
On Client-Side Bottleneck Identification in
HTTP Servers

Ricardo Filipe, Serhiy Boychenko, and Filipe Araujo

CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
{rafilipe, serhiy}@dei.uc.pt, filipius@uc.pt

Abstract. Standing on virtualization techniques, low maintenance costs
and economies of scale, cloud computing emerged in the last few years as
a major trend in the industry. Since cloud resources grow and shrink as
needed, providers and users of the cloud must carefully determine the ex-
act amount of such resources they need. For this reason, getting accurate
and timely information from the system is of paramount importance to
properly adjust the means serving a given application. However, previ-
ous attempts to detect bottlenecks have resulted in complex, heavy and
customized frameworks that lack any sort of standardization and may
change widely from provider to provider. Improved monitoring mecha-
nisms should be independent from the server technology, should require
little to no configuration and should provide information of the real qual-
ity of service offered to clients.
To reach these goals, we intend to observe the server infrastructure from
the outside and gather the smallest possible number of metrics from
the inside. We undertook several experiments in a controlled server, to
identify the patterns that correspond to bottlenecks. These experiments
clearly show that one can actually diagnose different bottlenecks, by an-
alyzing response times on browsers. These results pave the way to future
monitoring mechanisms, mostly based on quality of service evidence,
supported by user data.

1 Introduction

In the last few years, cloud computing assumed a role of growing importance
in computer systems. Licensing costs, energy, staff wages, the pay-as-you need
billing contract, elasticity and the focus on business core rather than infrastruc-
ture are some aspects that make cloud computing so appealing. In fact, cloud
computing services deliver different types of facilities, with minimal management
effort or interaction with the service provider. This interaction occurs via net-
working and provides access to a shared pool of resources of virtual machines,
load balancer, data management facilities, development platforms or even fin-
ished software products, depending on the cloud model, which is usually classified
as one of three: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS).

Despite being already quite successful, this new paradigm also raises concerns
related to trustworthiness and dependability [1, 2]. Since resources are pooled



and shared among many clients, providers might be tempted to under-provide
for the services they host, thus causing a poor experience for users, with low
performance, excessive delays or even service outages. To prevent service dis-
ruption, the cloud provider or the owner of the service must promptly identify
and remove bottlenecks, by launching extra resources, such as more bandwidth,
CPUs or disk space. Unfortunately, this is not so simple in practice, because
the providing side lacks a perfect picture of the service as seen by the client,
from mouse clicking to downloading the last byte. Additionally, having precise
metrics of a running system is expensive and causes a lot of interference with
the system itself.

To properly acquire or release cloud resources, service owners need a clear
picture of system performance. This applies to the IaaS model, but may help
controlling the quality of a PaaS deployment as well. In both cases, we assume
that the client has limited access to the infrastructure or is unwilling to deploy
an extensive monitoring solution, but still needs extremely accurate and timely
information to control the power of elasticity.

In Section 2, we focus on this exact problem: detecting bottlenecks using
the minimum and simplest possible metrics. We aim to perform this bottleneck
detection in three-tier web sites using client-side data, because clients have a
better perspective of the offered quality of service than providers. To evaluate
this possibility, we perform batch submission of requests to the service and col-
lect timing responses on the client. This is not unlike the current paradigm of
HTTP performance tools, like HTTPerf [3] or JMeter [4]. With one of these
tools, the system administrator controls the invocation of large numbers of re-
quests to observe the response of the system, usually for the sake of fine-tuning
performance.

However, since these tools impose a heavy load to the service (and thus
are usually ran offline), we aim to perform a similar evaluation online, while
standard users are running the service. Instead of generating artificial requests,
our goal is to use real requests for the same purpose, by collecting and uploading
browser data to the system administrators. Our long-term goal is to identify as
many problems as possible. In this paper, we restrict our effort to the three
resources that are more important for performance: CPU, server I/O access and
client-server bandwidth.

This paper describes our initial efforts to take these client-side measurements:
our technological approach, the experiments and the differences we get from
measuring everything from JMeter. Interestingly, while in theory we could use
JMeter in a controlled environment to distinguish the source of the bottleneck
(bandwidth, I/O, or CPU) from one metric alone (total time to obtain the
answer), in a real uncontrolled environment we need to split this metric into
other two (time to get the first byte, and time to get the entire response) and
add one more metric: the query time of the request (or the CPU usage time,
which will provide us the same result).

The main contribution of this paper is precisely to demonstrate the feasi-
bility of identifying specific bottlenecks (CPU, I/O or network) using browser



metrics plus an internal server metric. We describe this process and our main
contribution in Section 3.

We review the current literature in Section 4. We discuss the current status
of our work and future perspectives in Section 5.

2 The Client-Side Tool

We follow a very simple approach to detect possible bottleneck causes of 3-tier
Web systems. We only consider three possible causes: processing, database or
bandwidth bottlenecks. Processing bottlenecks are related to CPU limitations,
which may be due to HTTP thread pool limitations of the Web Server (specially
the front-end machines), or CPU machine exhaustion, e.g., due to bad code
design that causes unnecessary processing. Database bottlenecks are related to
Input/Output operations, which clearly depend on query complexity, database
configuration and database access patterns. Bandwidth bottlenecks are related
to network congestion, significantly affecting client-server communication times.

We assume the point of the view of an IaaS cloud, although our method can
also partly apply to a PaaS or a mixed scheme. The client does not own the
resources, but has some control on the source code of a site he or she wants to
make publicly available. However, the client may have limited access to the cloud
infrastructure configuration. I.e, the client can deploy, but may not be able or
willing to change cloud configuration. Hence, we want to avoid capturing a large
set of internal system metrics, but we can collect timestamps during the HTTP
processing, doing only slight modifications to the application source code.

Table 1. Measured metrics

Metric Description

Request Time Time between connection initializa-
tion and first response byte received
from server

Response Time Time between first and last re-
sponse byte received from server

Latency Time delay experienced in client-
server communication

Query processing
time

Time that an HTTP request spends
on the database

Total Time Request + Response Time

We initially considered a number of metrics that should allow us to under-
stand if the system has some bottleneck and where. These metrics contain a
mix of network and database times. We do not need the CPU time, because we
can infer this time based on the query processing time. In Table 1 we list these
metrics and their corresponding description. In an ideal closed setting, we only



Table 2. Metrics Required to Detect Bottleneck (Theoretical Results)

Bandwidth Database Threads

Request Time F T T

Response Time T F F

needed the Total Time (request time plus the response time) to distinguish the
aforementioned three bottlenecks, if they occur separately. In a bandwidth bot-
tleneck between client and server, the difference between request and response
time will tend to grow with the load of the system (specially if the HTTP answer
is considerably bigger than the request). In a database bottleneck, the time to
get the first byte of response will tend to grow with the load of the database. A
processing bottleneck will have a similar effect. To distinguish these two cases,
we can submit multiple equal jobs at once using more jobs than threads available
to run them: responses will come in groups. To give an example, assume that the
server has a pool of 5 threads. If we submit 20 jobs at once that take around 0.5
seconds of CPU time each, every 0.5 seconds (plus a few other delays) we will get
5 different responses. This is a clear indication of a CPU bottleneck. In reality
getting such a clearly defined pattern is not so easy, because requests will not
occur in clearly defined batches. Hence, we need one additional measurement
to distinguish between a CPU and a database bottleneck. We use the query
processing time. Unlike the previous metrics of Table 1, this one is internal to
the server. We could also consider the processing time, but this is reciprocal to
the former. Fortunately, we may eliminate the latency, because this is constant
and should not grow on a server bottleneck. In Table 2, we display the relation
between the bottlenecks that we are observing and the variables necessary to
detect them. We use a “T” (true) and “F” (false) to express the necessity or
lack of it to use a variable to observe a given bottleneck. These relations are
ideal. A practical setting may be more complex, as we show in Section 3.

A simple way to take measurements from the client side is to use a perfor-
mance evaluation tool, like Apache’s JMeter. The inconvenience of this approach
is that it may only work if the client machine is powerful enough to stress the
server and the server is disconnected from real users in a testbed.

We intend to follow a different approach. Since it is our goal to tackle more
generic settings, we want to use data from real clients. For this we collect the re-
quired metrics directly from the user’s browser, using the JavaScript Navigation
Timing API1. This JavaScript library can read the request and the response
times of a given HTTP interaction. When the requested resource loading fin-
ishes, we send performance indicators (via AJAX) to a small web service, which
stores timing data on a database. The remaining times of the process might be
kept directly on the server side2. Putting in simple terms, a final implementa-

1 https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/

Overview.html
2 Nevertheless, for the sake of simplicity, in the tests we performed, we first sent the

server data to the client, which then uploads all the metrics in a single operation.



Database

HTTP 
Requests tc

Server 1

Server 2

Server 3

Load balancer

Fig. 1. Experimental setup

tion should works like this: the owner of the site should add a few JavaScript
lines to the web page, to instruct the browser to collect the necessary metrics.
After collecting these metrics, the browser should send them to the server. This
will enable the owners of the site to analyze performance results as seen by the
clients. This analysis, however, might be more complex than with JMeter, be-
cause it is full of real life noisy data. In the next section, we observe and tackle
this precise problem.

3 Experimental evaluation

The goal of our experiments was to observe the feasibility of taking client-side
measurements to detect performance bottlenecks. For this, in this Section, we
first describe the setup, before detailing the experimental results.

3.1 Experimental Setup

To run our experiments, we deployed the “Java Petstore” [5] application, in-
cluding the Petstore schematic tables. In the front-end of the server, we have
a load balancer that directs user requests to a group of GlassFish Application
Servers [6] running in different VMs. These Application Servers take care of the
presentation (first) and business (second) tiers. The business tier is stateless, be-
cause the Java application keeps all its data in the back-end database (the third
tier). This architecture is illustrated on Figure 1. The load balancer machine
runs an Apache HTTP Server and an AJP Connector for the load balancing.
We also installed a Traffic Control tool (tc)3 on the system entry point to sim-
ulate a congested network. To ensure that some page requests took longer and

3 http://www.tldp.org/HOWTO/html_single/Traffic-Control-HOWTO/.



Table 3. Software used and distribution

Component Observations Version

Load Balancer HTTPD with AJP Connector 2.2

Cluster VMs with GlassFish 3.1.2

Database MySQL 5.1.69

to avoid cache utilization that would change the bottlenecks, we increased the
contents of the database tables, relatively to the original petstore.

Table 3 summarizes the most important software components of this exper-
iment. We evaluate the performance of this system using two different meth-
ods. The first injects requests through a standard performance evaluation tool
(Apache JMeter). This approach enables us to run a finely controlled experience,
although limitations of the client machine running the Apache JMeter may cause
requests to slide in time. To simulate an intensive utilization of the web site by
browsers, in the second method, we submitted requests to our infrastructure
using the Firefox web browser from 15 machines. The requests were submitted
using a script that started the browser on every machine. The purpose of this
experience is to analyze the difference between a tool like JMeter and a simu-
lation that is closer to the real-life Internet utilization with different browsers
accessing the same infrastructure.

We injected three different bottlenecks on the server: a database bottleneck, a
network bottleneck and a CPU bottleneck. The first one corresponds to requests
that read a large amount of data from the database, to inject the second one we
use the traffic control tool and, to delay the responses in the CPU, we reduce
the overall number of threads in the cluster to 5 and put them to sleep 1 second.

3.2 Results

We show the results of our experiments in Figures 2, 3, and 4. On the left-side of
the figures we have the response to the JMeter tool. On the right-side, we have
the response to the browsers. The x-axis shows the number of the request, from
1 to 50 with JMeter, and from 1 to 15 with the browsers, whereas the y-axis
shows the time of each response in milliseconds.

Using JMeter, we managed to minimize the number of external factors inter-
fering with our measurements. For example, network latency is almost always the
same, because all the clients are run from the same node, in the same local area
network as the server. Furthermore, the tool will spawn multiple threads at once
that will send the same request to the server within the shortest possible time
frame. This will contribute to a nearly simultaneous arrival of all the requests.
In the case of the browsers test, due to the distributed nature of the simulation
environment, the results are much noisier. We noticed that the delay of starting
a new browser sometimes goes to several hundreds of milliseconds, making it
very hard to perform simultaneous requests, not to mention the differences in
the local clocks, as each machine decides when to launch the browser. Unlike



��

�����

�����

�����

�����

������

�� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

������������������

������������
��

����

�����

�����

�����

�����

�����

�� �� �� �� �� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

������������������

�������������
������������

�������������������
����������

Fig. 2. CPU bottleneck

��

�����

�����

�����

�����

������

�� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

�������������������

������������
��

�����

�����

�����

�����

�����

�����

�� �� �� �� �� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

�������������������

�������������
������������

���������������������
����������

Fig. 3. Database (I/O) bottleneck

��

����

�����

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

������������������

�������������
��

������

������

������

������

������

������

�� �� �� �� �� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

��������������

������������������

�������������
������������

���������������������
����������

Fig. 4. Network bottleneck

this, in the JMeter case, the delay of the requests was within the few millisec-
onds range. The browser experiment is therefore more akin to a possible real
utilization of the site, but, as we shall see, results become harder to interpret.

After plotting the results, we identified several patterns resulting from Re-
quest and Response Times. Firstly, for the JMeter tests, we noticed the ladder-
type behavior, when the server reaches its HTTP thread pool limit (in our case,
the GlassFish cluster was limited to serve 5 simultaneous requests). Since all
clients were launched almost simultaneously and given the significant processing
time, the steps of the ladder are easily identifiable on the left side of Figure 2.



We repeated the tests, changing the number of threads in the HTTP thread pool
of cluster instances and were always able to observe this behavior.

When a database bottleneck is present in the system, the time taken to
generate the page is dominant in the overall process. This behavior turns Request
Time into the largest factor in communication, because the time it takes for
the server to send the first byte of the response is mostly consumed on the
database query. When the bandwidth is the source of the performance problem,
the time taken to transfer the page from the server becomes dominant in the
total communication time. We can ignore the time it takes to transfer the data
from the client to the server, because in most cases the client request size is
very small in comparison to the server response. The Response Time is therefore
crucial to identify a bandwidth bottleneck in the infrastructure. Additionally,
we expect the pattern of bandwidth bottlenecks to be less regular, because the
request and response packets have to go through a congested channel. We can
see these differences on the left sides of Figures 3 and 4. One should notice
that these plots display different metrics. In the case of the network bottleneck,
we display the Response Time, whereas in the other two cases we display the
Request Time (both metrics are easily available in JMeter and browsers). This
observation agrees with Table 2, i.e., these times suffice to identify different types
of bottlenecks.

Most of the patterns we observed on the previous experiment occur again in
the browsers experiment, but it is harder to distinguish between different bot-
tlenecks using only client-side measurements. For example, the CPU bottleneck
loses its ladder-like aspect that is so characteristic in a very controlled environ-
ment (refer to the right side of Figure 2). Despite still being there, the effect is
much less visible in the browsers experiment, and, we believe that, in general,
one might be completely unable to identify this specific kind of bottleneck from
the Request Time alone. A clear separation requires an extra variable to distin-
guish the time the request spends on the CPU from the time it spends on the
database. We show the CPU processing time (Figure 2 right) and query process-
ing time for this (Figure 3 right). With these metrics, the component responsible
for the delay is immediately identified. In fact, although the difference in pat-
terns between the Request Times of Figures 2 and 3 (which are nearly the same
as the Total time) might be unclear, the query processing time is negligible in
the case of the CPU bottleneck, whereas the CPU processing time is negligible
in the other case. Furthermore, the query processing time we measured includes
the waiting time to access the database and thus makes the evaluation simpler,
when compared to the CPU processing time, which we can see as a constant in
Figure 2 right. In fact, this difference in behavior could be eliminated, if one in-
cludes the waiting time for the CPU in the CPU processing time, and, therefore,
we can consider the query processing time and the CPU processing time to be
pretty much equivalent for our needs.

In light of these results, we are now able to review Table 2, to consider the
evaluation of bottlenecks under more realistic settings. As a result, we created



Table 4. Metrics Required to Detect Bottleneck(Practical Results)

Bandwidth Database Threads

Request Time F T T

Response Time T F F

Database Query Time F T T

Table 4, which adds the database query time. This table is a step towards iden-
tifying bottlenecks using timing measurements from real web clients.

4 Related Work

We divide the related work regarding bottleneck detection into three main areas:
first, we go through academic studies that use data from inside the system to
detect bottlenecks; then, we review academic studies that collect information
from the client’s point-of-view; and, finally, we analyze industrial tools.

4.1 Academic Studies Using Inside System Methodologies

In the literature, we can find a large body of work aiming to detect, predict and
even change system configuration, usually in n-tier HTTP server systems, similar
to the one we evaluated in this paper [7–12]. For comprehensive purposes, we
divided these papers into two main categories: (i) analytic models that collect
system metrics, to ensure detection or prediction of bottlenecks; (ii) rule-based
methodologies that scale up or down system resources.

Concerning analytic models (i), Malkowski et al. [13] aim to ensure low ser-
vice response times. Authors collect many system metrics, like CPU or memory
utilization, and correlate them with system performance. This should expose the
metrics that best identify the bottlenecks. However, this form of analysis collects
more than two hundred system and application metrics. In [14], Malkowski et al.
studied bottlenecks in n-tier systems even further, to expose the phenomenon
of multi-bottlenecks, due to multiple resources reaching saturation. The main
conclusion from this work is that lightly loaded resources may be responsible for
multi-bottlenecks causing a chain reaction in the n-tier system. The framework
used is very similar to their previous work, requiring again full access to the
infrastructure. Wang et al. followed this approach in [12], with in-depth analysis
of metrics in each component of the system. The goal was to detect transient
bottlenecks with durations as low as 50 milliseconds. The problem with these
approaches is that acquiring such finely-grained data is very hard to transpose
to different hardware and software architectures.

[15] presents an approach that uses a queuing model for each tier of the sys-
tem, to predict the server capacity for a given workload. Authors focused mainly
on web server performance and stateless applications. [7] uses DAG-based data
flow programs running on cloud infrastructures, to detect CPU and I/O bot-
tlenecks. In [11], authors presented a statistical machine learning framework to



predict bottlenecks and achieve elasticity in terms of VMs. [10] presents a dy-
namic allocation of VMs based on SLA restrictions. The framework consists of a
continuous system introspection that monitors the cloud system and their com-
ponents. This, however, requires continuous resource consumption (paid by the
user) and scalability to large cloud providers. A different approach was followed
by [16], where the main goal is not bottleneck detection, but optimal resource
utilization using heuristic models.

Regarding rule-based methodologies (ii), Iqbal et al. [8, 17] propose an algo-
rithm that processes proxy logs and, at a second phase, all CPU metrics of web
servers. The purpose is to achieve elasticity concerning the number of instances
of the saturated component. [18] uses static performance-based rules. In this
approach, if a component resource saturation is observed, then, the user will be
migrated to a new virtual machine through IP dynamic configuration.

We can also find many papers that are more closely related to benchmark-
ing and performance analysis than to bottleneck detection. For example, [19],
presents the “C-Meter” cloud benchmark framework. It gathers lower level met-
rics, such as the time spent on resource acquisition, or the wait time in queue
for a workload job to be processed. However, these metrics are only accessible
to the cloud administrators. [20] benchmarks the Amazon EC2 cloud infrastruc-
ture. The main conclusion is the fact that applications in cloud environments will
have some performance degradation, when compared to similar application run-
ning in Linux clusters and other physical machines. This degradation is strongly
associated with the network traffic generated by the application. In other words,
applications with higher network requirements will have a higher performance
degradation in cloud environments.

4.2 Academic Studies Using Outside System Methodologies

This section reviews solutions that try to detect bottlenecks without having
access to the observed infrastructure. In [21], authors propose a client-based
collaborative approach. They use a web browser plug-in on each client that
monitors all client Internet activity and gathers several network metrics. The
plug-in focus is mainly the HTML initial page. It discards page resources from
third-party providers, such as CDN objects, and sends all information of the
main site to a central point, for processing. The impact of this approach on
network bandwidth and client data security is unclear. Additionally, [21] only
handles network connectivity bottlenecks.

In [22], authors present Netalyzr, a Java applet for browsers that clients can
use to understand why some connection is slow. This tool is mostly used when
clients experience some problem. When a client wants to diagnose why some
URL is slow, the tool makes several HTTP requests from distinct locations, to
gather several network metrics. Although very powerful for connectivity issues,
it does not analyze system or performance bottlenecks.

[23] uses a different approach, implementing a Web crawler that gathers
HTTP, DNS and TCP connection data from different locations. The main goal
is to understand in what network layer do mostly of the user-visible page failures



occur. Dasu [24] is a client-based software. It has more than 90,000 installations,
allowing the collection of metrics from different end users. As mentioned by the
authors, it is limited by the number of hosts that are online and, consequently,
cannot run continuous measurements. It only collects metrics associated with
the client network point-of-view, discarding application measurements, such as
HTML objects from third-party resources.

In [25], Flach et al. present a browser plugin that collects information and
analyzes sites based on rules. Again, this paper focuses on network metrics and
connectivity issues. Another similar approach is presented in [26], where a Fire-
fox extension based on javascript was created to gather client information, to
diagnose network problems. Firelog [27] is another plugin for the Firefox browser.
It gathers network metrics for later evaluation of networking issues. Unlike the
previous work, the collected data is not processed in real time, but transferred to
a PostgreSQL database. Besides connectivity issues, authors also look at client
performance problems occurring during page rendering.

In [28], Padmanabhan et al. use the PlanetLab [29] infrastructure, to gather
network information from 80 sites and analyze the source of the problems. De-
spite not requiring any browser extension, and thus being able to run out-of-the
box (provided that an infrastructure is available), recent studies showed that this
pattern of concurrent accesses can significantly change the results observed [30].

4.3 Industrial Tools to Detect and Prevent Bottlenecks

We classify industrial tools for bottleneck prevention into three major groups:
(i) monitoring applications that have access to the infrastructure. This group
requires heavy configuration and administration, because it is quite similar to
the group of applications presented in Section 4.1; (ii) access only to URLs. In
this case, the tool allows the client to configure the URLs to monitor and the
SMS or email to notify, when something is wrong (according to the tool rules).
As in the work we mentioned in Section 4.2, these tools can only detect network
bottlenecks or a “slow” server, thus falling short of a deep evaluation; (iii) hybrid
tools that collect information from inside and outside of the system. Although
very powerful, they need constant maintenance, to ensure the system is correctly
monitored [31].

Table 5 illustrates the kind of resource problem detected by some of the
aforementioned literature. The second column concerns the need to increase CPU
resources or VM instances. The third column is associated to I/O, normally an
access to a database. The bandwidth column represents delays inside the cloud
network or to the client — normally browser or web services. It is relevant
to mention that several papers [7, 14, 32] only consider CPU (or instantiated
VM) and I/O bottlenecks, thus not considering internal (between the server
components) or external (client-server connection) bandwidth. A different set of
work does exactly the opposite, focusing mostly on network issues. In fact, we can
clearly see that papers presented in Section 4.1 tend to handle server bottlenecks,
whereas papers presented in Section 4.2 tend to cover network bottlenecks.



Table 5. Bottlenecks detection in related work

Article CPU/Threads/VM I/O Connectivity issues

[7] X X

[8] X

[13] X X

[9] X

[12] X X Internal

[14] X X Internal

[18] X X

[21] External

[22] External

[23] External

[24] External

[25] External

[27] External

[28] External

[26] External

We are looking for bridging this gap. We are not tied to any specific architec-
ture, as we try to evaluate the bottlenecks from the client side, while, at the same
time, we aim to identify precise server bottlenecks. To stay independent from the
architecture, we use internal times of the application performing a monitoring
task, instead of reading system metrics, like CPU or disk occupation. Further-
more, we try to reduce the collection of the internal times to the smallest number
of points, to create a simple system. The fact that we use the standard Navi-
gation Timing API, instead of implementing a full browser plugin also makes
things simpler. Additionally, by taking measurements from the perspective of the
client, we can have a better insight on the quality of the response. This approach
seems preferable to taking a large number of measurements from the distributed
architectures involving multiple vendors that compose cloud systems.

5 Conclusion

The allocation of virtualized resources poses a challenge to system architects
and administrators as they need to properly provision cloud resources for appli-
cations. To achieve this goal, we proposed to detect three types of bottlenecks:
processor, bandwidth and I/O. Unlike previous work, we mostly aim to use
client-side metrics for detailed observation of the server. The point is to strongly
reduce the intrusiveness of monitoring. While other approaches analyze dozens
or hundreds of server-side metrics, so far, our evaluation suggests that we need
only one such metric, to distinguish CPU time from database query times. Our
initial results show that it is possible to interpret the provider infrastructure as
a “black box” and still detect bottlenecks.

We recognize that our work is still in an early phase. While this paper demon-
strates that we can identify the source of a bottleneck with only a handful of



metrics, the great challenge is to do such detection in real time with actual client
requests distributed over time, instead of using a single burst of requests over
an offline system. The ability to do so might turn out to be an excellent way of
improving the existing monitoring tools, by introducing the client perspective of
performance and still distinguishing different types of bottlenecks.

References

1. B.P. Rimal, Eunmi Choi, and I. Lumb. A taxonomy and survey of cloud com-
puting systems. In INC, IMS and IDC, 2009. NCM 09. Fifth International Joint
Conference on, pages 44–51, 2009.

2. James Hamilton. Internet-scale service infrastructure efficiency. SIGARCH Com-
put. Archit. News, 37(3):232–232, June 2009.

3. Papers — HP Web Server Performance Tool. http://www.hpl.hp.com/research/
linux/httperf/. Retrieved August 20, 2013.

4. Performance tools — Apache JMeterTM . http://jmeter.apache.org/. Retrieved
August 20, 2013.

5. Technical white papers — Java Petstore 2.0. http://www.oracle.com/

technetwork/java/index-136650.html. Retrieved August 20, 2013.
6. Technical white papers — GlassFish Application Server. http://glassfish.java.

net/. Retrieved August 20, 2013.
7. D. Battre, M. Hovestadt, B. Lohrmann, A. Stanik, and D. Warneke. Detecting

bottlenecks in parallel dag-based data flow programs. In Many-Task Computing
on Grids and Supercomputers (MTAGS), 2010 IEEE Workshop on, pages 1–10,
2010.

8. Waheed Iqbal, Matthew N Dailey, David Carrera, and Paul Janecek. Adaptive
resource provisioning for read intensive multi-tier applications in the cloud. Future
Generation Computer Systems, 27(6):871–879, 2011.

9. Y. Shoaib and O. Das. Using layered bottlenecks for virtual machine provisioning in
the clouds. In Utility and Cloud Computing (UCC), 2012 IEEE Fifth International
Conference on, pages 109–116, 2012.

10. Nikolaus Huber, Fabian Brosig, and Samuel Kounev. Model-based self-adaptive
resource allocation in virtualized environments. In Proceedings of the 6th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’11, pages 90–99, New York, NY, USA, 2011. ACM.

11. Peter Bod́ık, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and
David Patterson. Statistical machine learning makes automatic control practical
for internet datacenters. In Proceedings of the 2009 conference on Hot topics in
cloud computing, HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

12. Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro
Shimizu, Masazumi Matsubara, Motoyuki Kawaba, and Calton Pu. Detecting tran-
sient bottlenecks in n-tier applications through fine-grained analysis. ICDCS13.

13. Simon Malkowski, Markus Hedwig, Jason Parekh, Calton Pu, and Akhil Sahai.
Bottleneck detection using statistical intervention analysis. In Managing Virtual-
ization of Networks and Services, pages 122–134. Springer, 2007.

14. Simon Malkowski, Markus Hedwig, and Calton Pu. Experimental evaluation of n-
tier systems: Observation and analysis of multi-bottlenecks. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pages 118–127.
IEEE, 2009.



15. Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and Prashant Shenoy. Auto-
nomic mix-aware provisioning for non-stationary data center workloads. In Pro-
ceedings of the 7th international conference on Autonomic computing, ICAC ’10,
pages 21–30, New York, NY, USA, 2010. ACM.

16. Ruiqing Chi, Zhuzhong Qian, and Sanglu Lu. A heuristic approach for scalability
of multi-tiers web application in clouds. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2011 Fifth International Conference on, pages
28–35, 2011.

17. Waheed Iqbal, Matthew N Dailey, David Carrera, and Paul Janecek. Sla-driven
automatic bottleneck detection and resolution for read intensive multi-tier appli-
cations hosted on a cloud. In Advances in Grid and Pervasive Computing, pages
37–46. Springer, 2010.

18. Huan Liu and Sewook Wee. Web server farm in the cloud: Performance evalu-
ation and dynamic architecture. In Proceedings of the 1st International Confer-
ence on Cloud Computing, CloudCom ’09, pages 369–380, Berlin, Heidelberg, 2009.
Springer-Verlag.

19. N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-meter: A framework for
performance analysis of computing clouds. In Cluster Computing and the Grid,
2009. CCGRID ’09. 9th IEEE/ACM International Symposium on, pages 472–477,
May 2009.

20. K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, Harvey J.
Wasserman, and N.J. Wright. Performance analysis of high performance computing
applications on the amazon web services cloud. In Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on, pages
159–168, Nov 2010.

21. S. Agarwal, N. Liogkas, P. Mohan, and V.N. Padmanabhan. Webprofiler: Co-
operative diagnosis of web failures. In Communication Systems and Networks
(COMSNETS), 2010 Second International Conference on, pages 1–11, Jan 2010.

22. Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. Netalyzr:
Illuminating the edge network. In Proceedings of the 10th ACM SIGCOMM Con-
ference on Internet Measurement, IMC ’10, pages 246–259, New York, NY, USA,
2010. ACM.

23. C.M. Vaz, L.M. Silva, and A. Dourado. Detecting user-visible failures in web-sites
by using end-to-end fine-grained monitoring: An experimental study. In Network
Computing and Applications (NCA), 2011 10th IEEE International Symposium
on, pages 338–341, Aug 2011.

24. Mario A. Sánchez, John S. Otto, Zachary S. Bischof, David R. Choffnes, Fabián E.
Bustamante, Balachander Krishnamurthy, and Walter Willinger. Dasu: Pushing
experiments to the internet’s edge. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages
487–499, Lombard, IL, 2013. USENIX.

25. Tobias Flach, Ethan Katz-Bassett, and Ramesh Govindan. Diagnosing slow web
page access at the client side. In Proceedings of the 2013 Workshop on Student
Workhop, CoNEXT Student Workhop ’13, pages 59–62, New York, NY, USA, 2013.
ACM.

26. Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich, Mark Allman,
Nicholas Weaver, and Vern Paxson. Fathom: A browser-based network measure-
ment platform. In Proceedings of the 2012 ACM Conference on Internet Measure-
ment Conference, IMC ’12, pages 73–86, New York, NY, USA, 2012. ACM.



27. Heng Cui and E. Biersack. Troubleshooting slow webpage downloads. In Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on,
pages 405–410, April 2013.

28. Venkata N. Padmanabhan, Sriram Ramabhadran, Sharad Agarwal, and Jitendra
Padhye. A study of end-to-end web access failures. In Proceedings of CoNEXT,
Lisboa, Portugal, December 2006.

29. Papers — Planet Lab. https://www.planet-lab.org/. Retrieved June 8, 2015.
30. Joel Sommers and Paul Barford. An active measurement system for shared en-

vironments. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pages 303–314, New York, NY, USA, 2007. ACM.

31. Papers — External Site Monitoring Services. http://softwareqatest.com/

qatweb1.html#MONITORING. Retrieved June 8, 2015.
32. Balvinder Singh. Article: Bottleneck occurrence in cloud computing. IJCA Pro-

ceedings on National Conference on Advances in Computer Science and Applica-
tions (NCACSA 2012), NCACSA(5):1–4, May 2012. Published by Foundation of
Computer Science, New York, USA.


