
1

A Design Pattern for Reliable HTTP-Based
Applications

Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araujo
CISUC, Department of Informatics Engineering

University of Coimbra, Portugal
naghmeh@dei.uc.pt, cnl@dei.uc.pt, filipius@uc.pt

Abstract—HTTP is currently being used as the communication
protocol for many applications on the web, supporting business
and safety-critical services throughout the world. Despite the
growing importance, HTTP-based applications are quite exposed
to network failures, which can bring in huge losses to the service
users and providers, including financial and reputation losses.
Several approaches try to achieve reliable communication by us-
ing logging and retransmission of whole HTTP messages, which is
especially ill-adapted to large messages. Stream-based approaches
are more efficient as, upon failure, they transparently resume
data transmission from where it stopped. Despite this, designing
a stream-based mechanism involves significant challenges, as it
is very difficult to know how much data is lost due to failure.
In this paper we propose a stream-based mechanism for reliable
HTTP communication that is entirely based on HTTP messages
and is compatible with existing software. The mechanism is
presented as a design pattern and relieves developers from
explicitly handling connection failures, providing a standard way
for building more reliable applications. Results show that the
mechanism is functional, compatible with legacy applications,
and that the coding and runtime costs of this design pattern are
quite low.

Index Terms—Reliable Communication, Design Pattern, HTTP

I. INTRODUCTION

Distributed applications based on the HyperText Transfer
Protocol (HTTP) are overwhelmingly popular and are being
used to support not only businesses and critical services (e.g.,
e-commerce, financial services, e-health), but also entertain-
ment, having impact on the lives of millions around the world.
Despite using the Transmission Control Protocol [15] (TCP),
which can overcome network packet losses, HTTP connection
might fail due to long network outages that interrupt the
underlying TCP connection. These failures may abort media
transmission or cause online operations to fail, thus possibly
bringing in serious personal, financial or reputation losses.
Recovery from these common failures is challenging, because
TCP provides nearly no recovery options for long-term net-
work outages.

To the best of our knowledge, all current reliable solu-
tions for HTTP-based applications (e.g., HTTPR [1], WS-
Reliability [6]) are message-oriented, requiring, for instance,
logging and retransmission to provide reliable delivery of
messages. These solutions involve resending whole messages,
which is quite inefficient when messages are large. Further-
more, message-based solutions cannot easily offer reliability
to long-standing connections. For instance, with AJAX [7],

the server often needs to keep the connection open for a
long time, to push updates to the browser. If this connection
fails, orchestrating a workable solution can be very difficult.
The browser must repeat requests to obtain the missing parts
of incomplete responses, whereas the server must be able to
handle repeated requests.

A stream-based solution that buffers and resends uncon-
firmed data is a much cleaner solution, because it does not
require changing the application semantics. The application
does not need to log and resend messages, it can just rely
on the channel. The main problem of using this approach in
HTTP-based applications is the presence of proxies, a common
element on the web, because they are, in general, unable
to deal with the non-HTTP contents, which are necessary
to set up a durable stream or to send partial content upon
reconnection. In addition, proxies enforce at least two TCP
connections (from client to proxy, and from proxy to server)
which excludes simple recovery mechanisms that only work
within a single direct connection between client and server
(e.g., [14] or [22]). Finally, legacy non-reliable peers must
still be able to communicate with reliable peers which can be
difficult to achieve when control messages need to be trans-
mitted. This is especially important, given the outstandingly
large legacy software comprising the web.

We recently proposed the Session-Based Fault-Tolerant
(SBFT) design pattern [14] to overcome TCP connection
crashes in direct client-server communication. SBFT enables
developers to reconnect their application after TCP connec-
tion crashes, without losing data and without requiring an
additional layer for acknowledgments and retransmissions.
Although this pattern provides a foundation for implementing
reliable communication in TCP-based applications, there are
still no practical and efficient design solutions that can tackle
the specific challenges of the web.

In this paper we propose a stream-based solution for reliable
HTTP communication in the web environment. Our solution
features two key characteristics in comparison to SBFT: i)
a handshake procedure that has been tailored to handle the
specificities of HTTP applications; and ii) a control channel
per client (shared by all the connections to the server) which
is used in communication scenarios that involve proxies. This
channel is used by client and server to exchange acknowledg-
ments of large messages. Recovery from failure thus requires
re-sending lost bytes instead of entire application-level mes-
sages. In our solution, all messages exchanged comply with

2

the HTTP protocol and we ensure that reliable and non-reliable
HTTP peers can still inter-operate, which is, as discussed, a
key aspect in the web.

We carried out an experimental evaluation using our design
pattern in the Apache Tomcat 7.0.13 [8] HTTP connector
within JBoss AS 7.1.1 [12]. Results show the correctness
and efficiency of the approach, but most of all its overall
usefulness, providing developers with an easy and standard
means for developing more reliable HTTP-based applications.

This paper is organized as follows. The next section presents
the state of the art and Section III reviews SBFT. Section IV
presents our design pattern for reliable HTTP communication.
Section V presents an experimental evaluation carried out with
an implementation of our design pattern. Finally, Section VI
concludes this paper.

II. BACKGROUND

Developing distributed applications that resist to network
outages is a quite difficult problem. In the literature, we
can find a large number of attempts, of which we chose to
review a) server-side replication schemes (to overcome server
failures), b) replacement of the transport layer (i.e., of TCP),
and c) attempts focused on HTTP. We also review d) design
patterns for distributed computing and e) our previous work.

a) Server-Side Replication: Solutions as ST-TCP [11],
ER-TCP [19], and HydraNet-FT [21] use replication on the
server side, to tolerate TCP connection failures occurring when
there is a crash of a replicated instance. Although most of
these solutions can be used for HTTP applications, they do
not tolerate connection failures caused by network crashes.

b) Alternatives to TCP: Multipath TCP [2] or SCTP [16]
are transport layer protocols that use one or more redundant
paths between client and server, to tolerate network congestion
and disconnections. Their approach to disconnection is redun-
dancy, via multi-homing. With these protocols there is no way
to recover a connection failure if replicated connections fail
due to, for instance, an internal network crash.

c) Reliable HTTP: HTTPR [1] was put forth by IBM, but
later abandoned by lack of interest. It aimed at ensuring that
each message is either delivered to its destination exactly once
or is reliably reported as undelivered, even in the presence of
network and peer failures.

EOS2 [20] is a solution for web-based services that uses
a logging mechanism on the client and server sides, which
ensures exactly-once execution of requests in the presence of
endpoint failures. This solution does not deal with connection
crashes and it may deadlock when both parties are alive but
the TCP connection crashed.

Web Service Reliability [6] (WS-Reliability) is a Web
Services specification that is used for exchanging SOAP [3]
messages, typically over HTTP, with several reliability guar-
antees. The WS-reliability specification defines the following
reliability semantics: guaranteed message delivery, guaranteed
message duplicate elimination, guaranteed message delivery
and duplicate elimination, and guaranteed message ordering.
WS-Reliability was eventually superseded by the concurrent
WS-ReliableMessaging [5], which is another specification that

serves similar purposes, including the same set of delivery
guarantees.

All these HTTP mechanisms ([1], [20], [6], [5]) are
message-oriented and use logging to guarantee message de-
livery, which means that if a message does not reach the
destination due to a connection crash, it has to be sent again.
This is quite inefficient when a message is long (e.g., a file,
or the typically verbose SOAP message). Moreover, ensuring
that the pair browser-server can successfully retry an HTTP
request is a very difficult task.

d) Design Patterns: The idea of using design patterns
for distributed computing started more than two decades ago.
For example, the Acceptor-Connector pattern [18] tries to
simplify the design of connection-oriented applications, by
separating event dispatching from connection setup and service
handling. However, the Acceptor-Connector pattern cannot
support multiple threads, and is, therefore, unfit for modern
servers. To improve the efficiency of the Acceptor-Connector
pattern, the Leader-Followers [17] dispatches events using a
fixed number of threads.

In fact, in the last decade we have assisted to organize
distributed interactions into a set of design patterns, first for
Enterprise Application Integration [9], and more recently to-
wards SOAP/WSDL and RESTful web services [4]. This latter
book collects multiple known types of high-level interaction
between client and server, e.g., request/acknowledge/polling or
request/acknowledge/callback, respectively for client polling
or server callbacks. Unlike these books, we focus on lower
level details of the interactions.

e) Our Previous Work: In [13], we proposed a de-
sign pattern named “Fault-Tolerant Multi-Threaded Acceptor-
Connector” (FTMTAC), which uses the combination of the
Acceptor-Connector and Leader-Followers patterns with a
custom buffering mechanism to tolerate TCP connection fail-
ures. Recently, we moved the fault-tolerance mechanisms of
FTMTAC to work below the service handler and proposed a
“Session-Based Fault-Tolerant Design Pattern” (SBFT) [14].
This basically moves the fault-tolerance mechanism from
the application layer into a session layer presented as a
socket, thus releasing the developer from using the Acceptor-
Connector pattern, and paving the way to the use of this or
other patterns, as s/he likes.

In this paper we modify and extend the session-based fault-
tolerant design pattern, which is a stream-based solution, to
overcome the challenges associated with HTTP communica-
tion in the web environment. A distinctive feature of our work
is that we present the solution as a design pattern, which we
intend to generalize for other protocols besides HTTP in future
work.

III. THE SESSION-BASED FAULT-TOLERANT DESIGN
PATTERN

The main goal of SBFT, which we proposed in [14], is to
allow TCP-based applications to transparently recover from
connection crashes in client-server communication. SBFT al-
lows to decouple the recovery concerns from the application
logic and, at the same time, enable recovery from failures with

3

minimal overhead. In this section we review a crucial piece
in this design, the Stream Buffer, a circular buffer that
discards the need for an extra layer for acknowledgments over
TCP [22]. Each peer involved in the communication uses one
Stream Buffer, to keep all sent data that might not have
been received by the other peer.

To understand how this Stream Buffer works, let us
first consider the simple scenario shown in Figure 1 (without
Stream Buffer), which displays a sender and the corre-
sponding receiver application, at the precise moment when
their TCP connection fails. The figure shows three buffers:
the sender application buffer, the TCP send buffer (in the
sender), and the TCP receive buffer (in the receiver). Up to the
connection failure, the receiver had received m bytes, whereas
the sender had written a total of n bytes to the TCP socket. It
is easy to see that, upon reconnection, the sender only needs
to send the data marked in red and blue, which still was in the
TCP buffers and that was lost due to the connection failure.
This means that the sender needs to send the last n − m
buffered bytes and for this to work, the receiver and sender
must respectively keep the values m and n.

Assume now that the (maximum) size of the TCP send
buffer is s bytes, whereas the receive buffer of the receiver has
r bytes. The number of bytes we may lose when a connection
crashes is at most b = s + r. The properties of TCP ensure
that it must have delivered the remainder bytes [15]. Hence, a
Stream Buffer of size equal to or greater than b = s+ r
can guarantee that we do not lose any data in the presence
of a failure. Apart from reconnections, this buffer discards the
need for any acknowledgment, because it is able to store all
data potentially in transit between the peers.

The shortcoming of using such type of solution for reliable
communication in the Web environment is that this type of
buffering mechanism cannot withstand proxies, which are
a frequent element in this kind of setting. In fact, these
intermediate nodes can keep an arbitrary amount of data
outside their own buffers, causing the data in transit to exceed
the b = s + r bytes available on the Stream Buffer.
This means that data can be lost if the connections that have
the proxy as endpoint crash (or if the proxy itself crashes).
Moreover, we must not expect proxies to adhere to specific
reliable communication mechanisms, which means that any
mechanism for reliable communication must consider that
legacy proxies might stand between client and server and
thus the information exchanged must conform to the HTTP
protocol to pass through the proxy. This has clear implications
on the design of any solution for reliable messaging, which
we describe in detail in the following section.

m

TCP
Send Buffer

...

Application
#bytes received

write() read()

Application
Send Buffer

Receiver

no
t

rec
eiv

ed

rec
eiv

ed

TCP
Receive Buffer

m

Sender

rsn

Fig. 1. Buffers in a simple client-server scenario. [14]

IV. DESIGNING RELIABLE COMMUNICATION IN
HTTP-BASED APPLICATIONS

In this section we first describe the main challenges for
reliable communication in HTTP-based applications. Then, we
explain the technical solutions that we selected to overcome
such challenges and describe the design of our session-based
pattern for reliable HTTP-based applications.

A. Challenges for Reliable Communication in HTTP-based
Applications

In the Web environment, the scenario of direct client-server
communication can be rare. In fact, if the HTTP client and
server communicated to each other through a direct TCP
connection, we could easily adapt our SBFT solution [14]
to overcome the TCP connection crashes. However, inter-
mediate proxy nodes may stand in front of HTTP servers
for different purposes, including security (e.g., a filtering
firewall), translation (e.g., to route traffic to an appropriate
site), and performance (e.g., for load balancing or caching
content). When a proxy exists, the client TCP connection is not
established directly to the server, but is instead established to
the proxy. Consequently, the connection accepted by the server
is not established directly by the client, but by the proxy on
behalf of the client.

Figure 2 shows a simple client-server scenario, which in-
volves a proxy, and depicts the internal data buffers involved.
As we can see, there is extra buffering of data at the
proxy. While our SBFT pattern depends on having a Stream
Buffer as large as the TCP send and TCP receive buffers
combined, now we have a total of five points in the traffic that
can serve as buffers: the sender TCP send buffer, the proxy
TCP receive buffer, the proxy internal state, the proxy TCP
send buffer, and the receiver TCP receive buffer. The size of
the buffers is now b1+ b2+ b3+ b4+ b5, much more than the
b1 + b5 that the SBFT’s Stream Buffer was prepared to
take. The problem becomes quite serious as we cannot know
the sizes of most of these buffers and thus do not know how
much data should be kept to be re-sent in case of failure.

Considering the case where the proxy performs a security
function, in particular content-based filtering, it will very likely
filter out non-HTTP messages. As discussed, the solutions
discussed in Section II and SBFT exchange handshake mes-
sages that do not comply with the HTTP messages format and,
as such, the critical handshake step will fail in the presence
of content-based filtering proxies.

TCP
Receive Buffer

Proxy

TCP
Send Buffer

b4b2

TCP
Send Buffer

Sender

b1

Receiver

TCP
Receive Buffer

b5

b3

Fig. 2. Buffers in a client-server model with proxies

4

Finally, both non-reliable and reliable clients and servers
must be able to inter-operate. Hence, the design of a
solution for reliable communication must ensure that inter-
operation with legacy software is possible. This is especially
important in the Web environment, which comprises a very
large base of legacy software that must not be prevented from
communicating with reliable peers.

B. Achieving Reliable HTTP-based Communication

We designed a handshake procedure to not only transpar-
ently pass through proxies, but also to determine whether there
is actually any proxy in the path. When the client establishes
a connection, we send a message to initiate the handshake.
We must do a handshake prior to sending the client’s request,
otherwise, if the response failed to come, the client would not
know whether it would be safe to repeat the request.

Figure 3 shows the handshake for a new connection, which
consists of a normal HTTP request and response, with a
few modifications. First, the request points to a specific non-
existing URL common to all reliable servers (the actual URL
used should be long, so that it is unlikely that it collides with
a real name in the system). Also, the HTTP messages carry
a few extra headers. Considering the request, the FSocket
Connection header holds the IP address and port of the
client and server. The FSocket Handshake carries the
identifier of the connection (0 means that no connection
previously existed), the number of bytes it has read so far
(used for recovery), the size of the TCP send buffer size, and
the size of the TCP receive buffer size. Regarding the response,
corresponding headers are included, where the identifier of the
connection is 1. The FSocket Proxy header, informs the
client whether a proxy was detected by the server. The server
detects the presence of a proxy if the address sent in the header
is different from the address of the TCP connection it receives.
Once the handshake finishes, the client can start sending
the actual request. It is worth noting that a legacy client
will simply not use these headers, whereas a legacy server
will ignore the extra headers. Hence, all the combinations of
legacy/reliable client and server work.

The exchange of messages is slightly different if the client
is reconnecting (i.e., a connection failure has occurred). In
this case, the client informs the server (during the in the
FSocket Handshake) with the identifier of the connection
and the number of bytes it has read so far. This lets the server
determine if the client is missing any bytes from previous
responses. The server can then send back the number of bytes
it has read so far in the FSocket Handshake header,
plus the (possibly) missing bytes, as part of a normal HTTP

Client' Server'

GET$h&p://localhost/handshake$HTTP/1.1$$

FSocket$Connec;on:$/127.0.0.1,49553,/127.0.0.1,80$

FSocket$Handshake:$0,0,408300,146988$$

HTTP/1.1$200$OK$

ContentHType:$text/html;charset=UTFH8$$

ContentHLength:4497

FSocket$Proxy:$true$

FSocket$Handshake:$1,0,408300,$408300$$

Fig. 3. The handshake procedure for reliable HTTP communication.

response. If necessary, the handshake finishes with another
message of the client (not shown), which sends lost bytes from
previous unfinished requests.

If no proxy exists, client and server can rely on the implicit
buffering of SBFT. In this case, since the size of the Stream
Buffer is not smaller than the TCP send buffer plus the peer
TCP receive buffer, the data in transit is always guaranteed to
be in the sender. However, if a proxy exists, the buffering
and acknowledgments scheme must become explicit, because
the sender side must never allow the amount of data in
transit to exceed the size of its Stream Buffer. To send
the acknowledgments, we use one control connection, shared
by all the client connections to a given server. This control
channel is a standard connection to the server HTTP port.

Whenever a Stream Buffer is becoming full, the peer
should acknowledge reception of data. For example, if the
server is sending a large file, the client application should
acknowledge reception of the data, to let the server release
space from its Stream Buffer. To do this, once an ap-
plication receives a number of bytes equal or greater than
half the size of the peer’s Stream Buffer, we send an
acknowledgment via the control channel. This allows the peer
application to clean its buffer, thus allowing it to proceed.
These acknowledgments are HTTP messages that include the
number of bytes read so far by the application.

C. Design Pattern for Reliable HTTP-based Applications

Client Service
Handler

Server Service
Handler

1

read()
write()
close()

Transport
Handle

MAX_RECON_TIME
connectionType
readBytes
writtenBytes
remoteBufferSize
numOfBytesReadAfterLastAck
read()
write()
deliverAck()
handleEvent()

DataConnectionHandler

StreamBuffer(size,withEnd)
put()
get()
freeSpace()
hasEnoughSpace()
clear()

StreamBuffer

1

addConnection()
getConnection()
removeConnection()
registerFailedConnection()
notifyFailedConnection()
clear()

Connection Set

1

*
ServerConnection

Handler
ClientConnection

Handler

<<owns>>*
1

<<owns>>

1
1

1 *

Transport Layer

Session Layer

Application Layer
Service
Handler

<<owns>>

createControlConnection()
sendAck()
run()

CtrlConnectionHandler

<<owns>>

<<extends>><<extends>>

<<owns>>

1*

transportHandle
identifier
reconnect()
handshake()
process()
close()

ConnectionHandler

<<extends>><<extends>>

Fig. 4. Session-Based Fault-Tolerant Design Pattern for HTTP-Based
Applications

Figure 4 presents the class diagram of our new pattern
that has been designed specifically to handle the key web
challenges. The components are set in three key layers,
application, session, and transport. There are three main
components in the session layer, including Connection

5

Handler, Connection Set, and a modified Stream
Buffer. The Connection Handler takes care of setting
up connections and exchanging the handshake messages. The
Connection Set is used to keep the information (i.e. an
identifier and a reference) about all connections, including
data and control connections. The Stream Buffer keeps
unacknowledged data that is still in transit. We now explain
how these components interact.

1) Key Components: The Stream Buffer can be initialized
as an endless circular buffer (i.e. with no limitation to write,
if no proxy exists) or as a limited circular buffer (when a
proxy exists). This component implements the actions to save,
retrieve, and clean the data.

Each Connection Handler owns one Transport
Handle (e.g., a TCP socket) to read and write data. It
provides some abstract methods that should be implemented
appropriately to take actions for accomplishing the handshake
procedure with the remote peer, processing the handshake
headers, and reconnecting after failure. The Connection
Handler is extended as a Data Connection Handler or
Control Connection Handler, depending on the type of
connection. The Data Connection Handler provides a
simple interface to the Service Handler (i.e., browser
or server) to read and write messages. It implements all the
actions required to save data into the Stream Buffer, and
for recovery of failed connections and retransmission of lost
data. The Control Connection Handler provides an
interface for the Data Connection Handler to create a
control channel, if necessary, to send acknowledgment mes-
sages. A Control Connection Handler, which might
be shared among several data connections, checks for the
arrival of new acknowledgments and delivers them to the
appropriate Data Connection Handler.

Besides keeping information of connections, the Connec-
tion Set serves to synchronize threads upon connection fail-
ures and reconnections. Once a thread associated to a Data
Connection Handler tries to replace a failed connection,
it either must wait on the Connection Set until some other
thread comes in with a new Data Connection Handler
(i.e., when the design of the service handler is blocking), or it
must register its data in the Connection Set to be notified
later on, when a new Data Connection Handler arrives
from the same client for the reconnection purpose (i.e., when
design of the service handler is non-blocking).The information
of the connections is removed from the set when the connec-
tion is closed.

2) Interactions Between the Components: Figure 5 presents
the collaborations between the different components of the
pattern in a failure free scenario. To create a new connection,
the client creates a new Client Connection Handler,
which internally creates a Transport Handle (e.g., a
TCP socket). On the other side, the server uses a passive
(unconnected) handle to accept a new connection through the
method accept().

Once the connection is set up, the Client Service
Handler starts the handshake procedure, by inserting two
extra lines in the header of a valid HTTP request. The first
line includes the information of the connection created by

the client, which consist of the local IP address, local port
number, destination IP address, and destination port number.
As we mentioned before, this information is required, to let
the other peer find out whether a proxy between client and
server exists. The second line includes the unique identifier of
the connection (i.e. which is equal to zero if the connection is
new) and the size of the TCP send and receive buffers.

When the server receives the handshake request it generates
a unique identifier for the connection, identifies the existence
of the proxy, by finding any mismatches between the client
connection information and its real peer connection infor-
mation, and accordingly initializes an appropriate Stream
Buffer. The Server Connection Handler completes
the handshake protocol (The handshake() invocation on
the server side) by generating a valid HTTP response including
two extra lines in the header. The first line indicates the exis-
tence or absence of a proxy, whereas the second line carries the
unique identifier of the connection, and the TCP buffers sizes.
Upon receiving the message, the Client Connection
Handler initializes its own appropriate Stream Buffer.

If there is no proxy, the Data Connection Handlers
can simply write the data into the Stream Buffer af-
ter any successful write operation. If there is some proxy,
then a Control Connection Handler should be cre-
ated to exchange acknowledgment messages on both sides.
To distinguish between a Data Connection Handler
and a Control Connection Handler in the server
side, a handshake message is sent by the client control
connection. The new control connection is inserted into the
Connection Set through the method addConnection(),
with the identifier of the remote peer. After initialization, both
Control Connection Handlers start reading acknowl-
edgment messages, which they deliver them to the appropriate
Data Connection Handler, so that it can release space
from the corresponding buffer.

Figure 6 describes the collaborations between components
in presence of a failure. When a failure occurs, both sides
will eventually start the reconnection phase, by calling the
method reconnect(). Upon invoking this method, the Client
Connection Handler tries to create a new connection
to the server during a predefined period of time. On the
other side, the Server Connection Handler gives the
connection identifier and a waiting time to the registerFailed-
Connection() method.

After acceptance of a connection request and creation of
a new handler, the Client Connection Handler starts
the handshake protocol. It uses a predefined HTTP request
(which does not correspond to any available resource on
the server) with an extra handshake header, consisting of
the identifier of the failed connection, and the number of
bytes received in the client side. This lets the server distin-
guish fresh connections from reconnections. The server side
accepts the new connection and initializes a new Server
Connection Handler. This component is then respon-
sible for notifying the failed handler through the method
notifyFailedConnection() of the Connection Set. If the
implementation of the service handler is non-blocking, the new
Data Connection Handler is delivered to the failed

6

Server Service
Handler

Client Service
Handler

Transport
Handle

h=TransportHandle(addr)

ClientConn
Handler

ServerCon
HandlerStream Buffer Connection

Set

ch = ClientConnHandler(addr)

addConnection(id)

read(handshakeMessahe)

read(handshakeMessage)

h= p_h.accept()

p_h = PassiveHandler(l_addr)

handshake()¹: Insert handshake
data into a valid HTTP request:
FSocket Connection: LocalAddress,
DestinationAddress
FSocket Handshake: 0,0,
sendBufferSize, recvBufferSize,

handshake()¹

process(handshakeMessahe)

handshake()²: id =
generateIdentifier()
Insert handshake data into a
valid HTTP response:
FSocket Proxy: (true/false)
FSocket Handshake: id,0
sendBufferSize, recvBufferSize

handshake()²

process(handshakeMessahe)

StreamBuffer(size,true/false)

write(httpRequest)
put(httpRequest)

write(httpRequest)

read(httpRequest)
read(httpRequest)

write(handshakeMessage)

HTTP Client

sh = ServiceHandler()

HTTP Server

sh = ServiceHandler()

ch = ServerConnHandler(h)

ControlConnecti
onHandler

addConnection(id)

ControlConnHandler(addr) h= p_h.accept()
ch = ServerConnHandler(h)

if ch.connectionType == CONTROL

handshake()³
handshake()³: send a valid http
request with following header:
FSocket Control Connection: trueread(handshakeMessage)

process(handshakeMessage)

ControlConnHandler(h)

addConnection(remotePeerName)

write(httpRequest)

//ControlConnHandler's initialization completed
run()

put(httpRequest)
hasEnoughSpace(httpRequest.length)

write(httpRequest)

read(httpRequest)

read(httpRequest)

sendAck(id, readBytes) // if numOfBytesReadAfterLastAck
>= remoteBufferSize/2

h=TransportHandle(addr)

write(handshakemessage)

deliverAck()

write(Ack)

freeSpace()

(a) Without Proxy

write(handshakeMessage)

getConnection(id)

// if true

// if true

StreamBuffer(size,true/false)

sh = ServiceHandler()sh = ServiceHandler()

(b) With Proxy

read(Ack)

Fig. 5. Component interactions in a failure-free scenario

one through the method handleEvent(). Then, the Server
Connection Handler completes the handshake by insert-
ing the number of bytes received. Then both sides start re-
transmission of data lost due to connection failure. In the case
there was a control connection, the Client Connection
Handler invoke the method reconnect() of the Control
Connection Handler to establish a new connection if it
fails too.

V. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation
carried out to illustrate the applicability of our proposal,
and we discuss the results. The experiments focus on three
key aspects: correctness, performance, and complexity of the
solution.

We implemented our design pattern in Java and used it
in an HTTP client and in the Apache Tomcat 7.0.13 HTTP
connector [8] included in JBoss AS 7.1.1 [12]. Table I presents

Transport
Handle

h=TransportHandle(addr)

ClientConn
Handler

ServerCon
Handler

Connection
Set

read(headers)

h=Transport
Handle()

Insert handshake data into a http request:
id,readBytes (r),0,0

handshake()

Insert handshake data into a http response:
id, readBytes (r),0,0

handshake()

write(handshakeMessage)

write(handshakeMessage)

HTTP Server

reconnect() reconnect()

registerFailedConnection(id, time)

notifyFailedConnection(this)

data = get(writtenBytes - r)
write(data)

ControlConne
ctionHandlerStream Buffer

data = get(writtenBytes - r) write(data)

(a) With Proxy
reconnect() addConnection(remotePeerName)

ch = p_h.accept()

handleEvent(ch)

process(handshakeMessage)

process(handshakeMessage)

Fig. 6. Component interactions in the presence of a failure

the client and server machines, which were placed on an
isolated 100 Mbps Local Area Network to execute the tests.

7

A. Verifying Correctness

To evaluate the correctness of the design pattern imple-
mentation, we considered the following four different client-
server communication scenarios: 1) a reliable HTTP client
communicating with a non-reliable JBoss AS; 2) a non-reliable
HTTP client communicating with a reliable JBoss AS; 3) a
reliable HTTP client communicating with a reliable JBoss AS,
without any proxy in the middle; 4) a reliable HTTP client
communicating with a reliable JBoss AS via a proxy. The
scenarios 1) and 2) are used to show that our design pattern
is compatible with legacy and unreliable software; and the
scenarios 3) and 4) are used to show that the design pattern
is able to tolerate connection failures with and proxies.

We first used a browser to generate HTTP requests for a set
of typical web resources deployed in the non-reliable JBoss
AS. We used those requests within our custom HTTP client
and also used the responses as oracle for comparison with
the responses obtained from the reliable version of JBoss AS
during the tests.

For each of the scenarios we let client and server exchange
messages during 5 minutes (each test was repeated ten times).
We observed that reliable and non-reliable peers were able
to communicate perfectly in scenarios 1) and 2). To evaluate
the ability to recover from failures (scenarios 3 and 4)), we
used tcpkill to cause connection crashes at random instants
during each test (three crashes per test). We observed that all
interactions worked correctly even in presence of the failure
and all expected messages were correctly received.

B. Evaluating Performance and Resource Usage

To evaluate performance we measured latency (round-trip-
time of a request-response interaction) and throughput (num-
ber of operations per time unit) in the following four scenarios:
1) Non-reliable client and server interacting without proxy; 2)
Non-reliable client and server with proxy; 3) Reliable client
and server without proxy; 4) Reliable client and server with
proxy. The Scenarios 1) and 2) (non-reliable scenarios) are
used to evaluate overhead and performance degradation in the
reliable scenarios.

The proxy server used in our tests was Squid 3.1 (squid-
cache.org). In each scenario we exponentially vary the number
of clients from 1 to 512, and each client sends 1000 requests.
To calculate throughput, the clients send each request and
do not wait for the response (a different thread receives
the responses). Throughput is then calculated when the last
response arrives. To calculate latency we set each client to
wait for the response after sending each request.

Figure 7 shows the results obtained for latency (a) and
throughput (b). As we can see, latency progressively increases

TABLE I
SYSTEMS USED IN THE EXPERIMENTS

Endpoint OS CPU Memory
Client Mac OS X, ver-

sion 10.10.1
2.4 GHz Intel Core
2 Duo

4GiB RAM, 3
MiB cache

Server Linux 2.6.34.8 2.8 GHz Intel quad
core

12 GiB RAM, 8
MiB cache

0	

20	

40	

60	

80	

100	

0.00	

50.00	

100.00	

0	 100	 200	 300	 400	 500	

De
gr
ad

a'
on

	 (%
)	

La
te
nc
y	
(m

s)
	

Number	 of	 Clients	

(a)	

Non-‐reliable	 JBoss	 Without	 Proxy	 Non-‐reliable	 JBoss	 With	 Proxy	
Reliable	 JBoss	 Without	 Proxy	 Reliable	 JBoss	 With	 Proxy	
DegradaCon	 Without	 Proxy	 DegradaCon	 With	 Proxy	

0	

20	

40	

60	

80	

100	

2,200	

2,400	

2,600	

2,800	

3,000	

0	 100	 200	 300	 400	 500	

De
gr
ad

a'
on

	 (%
)	

Th
ro
ug
hp

ut
	 (R

eq
ue

st
/s
ec
)	

Number	 of	 Clients	

(b)	

Non-‐reliable	 JBoss	 Without	 Proxy	 Non-‐reliable	 JBoss	 With	 Proxy	
Reliable	 JBoss	 Without	 Proxy	 Reliable	 JBoss	 With	 Proxy	
DegradaCon	 Without	 Proxy	 DegradaCon	 With	 Proxy	

Fig. 7. Latency (a) and throughput (b) observed during the experiments.

with the number of clients, the same happens with throughput.
The important aspect is that, when we compare the scenarios
that use reliable peers with those that use the non-reliable
peers, throughput and latency degradation show low values.
In fact, although we have all necessary mechanisms for
reliable communication in place and in operation, performance
degradation is quite small.

Regarding resource usage, we used JConsole 1.6.065-b14-
466.1 to examine the CPU and memory usage at the server.
We again exponentially varied the number of clients from 1
to 512, and used each HTTP client to send 100 requests per
second during 3 minutes, which we experimentally observed to
be enough to show the usage of resources. Figure 8 shows that
the overhead in terms of memory (a) and CPU (b) is kept under
acceptable limits. The memory used by our reliable server is,
as expected, obviously higher than the non-reliable one, due to
the extra buffering placed on top of TCP. The CPU overhead
shows to be again quite low, which is an excellent indication
as this resource can be many times of critical importance.
Moreover, the key goal is, at this point, to provide a reliable
communication mechanism and resource usage can be object
of further optimization in future work.

C. Complexity of the Design and Implementation

We measured three important complexity metrics, Lines of
Code (LOC), Cyclomatic Complexity, and Nested Block Depth
[10], to analyze the complexity of our design pattern im-
plementation. To accomplish our evaluation we implemented
three versions of a simple HTTP client-server application:
plain HTTP application, fault-tolerant HTTP application using
SBFT, and fault-tolerant HTTP application using HTTP-based
design pattern. Table II presents the comparison between these

8

0	

20	

40	

60	

80	

100	

0	

20	

40	

60	

80	

100	

0	 100	 200	 300	 400	 500	

O
ve
rh
ea
d(
%
)	

CP
U
	 U
sa
ge
	 (%

)	

Number	 of	 Clients	

(a)	

Non-‐reliable	 JBoss	 Without	 Proxy	 Non-‐reliable	 JBoss	 With	 Proxy	

Reliable	 JBoss	 Without	 Proxy	 Reliable	 JBoss	 With	 Proxy	

DegradaBon	 Without	 Proxy	 DegradaBon	 With	 Proxy	

0	

20	

40	

60	

80	

100	

0	

50	

100	

150	

200	

0	 100	 200	 300	 400	 500	

O
ve
rh
ea
d	
(%

)	

M
em

or
y	
U
sa
ge
	 (M

iB
)	

Number	 of	 Clients	

(b)	

Non-‐reliable	 JBoss	 Without	 Proxy	 Non-‐reliable	 JBoss	 With	 Proxy	
Reliable	 JBoss	 Without	 Proxy	 Reliable	 JBoss	 With	 Proxy	
DegradaBon	 Without	 Proxy	 DegradaBon	 With	 Proxy	

Fig. 8. CPU (a) and memory (b) usage observed during the experiments.

three versions. The measurements show that we used 485 extra
lines of code in SBFT, to turn a non-reliable into a reliable
application, and we used an extra 316 lines of code to adapt
the pattern for HTTP. In addition, the average cyclomatic
complexity per method in the first two cases is in the 1.7-
1.8 range, while it increases by a small amount to 1.9 for
our HTTP-based design pattern pattern. Finally, the depth of
nested blocks of the non-reliable application is 1.28, close
to the 1.4 of the reliable versions. These results show that
providing reliable communication for HTTP applications is
quite inexpensive, especially when considering the huge gains
that our solution brings for developers, by eliminating the
effort that would be needed to create a custom solution for
reliable HTTP communication.

TABLE II
CODE COMPLEXITY

LOC Cyclom.
Complexity

Nested
Block Depth

Plain HTTP App 572 1.74 1.28
FT HTTP App using SBFT 1057 1.77 1.40
FT HTTP App using HTTP-
based design pattern

1373 1.95 1.40

VI. CONCLUSION

In this paper we presented a stream-based solution for HTTP
peers that can transparently overcome connection failures. The
proposed design pattern works with legacy clients, servers,
and proxies. The experimental evaluation carried out with an
implementation of the pattern in a widely used server shows
that this design imposes a small overhead, while ensuring
that network glitches do not prevent service delivery, even
when intermediate nodes are present in the communication.

As future work, we plan to modify the pattern to allow
recovery from endpoint crashes and generalize it to other
communication protocols.

ACKNOWLEDGMENTS

This work was supported by the project iCIS - Intelligent
Computing in the Internet of Services (CENTRO-07-ST24
FEDER-002003), co-financed by QREN, in the scope of the
Mais Centro Program and European Union’s FEDER.

REFERENCES

[1] A. Banks, J. Challenger, P. Clarke, D. Davis, R. P. King, K. Witting,
A. Donoho, T. Holloway, J. Ibbotson, and S. Todd. HTTPR specification.
IBM Software Group, 10, 2002.

[2] S. Barre, C. Paasch, and O. Bonaventure. MultiPath TCP: from theory
to practice. In J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and
C. Scoglio, editors, NETWORKING 2011, Lecture Notes in Computer
Science, pages 444–457. Springer Berlin Heidelberg, 2011.

[3] E. Cerami. Web Services Essentials: Distributed Applications with XML-
RPC, SOAP, UDDI & WSDL. O’Reilly Media, Inc., Feb. 2002.

[4] R. Daigneau. Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley Profes-
sional, 1 edition, 2011.

[5] D. Davis et al. Web services reliable messaging (WS-
ReliableMessaging). Technical report, Technical report, OASIS,
http://docs. oasis-open. org/ws-rx/wsrm/200608/wsrm-1. 1-spec-cd-04.
html, retrieved 12.11, 2006.

[6] C. Evans, D. Chappell, D. Bunting, G. Tharakan, H. Shimamura,
J. Durand, J. Mischkinsky, K. Nihei, K. Iwasa, M. Chapman, et al.
Web services reliability (WS-Reliability), ver. 1.0. joint specification by
Fujitsu, NEC, Oracle, Sonic Software, and Sun Microsystems, 2003.

[7] J. J. Garrett et al. Ajax: A new approach to web applications. 2005.
[8] J. Goodwill. Apache jakarta tomcat, volume 1. Springer, 2002.
[9] G. Hohpe and B. Woolf. Enterprise Integration Patterns — Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Profes-
sional, 2003.

[10] P. C. Jorgensen. Software Testing: A Craftsman’s Approach. Auerbach
Publications, Boston, MA, USA, 3rd edition, 2008.

[11] M. Marwah and S. Mishra. TCP server fault tolerance using connection
migration to a backup server. In proceeding international conference on
dependable systems and networks (DSN), pages 373—382, 2003.

[12] R. H. Middleware. JBoss Application Server, available:
http://www.jboss.org/jbossas/. 2008.

[13] F. B. Naghmeh Ivaki, Filipe Araujo. Design of multi-threaded fault-
tolerant connection-oriented communication. The 20th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), 2014.

[14] F. B. Naghmeh Ivaki, Filipe Araujo. Session-based fault-tolerant design
pattern. In proceeding 20th international conference on parallel and
distributed systems (ICPADS), 2014.

[15] J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept.
1981. Updated by RFCs 1122, 3168.

[16] C. M. R. Stewart. Sctp: new transport protocol for tcp/ip. IEEE Internet
Computing, Vol. 5, No. 6:pp. 64–69, 2001.

[17] D. Schmidt, C. Ryan, M. Kircher, I. Pyarali, and F. Buschmann.
Leader-followers. In PLoP conference. http://hillside. net/plop/-
plop2k/proceedings/ORyan/ORyan. pdf, 1998.

[18] D. C. Schmidt. Acceptor-connector: an object creational pattern for
connecting and initializing communication services. Pattern Languages
of Program Design, 3:191–229, 1996.

[19] Z. Shao, H. Jin, B. Cheng, and W. Jiang. ER-TCP: an efficient fault-
tolerance scheme for cluster computing. The Journal of Supercomputing,
2007.

[20] G. Shegalov and G. Weikum. EOS2: unstoppable stateful PHP. Pro-
ceedings of the 32nd international conference on Very large data bases,
page 1223–1226, 2006. ACM ID: 1164249.

[21] G. Shenoy and S. K. Satapati. HYDRANET-FT: network support
for dependable services. In international conference on distributed
computing systems, 2000.

[22] V. C. Zandy and B. P. Miller. Reliable network connections. In
Proceedings of the 8th annual international conference on Mobile
computing and networking, MobiCom ’02, pages 95–106, New York,
NY, USA, 2002. ACM.

