Since
we tried “gCc;”, each client interaction occurs in two sepa-
rate calls: a first one to get a timestamp, a second one to
execute the operation. The typical server response to this
operation is a text string with nearly 1 KiB. Since it must
ensure at-most-once, the server saves the response on disk.

In some cases we use a single transaction to run the oper-
ation and to save the response (committing in the end). In
other cases, the requests involve multiple separate transac-
tions (e.g., with independent queries), and we use an extra
transaction to save. Since the server always needs a timer to

delete replies to clients that abruptly cease interaction, we
simply did not use any deletion on the protocol and resorted
to a timer. The server deletes all responses with more than
� = 1 minute, every 20 seconds (see Theorem 2). The pre-
cise protocol we ran was “gCc; r” (with no “.”), because we
did not need to protect the client from crashes.

Table 3 presents the systems used to execute the tests,
which were configured to use 10 simultaneous clients that
invoked the TPC-C operations. Table 4 presents the results
(in transactions per minute - TPM) obtained for an average
of 40 tests. The throughput loss is around 3.5% for the
reliable version. This value is small enough to suggest that
the main additional cost of a reliable implementation is the
extra round-trip times seen by the client.

Table 4: Throughput overhead results
TPC-C Version TPM Stdev

a 389.11 42.28
b 389.03 22.69
c 375.37 15.00

5. CONCLUSION
In this paper we presented an approach to generate a com-

prehensive set of reliable (exactly-once and at-most-once)
protocols. The generated protocols are organized in a pre-
fix tree and each node of the tree is classified based on the
reliability semantics and memory requirements. We showed
the applicability of the protocols presented in the tree to
real-world on-line services and discussed the likely fallacies
and pitfalls that may take place when implementing these
protocols. We also show, in a typical services environment,
that the implementation cost of a popular reliable request-
response protocol can be quite low. We believe that this
paper provides a detailed understanding of reliable interac-
tions and their challenges, helping developers to build cor-
rect services. It can help developers selecting the right type
of interaction for future services and understand if their cur-
rent ones are using the correct interaction. As future work,
we intend to model and formally verify the protocols pre-
sented in this paper.

Acknowledgments
This work was partially supported by the Portuguese Foun-
dation for Science and Technology contract SFRH/BD/67131-
/2009 and by the project iCIS - Intelligent Computing in the
Internet of Services (CENTRO-07-ST24 FEDER-002003),
co-financed by QREN, in the scope of the Mais Centro Pro-
gram and European Union’s FEDER.

6. REFERENCES
[1] Michael J. Fischer, Nancy A. Lynch, and Michael S.

Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 1985.

[2] Alfred Z. Spector. Performing remote operations e�ciently
on a local computer network. Commun ACM, 1982.

[3] Open source java implementation of the tpc-c benchmark.
http://jtpcc.sourceforge.net.

[4] C. Metz R. Stewart. SCTP: new transport protocol for
TCP/IP. IEEE Internet Computing, 2001.

[5] Sebastien Barre, Christoph Paasch, and Olivier
Bonaventure. MultiPath TCP: from theory to practice. In
NETWORKING, pages 444–457. Springer, 2011.

[6] N. Ivaki, F. Araujo, and F. Barros. Session-based
fault-tolerant design patterns. ICPADS, 2014.

[7] Victor C. Zandy and Barton P. Miller. Reliable network
connections. In MobiCom, 2002.

[8] Ethan Cerami. Web Services Essentials: Distributed
Applications with XML-RPC, SOAP, UDDI, and WSDL.
O’Reilly Media, Inc., February 2002.

[9] A. Banks, J. Challenger, P. Clarke, D. Davis, R. P. King,
K. Witting, A. Donoho, T. Holloway, J. Ibbotson, and
S. Todd. HTTPR specification. IBM Software Group, 2002.

[10] C. Evans, D. Chappell, Bunting, et al. Web services
reliability, ver. 1.0. joint specification by Fujitsu, NEC,
Oracle, Sonic Software, and Sun Microsystems, 2003.

[11] D. Davis et al. Web services reliable messaging. Technical
report, OASIS, 2006.

[12] N. Ivaki, F. Araujo, and R. Barbosa. A middleware for
exactly-once semantics in request-response interactions. In
PRDC, pages 31–40, November 2012.

[13] Jeremy Brown, J. P. Grossman, and Tom Knight. A
lightweight idempotent messaging protocol for faulty
networks. In SPAA, pages 248–257, 2002.

[14] Joseph Y. Halpern. Using reasoning about knowledge to
analyze distributed systems. Annual Review of Computer
Science, 2(1):37–68, 1987.

[15] H. Attiya, S. Dolev, and J.L. Welch. Connection
management without retaining information. In Proceedings
of the Twenty-Eighth Hawaii International Conference on
System Sciences, pages 622–631, 1995.

[16] Lorenzo Alvisi, Thomas C Bressoud, Ayman El-Khashab,
Keith Marzullo, and Dmitrii Zagorodnov. Wrapping
Server-Side TCP to mask connection failures. In IEEE
INFOCOM, pages 329—337, 2001.

[17] R. Barga, D. Lomet, S. Paparizos, Haifeng Yu, and
S. Chandrasekaran. Persistent applications via automatic
recovery. In International Database Engineering and
Applications Symposium, pages 258–267, July 2003.

[18] Kaushik Dutta, Debra E. VanderMeer, Anindya Datta, and
Krithi Ramamritham. User action recovery in internet sagas
(isagas). In TES, pages 132–146. Springer-Verlag, 2001.

[19] H. Vogler, T. Kunkelmann, and M.-L. Moschgath.
Distributed transaction processing as a reliability concept
for mobile agents. In Proceedings of the Sixth IEEE
Computer Society Workshop on Future Trends of
Distributed Computing Systems, 1997, pages 59–64, 1997.

[20] Leslie Lamport. Paxos Made Simple. SIGACT News.
[21] B.S. Boutros and B.C. Desai. A two-phase commit protocol

and its performance. In Seventh International Workshop on
Database and Expert Systems Applications, 1996.

[22] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[23] M. Richards, R. Monson-Haefel, and D. A. Chappell. Java
message service. O’Reilly Media, 2009.

[24] James P. Emmond and Robert W. Gri�n. Exactly-once
semantics in a TP queuing system, 1990.

[25] S. Bhola, Robert Strom, S. Bagchi, Yuanyuan Zhao, and
J. Auerbach. Exactly-once delivery in a content-based
publish-subscribe system. In IEEE/IFIP DSN, 2002.

[26] German Shegalov, Gerhard Weikum, Roger Barga, and
David Lomet. EOS: Exactly-Once E-Service middleware.
VLDB Endowment, M. Kaufmann, 2002.

[27] David B. Lomet. Generalized idempotent requests,
September 2008.

[28] Joseph Y. Halpern and Yoram Moses. Knowledge and
common knowledge in a distributed environment. Journal
of the ACM (JACM), 37(3):549–587, 1990.

[29] D. Mills, Ed. J. Martin, J. Burbank, and W. Kasch.
Network time protocol version 4. IETF, 2010.

[30] Flaviu Cristian. Probabilistic clock synchronization.
Distributed Computing, 3(3):146–158, 1989.

[31] Francois Raab. TPC-C - The Standard Benchmark for
Online transaction Processing. 1993.

