
Improving Self-Adaptation Planning through Software
Architecture-based Stochastic Modeling

João M. Franco∗, Francisco Correia, Raul Barbosa, Mário Zenha-Rela

Center for Informatics and Systems of University of Coimbra, Coimbra, Portugal

Bradley Schmerl, David Garlan

Carnegie Mellon University, Pittsburgh, USA

Abstract

The ever-growing complexity of software systems makes it increasingly challeng-

ing to foresee at design time all interactions between a system and its environ-

ment.

Most self-adaptive systems trigger adaptations through operators that are

statically configured for specific environment and system conditions. However,

in the occurrence of uncertain conditions, self-adaptive decisions may not be

effective and might lead to a disruption of the desired non-functional attributes.

To address this, we propose an approach that improves the planning stage

by predicting the outcome of each strategy. In detail, we automatically derive a

stochastic model from a formal architecture description of the managed system

with the changes imposed by each strategy. Such information is used to optimize

the self-adaptation decisions to fulfill the desired quality goals.

To assess the effectiveness of our approach we apply it to a cloud-based

news system and predicted the reliability for each possible adaptation strategy.

The results obtained from our approach are compared to a representative static

planning algorithm as well as to an oracle that always makes the ideal decision.

Experiments show that our method improves both availability and cost when

∗Corresponding author
Email addresses: jmfranco@dei.uc.pt (João M. Franco), fcorreia@dei.uc.pt

(Francisco Correia), rbarbosa@dei.uc.pt (Raul Barbosa)

Preprint submitted to Journal of Systems and Software February 4, 2016

compared to the static planning algorithm, while being close to the oracle.

Our approach may therefore be used to optimize self-adaptation planning.

Keywords: Self-adaptive systems, Autonomic computing, ADL, Reliability

Prediction, Quality Goals, Znn.com, Impact prediction

1. Introduction

Self-adaptive systems modify their structure or behavior during runtime in

order to meet specified goals (e.g., availability, performance). These systems

are monitored to obtain runtime properties which are analyzed to identify con-

ditions where the system may be deviating from the desired quality goals. In5

these situations, adaptation courses are planned and executed to get the system

into the right track. However, in view of the critical nature of the system, adap-

tations should be planned with care and take account of every possible scenario.

For example, self-driving cars have strict safety requirements and whenever an

adaptation is planned, it must ensure that no human lives (passengers or pedes-10

trians) are put at risk.

A self-adaptive system determines an adaptation based on different ap-

proaches. Current adaptation approaches vary from simple algorithms that are

condition-action based to other, more complex approaches that involve Markov

Decision Processes (MDPs) or utility-theory [1]. Generally, these decision-15

making algorithms act according to a predefined set of operators to choose one

adaptation over another. The problem is that these operators are considered to

be static [2, 3], being defined by humans and only effective in specific domains

or expected contexts in which they have been configured [4]. In systems with

a high number of runtime and environment variables, the possible adaptation20

scenarios and consequences may rise exponentially, and become almost unfeasi-

ble for humans to reflect on in every possible combination. As a result, under

unexpected conditions a system may fail to select the best strategy which may

lead to a degradation of the provided services.

To overcome the limitation that occurs with static operators responsible25

2

for triggering adaptations, we propose a method that automatically predicts

whether an adaptation fulfills the desired non-functional goals, even in unex-

pected conditions. This method automatically predicts the reliability for each

adaptation strategy and updates the static operators. As a result, our approach

determines a strategy that best drives the system to attain the desired quality30

goals.

The main contribution of this paper is an approach that seeks to improve

the planning phase of self-adaptive systems, by automatically anticipating the

reliability of each adaptation on non-functional properties. In addition, we also

propose a notation to formally translate a software architecture to a mathe-35

matical model, promoting researchers to apply our approach, automate their

methods or extend it to other quality attributes. This formal translation poses

as a novel approach and a contribution for future research.

To show the effectiveness of our approach we applied it to a cloud-based in-

frastructure system with three adaptation goals: availability, cost and resources40

utilization. Specifically, we anticipate the impact of each eligible adaptation

by generating stochastic models at runtime. These models are derived from the

software architecture description which allow to describe the behavior, structure

and actual properties of the running system.

In our experiments, we simulated failures and load peaks in order to compare45

the results from our approach with traditional self-adaptive methods that use

static adaptation operators. The results show that our approach is able to

correctly handle unexpected conditions, in which traditional approaches fail to

select the best adaptation strategy.

This paper is organized as follows. Section 2 presents the related work and50

Section 3 details the method adopted in this study. Section 4 describes the hy-

potheses which our study aims to confirm, Section 5 introduces the case-study

used for evaluating our approach and its results can be depicted in Section 6.

The contributions are presented in Section 7 and a discussion about the re-

sults and method is addressed in Section 8. Section 9 summarizes the practical55

implications before Section 10 concludes.

3

2. Related work

Self-adaptive systems are able to adjust their behavior in response to their

perception of the environment and the system itself [5]. These systems are

usually implemented through the MAPE-K approach defined by the Interna-60

tional Business Machines (IBM) Corporation in 2004 [6]. The MAPE-K is a

short name for Monitor, Analysis, Plan and Execute tasks, all with a shared

Knowledge-base. To be more specific, a self-adaptive system monitors the envi-

ronment and the system itself to analyze whether an adaptation is required or

not to achieve the desired goals. In case of being necessary, a course of action65

is planned and executed in the target system to change the current behavior

and achieve the desired quality goals. Communication between different adap-

tation phases is conducted through a shared knowledge-base that abstracts the

system, containing data, models, decisions and behavior, enabling separation of

adaptation responsibilities and allowing their coordination.70

Self-adaptive systems have been an interesting focus of research study due to

their ability to adapt and modify the behavior leading to a multitude of practical

applications, like self-driving cars, self-maintainable software and self-ruling sys-

tems. Salehie et al. [4] present a survey article about the landscape of research,

taxonomies, gaps, and future challenges in self-adaptive systems. They consider75

the adaptation process as a concept that deserves attention in future research

challenges. One of the most important challenges they highlighted is the assur-

ance that an adaptation is going to have a predictable impact on the functional

and non-functional aspects of the system. To this end, we divide the approaches

that relate to ours into three different groups: approaches that propose changes80

to the phases of the MAPE-K (Monitor, Analysis, Plan, Execute and Knowl-

edge) loop; present new decision-making algorithms; and perform quantitative

prediction of non-functional attributes or verification of correctness.

2.1. Changes to the MAPE-K loop

Fredericks et al. [2] present an exploratory paper introducing a change in the85

typical control-adaptation loop. They argue that the traditional feedback-loop

4

based on the MAPE-K [6], should be supplemented with testing strategies at

runtime, becoming MAPE-T. Their goal is that through such testing at runtime,

the self-adaptive system would be able to verify the satisfaction of its require-

ments, even when facing unexpected or unanticipated system or environment90

conditions. Being an exploratory paper, it lacks the application of the theory

into a practical example.

King et al. [7] suggest a self-testing framework for autonomic computing.

This framework must ensure that prior to each adaptation: (1) the system has

to perform regression tests to ensure that new errors have not been introduced;95

and (2) validate the actual behavior of newly added or adapted components prior

to their use in the system. This study differs from ours since King’s work focuses

on assuring the correct functional behavior before and after each adaptation.

Our study aims on predicting the impact of the non-functional goals for each

strategy and informing the planning phase to make appropriate decisions.100

2.2. Decision-making approaches

In recent years several studies focused on proposing new methods to support

decision-making algorithms. These studies had one goal in common: deal with

the uncertainty of adaptive decisions to assure a correct adaptation while guar-

anteeing the achievement of the desire quality goals. Traditional self-adaptive105

approaches rely on constant weights or impact vectors to select the best strat-

egy according to environment and system conditions. However, these constants

are defined in design time and may become dated during runtime due to the

varying and dynamic environment conditions. Thus, it leads to an uncertainty

in the non-functional aspects of the system.110

To address this uncertainty, Bencomo et al. [8] apply Bayesian Networks,

specifically Dynamic Decision Networks (DDNs), to assess the consequences of

different design alternatives and choose one that satisfies the functional require-

ments of the system. With the same purpose, Ghezzi et al. [9] propose the

generation of a Markov Decision Process (MDP) with rewards from an abstract115

model of the system comprising a set of functionalities and their alternatives.

5

This MDP calculates which is the best path of execution regarding the system

quality goals. In addition, their work handles unexpected faults by redirecting

the execution for alternative paths when catching a runtime exception.

Sykes et al. [10] uses a probabilistic rule learning technique to generate new120

adaptation plans. These plans are ranked with a probability of achieving a

particular quality goal under specific system and environment conditions. They

applied their method to a case-study based on a production cell where a robot

arm is controlled and various processing operations were performed. The results

show that the algorithm was able to produce alternative plans and avoid the125

use of faulty components.

The work described in [11, 12] represents recent work on using probabilistic

models in self-adaptation in the context of Rainbow. That work primarily fo-

cuses on modeling the adaptation strategies and their impacts with respect to

quality goals. Although the architectural model is woven in with these models,130

the architecture itself is not probabilistic. In contrast, the work described here

focuses on the probabilistic behavior of the architecture itself and uses that to

predict the quality impact of strategies. Some basic probabilistic modeling of

the architectural model is done in [13] for the purposes of synthesizing strate-

gies, but the probabilistic aspects are encoded as simple parameters, and so are135

not full probabilistic models of the architecture.

Our work relates to the aforementioned ones by also proposing a method to

tackle the uncertainty of quality attributes in self-adaptive systems. However,

we do not propose a new decision-making algorithm, but rather we promote the

quantitative prediction of non-functional attributes at runtime. Our approach140

uses this prediction to override constant weights and impact vectors defined at

design time to avoid the use of static configurations. The novelty of our work

relies in predicting the quality outcome for every possible adaptation strategy

in order to assure the achievement of the desired quality goals.

6

2.3. Quantitative verification or prediction of quality goals145

Quantitative verification is a technique to calculate the likelihood of the

occurrence of certain events during the execution of the system. The benefits of

having this verification at runtime to support software adaptation are discussed

by Calinescu et al. [14]. They state that by employing modeling techniques at

runtime (e.g., predict requirements violation, plan recovery from such violations150

and verify correctness in the adaptation steps employed in recovery) we may

obtain more dependable self-adaptive systems.

The work of Gallotti et al. [15] proposes an approach to generate stochastic

models to assess reliability and performance from Activity Diagrams described

in Unified Modeling Language (UML). In short, their approach takes as input155

a formal representation of service composition drawn as a UML Activity Di-

agram along with a specification of quality properties, such as response time

or failure rate. The approach interprets the draw and creates an intermediate

representation before generating a stochastic model to be solved by Prism [16],

a model checking tool. The interpretation of the draw cannot be standard-160

ized for every UML Activity Diagram tool, since their representations differ in

small details. This work differs from ours, since we focus on Architectural De-

scription Languages (ADLs) than UML and we also propose a formal notation

to standardize the translation from an architectural model complying with the

ISO/IEC/IEEE 42010 Standard [17] to a stochastic model. In addition, we per-165

form reliability prediction at runtime and show its effectiveness by conducting

a performance assessment, while Gallotti et al. address these as future work.

Cámara et al. [18] propose an approach that models the behavior of a self-

adaptive system with regard to trustworthy service delivery. In more detail,

the authors model the adaptation behavior of the system to obtain levels of170

confidence regarding the resilience of each adaptation. The effectiveness of their

approach is outlined through an experimentation similar to ours, using Rainbow

and Znn.com as self-adaptive solution, respectively. The results show that both

outcomes from the proposed modeling approach and from the running system

are close validating their work. The work of Cámara et al. [18] differs from175

7

ours in the aspect that we automatically generate and solve stochastic models

at runtime to support the adaptation manager by deciding which is the best

strategy to attain the desired quality goals.

Zheng et al. [19] applied Kalman Filters to model and track performance

that can be used to evaluate end-to-end response times, utilization of resources180

and also to estimate performance parameters. Their work has been applied to

autonomic computing to empower decision-making capabilities. The approach

was tested in a scenario of a cluster of servers and the results show that it

efficiently maintain service level and avoid system overload. In more detail,

it takes into consideration disturbance changes such as the number of users,185

software aging or requests with modified resource demands.

Filieri et al. [20] explore models and system adaptations to meet a particular

target reliability through a control theoretical approach. In more detail, they

keep alive a model of the application at runtime which expresses reliability

concerns through a DTMC. This model is continuously updated at runtime and,190

in a control-theory viewpoint, is viewed as the input variables to the controlled

system. They consider self-adaptation at the model level, where possible variant

behaviors are evaluated and the selected changes are then transferred into the

running implementation. Their approach bypasses the decision-making process

of the self-adaptive system and rely upon only one adaptation goal: Reliability.195

Any of the aforementioned studies that address quantitative prediction or

verification at runtime are likely applicable to a self-adaptive system to enrich

its decision-making process. This enrichment is made by replacing constant

adaptation operators by predictions on the quality outcome or by assuring cor-

rectness for each adaptation. We argue that the resulting system will be able200

to make informed decisions about the impact on the quality dimensions in un-

expected and unanticipated situations. Other studies address uncertainty by

keeping a model alive which is constantly updated with runtime properties.

However, the construction of the model is the responsibility of the designer or

the engineer, increasing development effort, time to deliver and cost. This is205

where our work augments the current research field by automatically generating

8

probabilistic models at runtime reducing effort and modeling time, at the same

time that accounts with structural changes in the architecture such as changing

architectural styles or the addition of new components.

The work that closely relates to ours is QoSMOS (Quality of Service Manage-210

ment and Optimization of Service-based systems) proposed by Calinescu et al. [21].

QoSMOS assures that QoS is delivered by adaptive systems in an equally adap-

tive and predictable way. QoSMOS support self-adaptation of service-based

systems by choosing an optimal strategy through prediction of QoS at runtime.

In short, they combine several existing techniques, such as the formal specifica-215

tion of QoS by using temporal logic, generation of stochastic models to evaluate

reliability and performance, Bayesian-based parameter adaptation by exploiting

KAMI [22] and a tool to support the planning and execution phases of the sys-

tem adaptation. Our work closely relates to QoSMOS since both works assure

quality of the system adaptation, perform quality prediction at runtime and220

evaluate the approach scalability and performance. Regarding the difference of

both works, QoSMOS takes as input BPEL (Business Process Execution Lan-

guage) models of service orchestration focusing on only service based systems,

while our work uses Architectural Description Languages (ADLs). ADLs allow

to specify a wider range of systems, reveal the topology or structure of the whole225

system and define architectural styles. In addition, we propose a formal notation

to translate from the ADL to the stochastic model providing a generic solution

that can be applied to other quality attributes or ADLs. Regarding QoSMOS

scalability and evaluation efficiency, it cannot be applied to large scenarios due

to the exhaustive quantitative model checking in the Analysis phase. In more230

detail, QoSMOS evaluates six different PCTL rules (4 for reliability and 2 for

performance) while our approach assesses one rule that expresses the reliability

of the system. This limits QoSMOS application to only systems in which time

efficiency is not a problem, while our approach can be applied to those which

have strict time requirements. The evaluation of QoSMOS is obtained through235

a theoretical case-study of a TeleAssistance scenario while our approach has

been implemented and running on an actual case-study of a news infrastructure

9

system. This case-study allows to validate our approach with an application

example, as well as to compare results from traditional approaches with ours.

3. Approach240

In this study we use quantitative prediction of non-functional attributes

to assure that a particular adaptation strategy will fulfill the desired quality

goals. In more detail, we applied this approach to reliability by generating

mathematical models at runtime to predict the failure behavior of the system

for each eligible adaptation strategy. To this end, our approach uses a software245

architecture in the form of an Architectural Description Language (ADL) to

assess each strategy. In more detail, the ADL contains data about the topology

of the system, their current metrics and how it will behave accordingly to the

adaptation strategy.

This section details our approach by explaining where it sits in the self-250

adaptation loop, the required specifications in the architecture, how we predict

reliability and how we formally translate from the ADL to the stochastic model.

3.1. MAPE-K integration

IBM [6] in 2006 introduced a standard adaptation control loop with the

ability to manage itself and dynamically adapt to changes – the MAPE-K. In255

more detail, the MAPE-K loop can be divided into Monitoring capabilities, An-

alyze runtime metrics, Plan strategies and Execute the plan through a shared

Knowledge-base. Figure 1 provides an overview of our approach and its inte-

gration into the different phases of the MAPE-K loop.

In concrete terms, our approach begins by collecting runtime metrics from260

a running system to update its architectural description. This process ensures

that at each recurring analysis phase, the model of the system is updated to

the current environment and system conditions. In the Analyze phase, our

approach makes a copy of the software architecture by following each possible

adaptation strategy and applies its changing operators. These operators are265

10

Model

3. Generate

Collect

Runtime

Metrics

Software

Architeccture

1. Update SwA

Impact

vectors

Model

Checking

Tool2. Copy SwA and

apply the operators

 of each strategy

5. Update

4. Solve

Software

Architecture

Figure 1: Approach overview

defined as the changes that each strategy would perform in the managed system

if they were selected. Thus, our method generates a model that represents the

system behavior for each adaptation strategy. To solve the generated model,

our approach relies on a model checking tool, Prism [16], to predict the quality

of the impact. In the final stage, our approach supports the planning phase by270

updating constant weights or impact vectors which can be used for comparative

purposes and helps decide what is the best strategy to achieve the desire quality

goals.

In the following subsections we formally describe the architectural model

and the process to generate the stochastic model from the architecture. This275

formal specification is performed through the Z notation [23].

11

3.2. Architectural description

An architecture comprises what is essential or fundamental to a system in re-

lation to its environment. Its description is a work product from the standpoint

of architects and may encompass system constituents (e.g., components, con-280

nectors), about how they are organized, their design requirements and principles

regarding evolution [17].

Thus, an architectural model is a tuple A = (C, Con, Att , Prop), where:

• C = {ci} is a finite set of Components. A component represents a unit of

computation which can be a single operation, such as a function, a class285

or a set of classes that share the same interfaces or functionality, or even

a complex operation as an entire system. We refer to a component as a

tuple ci = (IP ,OP ,Prop,Rep) where:

IP =
{

ipj

}
is a finite set of input ports. Each input port represents290

the incoming data to be processed by the component;

OP = {opk} is a finite set of output ports. Each output port repre-

sents the data sent from a component after being processed;

Prop is a set of properties annotating the component with data re-

garding its behavior. Each property is a tuple that holds information

about the name of the property, its type and its value. For example, a

component may hold a property representing its response time which

is a float value representing its current or average response time.

Enum = {String}

PropType ::= Float | Integer | String | Enum

Prop ={name, value : String ; type : PropType •

(name, type, value)}

Rep is a representation that specifies the internal behavior of a com-

ponent ci. This internal representation is optional in each component

12

and when it exists describes a sub-architecture model that specifies

in detail the functionality of that component and it is modeled as an

architecture.

Rep = A′ | ∅⇔ Rep =
(
C ′, Con ′, Att ′, Prop′

)
| ∅

• Con = {coni} is a finite set of Connectors. Connectors are the archi-

tectural elements responsible for the interactions between components,295

distributing data among attached components. Each connector is repre-

sented by the tuple coni = (R,Prop):

R = {ri} is a finite set of Roles. Each Role is responsible for co-

ordinating the communication between the connector and a set of300

components, by specifying the communication protocol, assurance

properties and the rules about interaction ordering or format. It is

specified as a tuple ri = (Prop) where it defines its own properties.

The connector role is bound as one-to-one with a component port

and each connector must have at least two roles.305

Prop is a set of properties annotating the connector with data re-

garding its behavior and defined as the same type specified above.

• Att is an Attachment showing how components and connectors are bound

together. In more detail, an Attachment is a tuple that specifies a com-

ponent and its port (either input or output) that are connected to a role

of a connector. As a result, one can understand how data traverses within

the architecture and its elements.

Att = {ci ∈ C ; ipj ∈ IP(ci) ; opk ∈ OP(ci) ; con l ∈ Con ; rm ∈ R(conl) •

((ci, ipj ∪ opk), (conl , rm))}

• Prop is a set of properties that annotates the architecture with data re-

garding requirements or design principles. Each property is defined as the

13

same Prop type previously specified.310

This formal specification of the architecture in Z enables us to define any

system in an unambiguous and rigorous way. As a result, we can automatically

generate adequate stochastic models from the architectural specification. In the

next section, we specify how we quantitatively predict reliability as a quality315

attribute from a software architecture.

3.3. Quantitative prediction of reliability

In this study we propose quantitative prediction of quality attributes at

runtime to support the planning phase avoiding the use of constant weights.

Considering the case-study presented in Section 5, one of the adaptation goals320

is to achieve high availability in the long-run. Thus, the system needs to drive

adaptations to cope with failures and recover to a correct state. As such, if

the system detects a failure, it triggers an adaptation as a recovery action to

assure the ”continuity of correct service” [24] or as ”it is not doing the wrong

thing” [25]. Our approach encompasses methods for quantitative prediction325

of reliability to guarantee that the planning phase selects the best strategy to

achieve in the long-run a high availability, one of the quality goals described in

Section 5.3.1.

To express the reliability behavior of a system a widely accepted method is

the use of a Discrete-Time Markov Chain (DTMC) [26, 20, 27].330

A discrete-time Markov Chain is a tuple M = (S, s,P ,L), where:

• S is a finite, non-empty set of states;

• s ∈ S is the initial state;

• P : S×S → [0, 1] is the transition probability matrix where Σs′∈SP(s, s′) =

1 for all s ∈ S;335

• L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state.

14

To model reliability we use an absorbing DTMC with two final states C and

F, that represent the correct (sC) and the failure (sF) outcome, respectively.340

Each state si represents a component of the software architecture and one of

those represents the initial state s. The transition probability from state si to

sj is represented by P (i, j). To accommodate with reliability, we modified the

original transition probability between states to be calculated by P (i, j) = Ri ·

Ti,j , representing the probability that state si executes correctly and the control345

is transferred to the component represented by the state sj . More specifically,

Ti,j represents a directed branch denoting the possible transfer of control from

state si to sj . Ri denotes the reliability of the state si. Since, we assume that

every component can fail, each state si has a direct edge to the absorbing failure

state F denoted by Pi,F . The transition probability to the F state is given by350

P (i, F) = (1−Ri) which represents the occurrence of an error in the execution

of the component represented by the state si. Let the transition matrix be P

where P (i, j) represents the probability of transition from state si to state sj in

the Markov process.

System reliability is expressed through a reachability property (true U state =355

sC) using Probabilistic Computation Tree Logic (PCTL) [28]. This PCTL rule

allows to determine system reliability by computing the probability that from

an initial initial state s reach the absorbing successful state sC .

This approach requires the specification of the reliability for each state and

the usage of the system to define the transitions between states (also known as360

usage profile or operational profile).

3.4. Translation process

An automated process to predict reliability from a software architecture

requires a translation from the architectural model to the corresponding math-

ematical formalism. To this end, we propose a formal translation process in365

which the architectural model (A) is related to the generation of the Discrete-

Time Markov Chain (M). This relation is specified in Z by linking each member

of A to exactly one member of M: A → M . Specifically we define a map-

15

ping from each architectural element of an Architectural Description Language

(ADL) (e.g., components, connectors, properties and their relations) to the ac-370

cording states of the Deterministic-Time Markov Chain (DTMC). This mapping

aims to achieve an automated generation of a DTMC from an ADL.

Following this, we describe the translation process along with its required

properties.

3.4.1. Initial state375

The stochastic model requires the specification of the initial state where the

control flow begins. This involves annotating the architectural model with a

mandatory property called ’EntryPoint’ which states the starting component

ci ∈ C and will be mapped as the initial state in the DTMC.

Prop = (EntryPoint ,String ,Name(ci)) 7→ s

3.4.2. Components380

The translation of each component is performed in accordance with the

following guidelines:

• Each component maps to a state

ci ∈ C 7→ si ∈ S

• The reliability of a component (Rc) is defined as the probability that

component ci will carry out a task successfully with no failures. A non-

failed task occurs when the component processes data received by an input

port and sends a response over the output port.

Rc(ci) = Pr{ci ∈ C ; ipj ∈IP(ci) ; opk ∈ OP(ci) : opk produces

an output | ipj received an input} ∈ [0, 1]

Rc is expressed in the architectural model through a component property,

by mapping to the probability of successfully transiting (PR) from state

16

si to si+1 and also to the probability of transition to a failure absorbing

state sF :

Prop = (reliability ,float ,Rc) 7→ PR(si, si+1) = Rc ∧

Prop = (reliability ,float ,Rc) 7→ P (si, sF) = 1− Rc

• When specified a representation expresses the internal behavior of a com-

ponent by presenting a new sub-system:

Rep =
(
C ′, Con ′, Att ′, Prop′

)
7→ si = (S′, s′, P ′, L′)

3.4.3. Connectors

Each connector coni ∈ Con is responsible for the communication between

different components and it is translated as follows:385

• The probability of transiting between two components is specified as an

attachment that sends data knowing that another attachment has already

received data from a component.

T (coni) = Pr{att, att′ ∈ Att ; c, c′ ∈ C : att ′ communicates data to c′ | att

receives data from c } ∈ [0, 1]

The transition probability (PT) is expressed through the property:

Prop = (transitionP ,float ,T) 7→ PT (si, si+1) = T

3.4.4. Constraints

Prior to the generation of the DTMC, we validate the software architecture

according to a set of constraints that it must comply to be considered correct.

These constraints dictate if a correct DTMC can be generated and are following

specified in the Z notation:390

No dangling ports or roles. Every input or output port of a component must

be attached to a connector role and the same applies conversely. The system is

not valid if there are any dangling ports or roles.

17

∀ ip ∈ IP(c) | ∃ c ∈ C; r ∈ R(con); con ∈ Con • ((c, ip) , (con, r)) ∈ Att

∧ ∀ op ∈ OP(c) | ∃ c ∈ C; r ∈ R(con); con ∈ Con • ((c, op) , (con, r)) ∈ Att

∧ ∀ r ∈ R(con) | ∃ con ∈ Con; c ∈ C; ip ∈ IP(c); op ∈ OP(c) •

((c, ip ∨ op) , (con, r)) ∈ Att

Output transitions sum to 1.0. For every output port, there exists a set with

at least one connection to a target component. For all the elements within that

set, their transition probabilities must add up to 1.

∀ op ∈ OP | ∃ coni ∈ Con;T ∈ Props (coni) •
∑
i

Tconi
= 1.0

This section describes the mapping from an architectural description to a

mathematical model. We specified this mapping formally to allow an unam-395

biguous translation from an ADL to a DTMC and support its future extension

to other quality attributes.

3.5. Automated prediction

As a result of the shortcomings highlighted by current surveys and limita-

tions presented in Section 2, our approach addresses the quantitative prediction400

of reliability from a software architecture in an automated fashion. For this pur-

pose, we formally annotate the translation procedure by making it possible to

parse and analyze an ADL that complies with the ISO/IEC/IEEE 42010 Stan-

dard [17]. Furthermore, we test the effectiveness of our approach by applying

it to the Acme ADL [29]. The reason for this choice rather than other ADLs is405

due to the fact that Acme is a general purpose language and not domain-specific

like the others [30]. In addition, the development team of Acme, the Software

Engineering Institute (SEI) in Carnegie Mellon University (CMU), have set up

a software library, AcmeLib, that allows Acme models to be manipulated by

third-party applications.410

18

After parsing the architectural models, we generated a Discrete-Time Markov

Chain (DTMC) in the Prism language [16]. The generated formalism is then

resolved by the Prism Model Checker tool [31] which provides a quantitative

result for the system reliability. Although other probabilistic model checking

tools could be applied, we selected Prism since it is a free, open-source tool with415

a vast documentation and support for discrete-time Markov chains.

Although in this work we applied our approach to reliability, other non-

functional attributes could also be subject of study with no significant changes

in the translation process, such as performance, as shown in the study of Gal-

loti et al. [15].420

4. Hypotheses under test

Self-adaptive systems are deployed in highly dynamic and unpredictable en-

vironments. They are able to autonomously decide and adapt to meet functional

or non-functional goals. However, these self-adaptive systems are configured to

adapt according to specific system and environment conditions. Such configura-425

tions are performed manually by human operators and remain static throughout

the life-cycle of its operation. This means that the system will behave exactly

the same while experiencing the same conditions. Since self-adaptive systems

are becoming more complex and being applied in diverse contexts, manually

configuring such conditions by a human operator is error-prone and may lead430

the system to unexpected states. In these states and due to the static config-

urations, the self-adaptation process may fail to select the best strategy and

decide for an adaptation that causes failures, performance issues or decreasing

the quality of the system. With this in mind, our work aims to confirm the

following hypotheses:435

1st hypothesis Self-adaptive planning algorithms based on static configura-

tions have a limited ability to select the best adaptation strategy upon

unanticipated and untested conditions.

19

2nd hypothesis Applying quantitative prediction or verification methods at

runtime improves the ability to reach quality goals under unanticipated440

conditions, while maintaining similar ability under known conditions.

3rd hypothesis Runtime modeling and prediction of quality attributes can

be sufficiently efficient to guarantee the performance of a self-adaptive

system.

The first hypothesis reflects the limitations of traditional self-adaptive ap-445

proaches. Self-adaptive operators trigger adaptations based on human config-

ured values that take into consideration multiple quality objectives, adaptation

strategies and system and environment conditions. These operators are manu-

ally configured, resulting in an unfeasible task when taking into account every

possibility, namely due to the exponential growth of combinations for each added450

strategy or quality objective. As a result, a self-adaptive system may select a

non-optimal adaptation strategy in unanticipated or untested conditions, lead-

ing to a degradation of the desired quality goals.

The second hypothesis states that our approach solves the identified limita-

tions of traditional self-adaptive planning algorithms. This approach consists455

in predicting the impact on quality goals for each adaptation strategy and sup-

porting the planning phase through dynamic update of the human configured

values.

The third hypothesis attests that runtime modeling and prediction of qual-

ity attributes should not affect the performance of the overall system or the460

achievement of desired adaptation goals.

5. Case-study

To test the effectiveness of our approach and confirm the hypotheses pre-

sented in Section 4, we adopted a “de facto” standard case-study from the self-

adaptive community, the Znn.com [1]. This section outlines the experimental465

setup along with an example of our approach by generating stochastic models

for each adaptation strategy.

20

5.1. Adopted self-adaptive system

A system is considered to be self-adaptive when it modifies its own behavior

in response to changes in its operating environment [32]. Weyns et al.[33] pre-470

sented FORMS as a formal reference model for specifying self-adaptive software

systems. Their work uses the Z notation to formally specify three self-adaptive

approaches that have influenced today systems: computational reflection, dis-

tributed computation and MAPE-K. Our work targets the MAPE-K approach,

since it was built with a separation of the adaptive phases in mind.475

On the basis of the study carried out by Villegas et al. [34], we chose the Rain-

bow self-adaptive system [35, 36, 37] which supports quality-driven goals and

quantitative metrics. Moreover, Rainbow is based on the MAPE-K approach

from IBM Autonomic Computing Initiative [6] and makes use of the Acme as the

basis Architecture Description Language (ADL) as does our proposed approach480

outlined in Section 3. Rainbow is an architecture-based self-adaptive system

designed by the Carnegie Mellon University and its framework is depicted in

Figure 2 which shows that it consists of two main subsystems: the controller

and target.

The controller monitors the target system through probes and gauges which485

update properties in the architectural model managed by the Model Manager.

The Architecture Evaluator evaluates the model to determine if the system is

operating within an acceptable range of quality goals. If the evaluation finds that

the system is not operating under normal conditions, it invokes the Adaptation

Manager which is responsible for selecting a more suitable adaptation strategy.490

Each strategy involves a bundle of simple courses of action denoted as adaptation

tactics. After a strategy has been selected, the Strategy Executor is responsible

for applying a sequence of actions to the target system, so that the selected

strategy is instantiated in the system.

The target system is defined as the resource that will be monitored and495

adapted to meet the self-adaptation goals. The environment consists of the

external world that interacts with the target system. It is considered to be non-

controllable and at the same time, capable of influencing the runtime properties

21

Controller

Model
Manager

Target System

ProbesEffectors

Adapt Monitor

Gauges

Architecture
Evaluator

Adaptation
Manager

Strategy
Executor

Figure 2: Rainbow framework

(e.g., hardware, physical context or network).

We applied our approach discussed in Section 3 to the above presented self-500

adaptive system, Rainbow. They are both based on the MAPE-K and so there

is a direct mapping from the components of Rainbow depicted in Figure 2 to

the ones of our approach presented in Figure 1. In detail, the Probes and

Gauges in Figure 2 collect runtime information which is mapped to the Monitor

phase in Figure 1. The Architecture Evaluator decides whether an adaptation505

is required being mapped to the Analyze phase. The Adaptation Manager is

responsible for planning a course of action being related to the Planning phase

while the Strategy Executor maps to the Execute phase in our approach. The

shared component in Rainbow, Model Manager, holds the information about

the runtime architectural model and is mapped to the Knowledge phase in the510

MAPE-K.

22

We integrate our approach within Rainbow to support the Adaptation Man-

ager. In detail, our approach does not replace the Adaptation Manager, nor the

algorithm that plan the course of action. Instead, our approach is connected to

Rainbow by updating the values used for planning with the reliability predic-515

tions from our approach. Regarding applying it to other self-adaptive systems,

the target system just needs to be based on the MAPE-K and since, no replace-

ment is needed, the integration becomes easier and effortless. In the following

section we discuss the target-system used in our case-study.

5.2. Target system520

We defined the target system as being the Znn.com, a typical infrastructure

for a news website and its diagram is depicted in Figure 3.

Client 1

Client 2

WebServer

1

WebServer

2

WebServer

n

Load-

Balancer
DataBase

.

.

.

Figure 3: Znn.com diagram

It has a tiered architecture with a set of web-servers that serve content, both

textual and graphical, from back-end databases to clients through a front-end

presentation logic. In addition, it uses a load-balancer to reroute the requests525

from the client to a pool of servers. The number of active servers will depend on

the selected adaptations required to fulfill the system goals. It must be stressed

that Znn.com is an actual platform running in actual servers using a standard

Apache distribution. Znn.com is not a simulation model.

23

5.3. Experimental design530

The concepts used throughout this case-study are discussed in Table 1 which

also serve as a quick definition reference for the reader.

Table 1: Adaptation Concepts

Tactic

Is a set of actions triggered in the target system. It can be a bash

script or an executable that causes effects and changes to the target

system. (e.g., reboot a server, kill an application).

Strategy

Is a pattern of adaptation that includes a condition, an action and a

delay. In detail, when a condition is satisfied a tactic is triggered in

the target system, which after a delay an effect should be observable.

Quality Goals Business qualities of concern (e.g., availability, cost)

Adaptation Metric

A runtime property that is collected for each time-frame and it is

related to a long-term quality goal (e.g., reliability is collected and

predicted at the planning phase to obtain a higher availability).

Adaptation Operator

Quantifies the impact of a strategy on each of the quality dimensions

to determine the merits of one strategy over another. These

operators include the following measures:

Utility Function

A function that determines the quality

impact on adaptation metrics

(i.e., we aim to achieve 100% of reliability

which results in 1.0 of utility. For lower

reliability values, the utility declines, as

shown by Table 2);

Utility Preferences

Business preferences over quality goals

(i.e., Availability has a utility preference of

50%, as shown in Table 3);

Impact Vectors

Cost-benefit attributes considered in strategy

choice with regard to quality goals

(e.g., the strategy ‘Enlist a Server’ improves

the overall availability by 10%).

Self-adaptive systems are designed with a set of operators to support decision-

making and drive adaptations to meet desired quality goals. These operators

are usually statically defined by a human operator and include utility functions,535

24

preferences and impact vectors. In this section we specify the adaptation goals,

metrics, strategies and operators of the proposed Znn-like system.

5.3.1. Adaptation goals

As with a typical news provider, Znn.com focuses on providing news con-

tent to its customers in a reliable way while keeping the operating costs to a540

minimum. In short, we identify three quality objectives for self-adaptation:

• Availability – this expresses the probability that the system is operating

properly when it is requested for use. In specific terms, it is a long-run

measure that takes into consideration the reliability of each time-frame

and the ‘repair actions’ as adaptations executed in the target system.545

The goal of this quality attribute is to maximize its potential, even if it

has to incur a higher operational cost;

• Operational Cost – this measures the number of computational resources

that need to be available during the experiment. Each server in the pool

of servers is deployed through a Virtual Machine (VM) and the goal is550

to reduce the number of VMs to a minimum. For example, the system

switches off virtual machines when processing a low number of requests;

• Utilization – this defines the amount of work received by the system in

terms of the maximum load that is supported by all the available servers.

For example, if the current work that is being processed reaches the max-555

imum capacity that all the servers are able to process, the system may

have to adapt by enlisting a new server to increase the total load that can

be handled.

5.3.2. Adaptation metrics560

We monitor the target system to collect data for each ten second time-

frame — the period between adaptations — about the following runtime prop-

erties:

25

• Active resources: the number of servers that are active and responding to

requests;565

• Reliability: defined as ”functioning correctly” [38] and in this case-study

it refers to the number of non-failed requests between recovery actions

(i.e., adaptations). Hence, we define the failure behavior as a request that

takes an unreasonable time to receive a response (i.e., > 2000 ms) or

when the returning code is not successful (i.e., HTTP status code 6= 200).570

To compute reliability we need to collect at runtime the response time of

each request and their HTTP response code;

• Load: indicates the number of requests that have been responded to within

the time-frame over the total maximum capacity the system can hold. To

compute Load we need to collect the throughput of the system and keep575

a record of the maximum requests that each server is able to respond.

5.3.3. Adaptation strategies

As stated by Table 1, an adaptation strategy is a set of tactics that will

trigger a collection of actions. These actions aim for changing the behavior580

of the target system to achieve desired quality goals. A strategy includes a

condition that must be satisfied to be selected and a delay to wait for the

strategy to be successfully accomplished.

To trigger a strategy, the system collects the runtime metrics for a ten second

time-frame and then, during the planning phase determines which strategy to585

choose or continues without adapting.

The selected adaptations of this particular case-study focus on the server

pool. Hence, depending on the current state of the runtime properties of the

system, the controller may select one of the following strategies:

• Enlist server – Enables a server, if there is a spare one ready to be acti-590

vated;

26

• Discharge the slowest server – If there are at least two active servers and

no failure has occurred, our approach will discharge the slowest one (i.e.,

the one with the highest value of mean response time);

• Discharge the least reliable server – If there are at least two active servers595

and at a failure has occurred, the system will discharge the less reliable

(i.e., the server with the highest failure rate).

5.3.4. Static adaptation operators

The self-adaptive solution used in this study, Rainbow, uses utility-theory as600

its decision-making algorithm. This type of algorithm relies on utility functions,

preferences and impact vectors to ensure that adaptations fulfill the defined

quality goals. We following detail the adaptation operators:

Utility functions. The utility-theory measures the monitored system prop-

erties according to a utility function. It provides a score which reflects how605

properties are behaving when seeking to achieve the proposed goals. These val-

ues and functions are defined in the design phase of the self-adaptive system.

An illustrative example is given in Table 2. The values that fall in intermediate

points are linearly extrapolated.

From Table 2 it can be inferred that the utility is higher for reliability val-610

ues close to 100% and lower values are heavily punished because of their utility

function. In addition, the defined values lead to a low consumption of computa-

tional resources by designating one active web-server as the best utility outcome

of the system. With regard to the experienced load, the system favors a low

utilization capacity.615

Utility preferences. The preferences define the relative importance of the

quality dimensions and serve as an example to prioritize quality attributes.

They are shown in Table 3 and it can be noticed that availability is twice as

important as the cost or utilization of the system.

27

Table 2: Utility Functions

Reliability Active Resources Load

Value (%) Utility Value Utility Value (%) Utility

100 1.0 0 0.0 100 0.0

99 0.88 1 1.0 90 0.05

95 0.54 2 0.85 80 0.1

90 0.3 3 0.55 70 0.4

85 0.16 4 0.3 60 0.5

80 0.09 50 0.6

75 0.05 40 0.7

50 0.002 30 0.8

0 0 20 0.9

10 0.95

Although they may not be achieved optimally, these preferences can be used620

to solve resource constraints or trade-offs between certain quality attributes. An

example of a resource constraint is that on a server discharge, the remaining

servers may not be able to process the current demand of requests.

Impact Vectors. The impact of a strategy on each of the quality dimensions

is represented as a vector of cost-benefit values between the strategy and each625

quality dimension. Table 4 shows the adopted values in our case-study and it

28

Table 3: Utility preferences

Percentage

Availability 50%

Cost 25%

Utilization 25%

Total 100%

should be noted that our Enlist Server strategy increases both availability and

the used computational resources, at the same time that it reduces the system

utilization, since it has more machines to process the same demand of requests.

Conversely, both Discharging Server strategies will reduce costs and increase630

the use of the system. When deciding to discharge the least reliable server, the

system will increase availability, but it will be kept the same when discharging

the slowest server from the pool.

Table 4: Static impacts on the quality dimensions for each strategy

Availability Cost Utilization

Enlist a Server +10% +1.0 -20%

Discharge the Least Reliable Server +1% -1.0 +20%

Discharge Slowest Server 0.0% -1.0 +20%

Utility rate calculations. Adaptation strategies are ranked through the util-

ity outcome of the following formula:635

29

URel = Utility(reliability + Impact (e.g., +10%))

UAR = Utility(active resources + Impact (e.g., +1))

ULoad = Utility(load + Impact (e.g., +20%))

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

To calculate the utility for a strategy, we firstly assess the impact of each adap-

tation metric (URel, UAR and ULoad). Then, we calculate the overall utility

obtained from the adaptation strategy by averaging the utilities obtained from

each metric with the adaptation preferences. The controller performs this as-

sessment to plan an adaptation and chooses the strategy that has the highest640

utility value.

5.4. Example

To show the effectiveness of applying quantitative verification methods at

runtime, we provide a demonstrative example detailing the generation of the

stochastic model and utility calculations. Figure 4 illustrates the architectural645

model of the Znn.com taken from a snapshot of an actual run of the system.

R
web0

 = 1.0

R
web1

 = 1.0

R
web2

 = 0.9

R
LB0

 = 1.0

T
0

 = 0.33

T
1

 = 0.33

T
2

 = 0.33

R
DB

 = 1.0

Figure 4: Demonstration Architectural Model

30

In this time-frame, the collected metrics from the running system are as

follows:

• Reliability: 95.7% → URel = 0.5995 ≈ 0.6;

• Active Resources: 3 active web-servers → UAR = 0.55;650

• Load: 40% → ULoad = 0.7.

In this time-frame, the system depicts three active web-servers one of which

is failing to respond to client requests (i.e., Web2). In these circumstances, the

system determines whether an adaptation is required or not. To this end, the

system calculates an utility value for the current system (non-adaption) and655

for each one of the eligible adaptation strategies: ‘enlist server’ and ‘discharge

the least reliable’ (the strategy ‘discharge the slowest server’ is not eligible due

to the occurrence of failures which does not satisfy the adaptation conditions

presented in Section 5.3.3).

To cope with failure and conduct the system to achieve the desired goals, the660

planing phase is responsible to select an adaptation strategy or continue with

the current system by non-adapting. A decision is determined by assessing the

utility outcome from the eligible strategies.

To show an example of the application of our approach to the planning phase

of the self-adaptive system, we following discuss the generation of the stochastic665

models and how static adaptation operators are updated at runtime. Then, we

show a comparison between our approach and traditional self-adaptive planning

algorithms based on static adaptation operators.

5.4.1. Our Approach

Our approach predicts the behavior of each strategy by applying its chang-670

ing operators to the architectural model. From the running example shown in

Figure 4, we discuss each one of the steps of our approach outlined in Figure 1,

as follows:

1st step We use the collected runtime properties to update the Software Ar-

chitecture, as shown in Figure 4.675

31

2nd step We make a copy of the software architecture for each eligible strategy

and apply its changes. As previously discussed, at this point there are

two eligible strategies: ‘Enlist Server’ and ‘Discharge the Least Reliable’.

Figure 5 depicts the architecture with the changes performed by the ‘Enlist

Server’ strategy. This strategy adds a new server and reroutes the requests680

from the Load-Balancer as can be observed by Figure 5.

T
3

 = 0.25

R
web1

 = 1.0

R
web0

 = 1.0

R
web3

 = 1.0

R
web2

 = 0.9

R
LB0

 = 1.0

T
0

 = 0.25

T
1

 = 0.25

T
2

 = 0.25

R
DB

 = 1.0

Figure 5: Architectural changes for the Enlist Server strategy

Regarding the strategy of ‘Discharging the least reliable’, Figure 6 depicts

the resulting software architecture after applying this strategy. As one

may depict, the system removed the failing server from the system and

reroute the requests from the Load-Balancer to the available servers.

Rweb0 = 1.0

Rweb1 = 1.0

RLB0 = 1.0
T0 = 0.5

T1 = 0.5

RDB = 1.0

Figure 6: Architectural changes for the Discharge the Least Reliable strategy

685

3rd step Generates a DTMC to predict the reliability of each eligible strat-

egy. The generation process uses the ADL of the software architecture

along with the translation process, presented in Section 3.4. The resulting

32

DTMCs can be viewed as state-space models with an initial state s = s1

and two absorbing states: sf and sc representing the failed and correct690

behavior, respectively.

The generated DTMC from applying the strategy ‘Enlist Server’ can be

viewed in Figure 7. In this DTMC one server was added and the requests

have been rerouted to account with the modification of the server pool.

The values used for generating the DTMC (discussed in Section 3) are695

outlined in Table 5.

s1

{LB0}

s2

{Web2}

s3

{Web3}

s4

{Web1}

s5

{Web0}

P(1,2)

P(1,3)

s6

{DB}

P(1,4)

P(1,5)

P(2,6)

P(3,6)

P(4,6)

P(5,6)

sc

sf

P(6,sc)

From any
other state

Figure 7: DTMC for the ‘Enlist Server’ strategy

Table 5: DTMC values for the ‘Enlist Server’ strategy

Reliability Transition Probability

R1 = R2 = R3 = R5 = R6 = 1.0 T1,2 = T1,3 = T1,4 = T1,5 = 0.25

R4 = 0.9 T2,6 = T3,6 = T4,6 = T5,6 = 1.0

The transition probability from state si to state sj is represented by P (i, j)

as specified in Section 3.3. To calculate this probability we employ the fol-

lowing formula: P (i, j) = Ri · Ti,j , representing the probability that state

si executes correctly and transfers the control to state sj . Conversely, the700

transition to a failure state is determined by P (i, f) = 1− Ri, represent-

33

ing the probability of state si failing to respond to a request. The Prism

model generated by applying this strategy can be found in Appendix A.

Regarding ‘Discharge the least Reliable’ strategy, Figure 8 outlines the

generated DTMC showing one less server than the current system depicted705

in Figure 4. The values used for the generation of the DTMC can be found

in Table 6.

s1

{LB0}
s2

{Web0}

s3

{Web1}

P(1,2)

P(1,3)

s4

{DB}
P(2,4)

P(3,4)

sc

sf

P(4,sc)

From any
other state

Figure 8: DTMC for the ‘Discharge the Least Reliable Server’ strategy

Table 6: DTMC values for the ‘Discharge the Least Reliable Server’ Strategy

Reliability Transition Probability

R1 = R2 = R3 = R4 = 1.0 T1,2 = T1,3 = 0.5

T2,4 = T3,4 = 1.0

The generated Prism model is outlined in Appendix B and following, we

show the utility calculations for the eligible strategies.

4th step The above outlined DTMCs can be solved through a reachability710

property as detailed in Section 3.3. In short, the reachability property

determines the probability that from a given initial state reach the state

sc, representing the correct state. To automatically solve a DTMC we

use the Prism Model Checker tool with the generated models shown in

34

Appendix A and Appendix B. Table 7 shows the results after solving each715

DTMC.

Table 7: Reliability Prediction for each DTMC

Strategy Reliability Prediction

Enlist Server Strategy 97.5%

Discharge the Least Reliable Server 100%

5th step The last step of our approach consists on dynamically update the

static adaptation operator values. In short, we use the above reliability

predictions to rewrite the utility rate calculation formula presented in Sec-

tion 5.3.4. The new formula avoids the use of impact vectors for reliability720

by defining its utility as: URel = Utility(predicted reliability).

Following we present the utility rates for each of the eligible adaptation

strategies:

Enlist Server

URel = Utility(predicted reliability) = Utility(0.975) = 0.75

UAR = Utility(active resources + Impact) = Utility(3 + 1) = 0.3

ULoad = Utility(load + Impact) = Utility(40%− 20%) = 0.9

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 0.75× 50% + 0.3× 25% + 0.9× 25%

= 67.5%

35

Discharge the Least Reliable

URel = Utility(predicted reliability) = Utility(1.0) = 1.0

UAR = Utility(active resources + Impact) = Utility(3− 1) = 0.85

ULoad = Utility(load + Impact) = Utility(40% + 20%) = 0.5

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 1.0× 50% + 0.85× 25% + 0.5× 25%

= 83.75%

No Adaptation

URel = Utility(reliability) = Utility(95.7%) = 0.6

UAR = Utility(active resources) = Utility(3) = 0.55

ULoad = Utility(load) = Utility(40%) = 0.7

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 0.6× 50% + 0.55× 25% + 0.7× 25%

= 61.25%

The above formulas show the process of assessing the utility for each strat-

egy before an adaptation is triggered. The utility values for each adaptation725

metric are obtained through utility functions outlined in Table 2. The results

of our approach will be discussed and compared at the end of this section, after

outlining the utility assessment of traditional planning algorithms.

5.4.2. Traditional Self-Adaptive

We denote ‘traditional self-adaptive’ to approaches that rely on test cases730

specified at design-time (e.g., impact vectors). These test cases usually remain

36

static and may include uncertainty in strategy selection due to the number of

environment and system conditions [2, 3, 14, 4].

From the architecture outlined in Figure 4 representing the system in a

particular time-frame, traditional self-adaptive systems calculate the utility of735

every eligible strategy, as follows:

Enlist Server

URel = Utility(reliability + Impact) = Utility(95.7% + 10%) =

= Utility(100%) = 1.0

UAR = Utility(active resources + Impact) = Utility(3 + 1) = 0.3

ULoad = Utility(load + Impact) = Utility(40%− 20%) = 0.9

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 1.0× 50% + 0.3× 25% + 0.9× 25%

= 80.0%

Discharge the Least Reliable

URel = Utility(reliability + Impact) = Utility(95.7% + 1%) =

= Utility(96.7%) ≈ 0.68

UAR = Utility(active resources + Impact) = Utility(3− 1) = 0.85

ULoad = Utility(load + Impact) = Utility(40% + 20%) = 0.5

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 0.68× 50% + 0.85× 25% + 0.5× 25%

= 67.75%

37

No adaptation

URel = Utility(reliability) = Utility(95.7%) = 0.6

UAR = Utility(active resources) = Utility(3) = 0.55

ULoad = Utility(load) = Utility(40%) = 0.7

Utility = URel ×Availability Preference (50%)

+ UAR × Cost Preference (25%)

+ ULoad ×Utilization Preference (25%)

= 0.6× 50% + 0.55× 25% + 0.7× 25%

= 61.25%

5.4.3. Discussion of results

To compare the results of our approach and traditional self-adaptive ones

we summarize the utility outcomes in Table 8.

Table 8: Utility results from adaptation strategies

Enlist Server Discharge Least
No Adaptation

Reliable

Our Approach 67.5% 83.75% 61.25%

Traditional

Self-Adaptive
80.0% 67.75% 61.25%

The obtained results from the example of Figure 4 show that when a server740

is failing, the traditional self-adaptive approach based on static impact vectors,

chooses to enlist a new server rather than discharging the failed one. This

measure would add a new web-server, but not correct the failure.

On the other hand, our method performs reliability prediction to anticipate

the impact of each strategy. This automated method allows architects to ab-745

stract from defining static vectors where it is hard to achieve a precise impact

and also to go beyond the static approach in unexpected or untested conditions,

38

such as the above demonstration suggests.

One may argue that static impact vectors could be tuned or rearranged to

account for this situation; however, another untested or unexpected condition750

may arise from this. These conditions are caused by the large state space of

possibilities, which in this example one should account with three adaptation

strategies, three runtime metrics and their utility values as well as preferences

and impact vectors. Furthermore, our method relies on quantitative verification

of reliability at runtime to predict the impact vectors and reduce the uncertainty755

at design time of estimating them. In conclusion, our approach makes better

decisions by avoiding the constant impact vectors required in the traditional

self-adaptive approach.

5.5. Workload

We tested our approach with a realistic workload which can trigger different760

adaptations. More precisely, our workload is based on an Internet phenomenon,

known as Slashdot effect or flash crowd. This phenomenon is characterized by

a low-traffic website which may suddenly be inundated by visitors for a period

of time due to, for example, a dramatic news announcement or alternatively, it

may be redirected from a highly-visited website.765

Our workload is depicted in Figure 9 and was patterned after the collection

of realistic traffic from the event. The collected data of the event lasted twenty-

four hours which we scaled down to one hour, keeping a similarity to the ‘visit

traffic pattern’ as follows:

1. 1 minute of low activity;770

2. 5 minutes of sharp rise in incoming traffic;

3. 18 minutes of high peak requests;

4. 36 minutes of a linear decline in requests, also known as the ramp-down

period.

39

Figure 9: Request load of the Slashdot effect

6. Evaluation775

For validation purposes, we compared three different approaches: no-adaptation,

traditional decision-making and our dynamic update of adaptation weights. In

more specific terms, the first approach entails a non-adaptive solution in which

all the four servers are active and ready to respond to client requests (i.e., 4

Servers). The second approach consists of human configured values (i.e., Human780

Optimized) to drive adaptations and shows the traditional decision-making al-

gorithm. The third and last approach under comparison, includes the approach

proposed in this paper and uses the runtime prediction of reliability to estimate

the impact of each possible adaptation strategy (i.e., Impact Prediction).

The experimental procedure consists of two testing scenarios: Control run785

and Fault-injection. In the former, we compare the approaches under normal

conditions while, in the latter we inject faults to trigger adaptations.

6.1. Control run

In this test, the system is in normal conditions without any injected fault

or crash to ensure that both self-adaptive methods achieve their quality goals.790

The results are depicted in Figure 10 and as can be seen, there is a comparison

between non-adaptive (4 servers), traditional self-adaptive (human optimized)

and our self-adaptive proposal (impact prediction).

40

(a) Throughput (b) Response Time

(c) Reliability (d) Active Resources

Figure 10: Graph results for the Control Run

Figure 10(a) shows the throughput in number of processed requests (suc-

cessful and unsuccessful requests) during each 10 second time-frame. As can795

be seen, the results show consistency between the tested scenarios and there is

only a difference between them during the high-peak period of requests, when

the scenario with more active servers will respond to more requests. Table 9

supports this claim by including a higher number of processed requests for the

scenario with no adaptation and four active servers.800

Figure 10(b) shows the response time for each scenario in milliseconds with

a granularity of ten seconds. An average response time is calculated for each

ten second time-frame. An increase in the response time occurs during the

high-peak period of requests, and returns to normal values in the ramp-down.

Moreover, all the graph series have similar results, although between 6 and 24805

41

Table 9: Control Run results

N. Requests Availability (%) VMs Hour

4 Servers 1532989 100.0 4.0

Human optimized 1425479 99.999 1.9

Impact prediction 1437780 99.999 1.8

minutes (the high peak period) both self-adaptive approaches have unstable

results. This instability is due to the enlisting and discharging servers, although

the results still remain within the threshold of acceptable response times (i.e.,

below 2000 milliseconds).

Figure 10(c) shows the reliability through the rate of successful requests for810

each time-frame. The non-adaptive approach has a constant 100% of reliability

throughout the test while the self-adaptive ones show some low peaks. These

low peaks represent a very low number of failures (7 in the human optimized

and 13 in the impact prediction) and are due to lost requests between switching

servers on and off. Table 9 supports these statements by providing the long-run815

availability values and it can be seen that both self-adaptive approaches have

five nines, while the non-adaptive does not register any failure.

The number of active servers during the experimentation is shown in Fig-

ure 10(d). The non-adaptive approach has a constant number of active servers,

although self-adaptive ones have variations especially when there is a high de-820

mand for requests.

In conclusion, Figure 10 and Table 9 show that both self-adaptive approaches

achieve similar results when compared with the most expensive non-adaptive

solution. During this test, there are no significant advantages in applying our

method for predicting the impact for each strategy and this was hardly the825

purpose of this experimentation. The set test is designed to show that both

self-adaptive solutions achieve their adaptation goals, and result in similar and

42

comparable results to the most expensive and available non-adaptive solution.

However, the results for both the self-adaptive approaches are similar and thus it

can be concluded that runtime modeling and prediction of a quality attribute do830

not have an adverse effect on the performance of the system or the achievement

of quality goals.

6.2. Fault injection

Human operators are often considered the weak link and the proportion of

errors that can be attributed to people ranges from 0.1% to 30%, depending on835

whether the operator is handling simple routine operations or undergoing a high

level of stress [39]. In view of this, we set up an experiment that injects a fault in

a PHP file that corresponds to a mistake introduced by the developer. The fault

consists of a delay introduced in each request that leads to service degradation

by increasing the time each request is resolved by between 1.5 and 2.5 seconds,840

following an uniform distribution. The rationale behind the specified values is

that a request is regarded as unsuccessful if it takes more than two seconds to be

resolved. Thus, the introduced delay allow some requests to be resolved within

the time regarded as successful and others to exceed the reasonable amount of

time leading to failures (> 2000ms, defined in Section 5.3.2).845

The injected fault only affects one server and is introduced 10 minutes after

the start of the experiment. Figure 11 shows the results for this experiment in

which we compared the non-adaptive (4 servers), both self-adaptive approaches

and a run that we consider to be the ideal adaptation. This ideal adaptation

assumes that the system knows when and where the failure will occur, so it850

proceeds by disabling the failing server and enlisting a spare one. This ’ideal’

adaptation is considered to be unrealistic in the real world, since it assumes

knowing a priori when and where to apply a recovery action. The goal of this

test is to keep a record of the best possible adaptations and identify how close

other adaptation methods get to this ideal adaptation. Table 10 includes a855

complete list of the performed tests.

The throughput results are given in Figure 11(a) and show an abrupt fall

43

(a) Throughput (b) Response Time

(c) Reliability (d) Active Resources

Figure 11: Graph results for the Fault Injection experiment

Table 10: Fault injection results

N. Requests Availability (%) VMs Hour

4 Servers 1110584 95.752 4.0

Human optimized 1096751 95.682 3.6

Impact prediction 1417786 99.981 1.9

Ideal adaptation 1523411 99.999 1.6

44

in the number of processed requests at 10 minutes due to the introduction of a

delay. It can be seen that the non-adaptive (4 Servers) approach cannot recover

from the ‘failing behavior’, and leads to an increase of response time and a860

decline in reliability as shown in Figures 11(b) and 11(c), respectively.

In both 4 servers and in human optimized approaches, the number of pro-

cessed requests shown in Figure 11(a) falls sharply. The reason for this is that

the load-balancing policy distributes the same amount of work among the vari-

ous active servers. To keep equality among the servers, the load-balancer waits865

for all the responses before distributing a new set of requests. For this rea-

son, if the failing server remains in the pool, the load-balancer has to wait for

its response which causes a delay and, thus, reduces the number of processed

requests.

With regard to the human optimized run, Figures 11(a) and 11(c) show870

an abrupt fall in the number of processed requests as well as in reliability. Fig-

ure 11(d) illustrates its adaptation process which consists of increasing the num-

ber of resources to cope with the introduced delay. However, since it just enables

more servers and keeps the failing server active, the reliability and performance

will always be affected, since the failing server has to respond to requests and875

the others will have to wait for it.

On the other hand, in the impact prediction there is clearly also a fall in

reliability and throughput. However, by predicting the impact of each adapta-

tion strategy, it first decides to discharge the failing server and then adds more

resources to cope with the demand for requests, as seen in Figure 11(d) and880

demonstrated by the utility calculations set out in Section 5.4.1. As a result,

our method quickly triggers proper adaptations to cope with this kind of erratic

behavior, by providing a high number of processed requests and a low number

of failures throughout the rest of the experiment.

These results confirm that unexpected or untested conditions may have a885

negative effect on the achievement of quality goals when using constant weights

to trigger adaptations. Table 10 suggests that the impact prediction has good

overall results with lower cost and better availability than the other approaches.

45

Moreover, it can also be confirmed that runtime modeling and prediction of

quality attributes positively influence decision-making in unexpected or untested890

conditions.

The consequences of injecting a fault are only undetectable in the ideal adap-

tation. This is because the presence of the fault is known beforehand, and thus

appropriate measures are taken to repair the fault before it can lead to a failure.

This means we can achieve an ideal result for the self-adaptive system under895

fault injection. However, this scenario might be unrealistic, since we assume

that the system knows when and where the fault will be injected. In Table 10

it can be observed that our approach, impact prediction, obtains excellent val-

ues regarding availability and costs which are close to the ideal and unrealistic

results of the ideal adaptation.900

In short, both human optimized and impact prediction solutions try to re-

cover from the erratic behavior, although the chosen adaptation strategies differ.

More precisely, both adaptive approaches have configured the enlisting server

strategy to improve availability (as outlined in Section 5.3.4). Although this

assumption may have a positive effect in most cases, it is not always true as905

shown by this experiment. Hence, when the failure occurs, the human optimized

solution selects the enlisting server strategy to increase availability, as shown in

Figure 11(d), until it reaches the maximum size of the server pool. If our setup

scenario had more available servers, the human optimized approach would have

reached the maximum pool size too. However, our approach predicts the impact910

of choosing each strategy and when the failure occurs, it decides to discharge the

failing server. As a result, it can be concluded from this experimental procedure

that by predicting the impact of each strategy, the self-adaptive system is able

to make informed decisions and achieve the desired adaptation goals.

6.3. Effectiveness and scalability of impact prediction915

Formal approaches that require an analysis of large state spaces may often

be time-consuming, and may lead to considerable overheads. To address this

issue, we implemented our approach to complete the execution within the ten-

46

second time window. This requirement ensures that there is never a different

overlapping analysis. Table 11 shows the time that each prediction takes to920

complete.

Table 11: Time, in seconds, taken to predict the impact of each strategy

Number of servers Mean Std. Dev. 95th Percentile

4 Servers 0.15 0.14 0.27

25 Servers 0.22 0.25 0.44

50 Servers 0.40 0.26 0.50

75 Servers 0.55 0.39 0.79

100 Servers 0.79 0.59 1.15

It can be observed that in the case-study with four active servers, each anal-

ysis takes, on average, 0.15 s and the 95th percentile takes 0.27 s. Our approach

generates and solves a stochastic model for each strategy, so the total time in

the analysis is obtained through Num. Strategies×Time spent on prediction.925

In our case-study, there are three strategies, which means analysis usually ex-

ecutes in less than one second (0.27s × 3 = 0.81s), well below the ten-second

requirement.

In an attempt to evaluate scalability, we tested our implementation for an

increasing number of servers, and the results are illustrated in Figure 12. To be930

more explicit, we use the ’control run’ experiment without injecting any fault.

We ran each experiment 30 times and collected the mean and the standard

deviation which are shown in the diagram. We can observe an increase in the

time spent in each prediction, but the analysis scales well for a system with

up to 100 active servers. If there is a scenario with 100 servers, our approach935

would take less than 10 seconds to execute, given the prediction of the three

47

Figure 12: Scalability of our approach regarding the number of servers

adaptation strategies (1.15s × 3 = 3.45s). This would be the case not only for

the 95th percentile but also for the maximum time observed.

6.4. Discussion

In the control run experiment, we tested the two self-adaptive solutions940

against a non-adaptive one. The goal was to determine whether both self-

adaptive systems achieve the non-functional requirements, and maintain high

availability while reducing the usage of computational resources. The results

show that both self-adaptive solutions achieve similar results with the most

expensive and highly available non-adaptive solution. However, self-adaptive945

approaches outperform the non-adaptive one by using 50% less computational

resources.

When failures occur, the experimental results show that the two self-adaptive

approaches adopt different strategies. In particular, the human optimized ap-

proach uses static impact vectors while the impact prediction approach uses950

stochastic models to predict the failure behavior of each adaptation strategy.

As a result, our method selects the best strategy to recover from failures, and

achieves an increased performance and availability, while reducing the usage of

computational resources.

Regarding the hypotheses specified in Section 4:955

48

1st hypothesis This hypothesis is confirmed in the fault injection experiment.

Although the results of the human optimized are near-ideal in cases for

which the conditions were anticipated, they fail to select the best strategy

under unexpected or untested conditions.

2nd hypothesis The fault injection experiment allows to conclude that our ap-960

proach based on reliability prediction recovered from the erroneous behav-

ior, achieving better results when compared to other solutions. Moreover,

under normal and known conditions (as in the control-run experiment)

both self-adaptive approaches present similar results. As such, we can val-

idate the second hypothesis, since using quantitative prediction methods965

at runtime improves the ability to reach quality goals under unanticipated

conditions, while maintaining similar ability in known ones.

3rd hypothesis1 In Section 6.3, we evaluated the performance and scalability

of our approach showing overall good results. Moreover, the difference of

performance between our impact prediction approach and the traditional970

human optimized show no difference in the results presented in control-

run and fault-injection experiments. Thus, validating the third hypothesis

by observing that our method maintains performance while meeting the

adaptation goals.

975

7. Contributions

Our approach encompasses a set of contributions to the research community

which are following summarized:

• Assess the impact of adaptation strategies – This approach presents a novel

method by generating stochastic models to predict the quality impact980

of each adaptation strategy at runtime. We apply the changes that are

imposed by each strategy at the architecture level and predict the quality

outcome of such changes to support the planning phase of a self-adaptive

49

system. From the results presented in Section 6, one can conclude that

our approach presents similar results when compared to traditional self-985

adaptive solutions. However, in unexpected or untested conditions our

approach surpasses traditional solutions, approaching the ideal adaptation.

• Formal description of the translation from an ADL to DTMC – Section 3.4

proposes a formal description of the translation from an architectural de-

scription to a stochastic model. The goal is to support an universal in-990

terpretation for the translation, provides rigor to other researchers un-

derstand and replicate experiments and also allows the translation to be

extended (e.g., encompass different ADLs, stochastic models, quality at-

tributes or the translation of architectural styles).

• Performance assessment – In this study we generate and solve stochastic995

models which are tasks generally related to time-consuming and state-

space explosion issues. This occurs when the model has a large number of

states and a great number of transitions between those states exceeding the

available memory. With this in mind and as presented in Section 6.3, we

tested our approach for larger state-space sizes (e.g., 100 servers) showing1000

good scalability and performance results. This third contribution shows

future researchers that is possible to incorporate runtime prediction of

quality attributes into their work. This prediction generates and solves

stochastic models at runtime while not affecting the system performance

and at the same time, complying with the strict time requirements to1005

conduct adaptation planning (in the presented case-study the planning

should perform under ten seconds).

8. Discussion

Our approach may raise a set of questions regarding its design, translation1010

or implementation. Those questions are detailed below along with a description

on how to address them.

50

• Accounting with structural changes – Our approach supports structural

changes in the architecture thanks to the generation of stochastic mod-

els at runtime. Specifically, we build those models from an architecture1015

description containing information about the system, its properties, struc-

ture and architectural styles. This way, if the architecture gets updated

by adding or removing components, changing their interconnections or use

different architectural styles, our approach will generate a proper stochas-

tic model.1020

• Statistical relevance of the experiments – Each experiment presented in

Section 6 was tested for five runs and the data extracted was consistent

between runs.

• Threats to validity – Section 6 outlines the validation of our approach

through the application of our approach into an actual self-adaptive case-1025

study. One may argue that the results are only specific for the presented

scenario and they might be different if we use load-balancing tools to

reroute requests or tune adaptation operators. However, our approach

aims to avoid static adaptation operators by selecting proper adaptation

strategies even under unexpected or untested conditions. In short, the1030

experimentation procedure could be changed, but other unexpected sit-

uations may arise leading to a degradation of the system quality goals.

To conclude, our validation is not tied to a specific scenario, but rather

shows that is possible to present similar results as traditional self-adaptive

approaches, while surpassing them under unexpected situations.1035

• Applicability to other self-adaptive solutions – Although our approach can

be applied to other self-adaptive systems, it requires a specific adaptation

according to each solution which leads to an increased development effort.

We regard this as a limitation factor due to the lack of standard meth-

ods described in the self-adaptive software community to bind external1040

analysis approaches to enrich the decision-making of each solution.

51

• Reliability Vs. Availability – In this paper we use reliability prediction

to achieve a particular adaptation goal: high availability. Reliability is

usually defined as the ”continuity of correct service” [24] or as ”it is not

doing the wrong thing” [25]. However, we consider as correct service or1045

the ”right thing” in this context to be the successfulness of a request

being responded (see Section 5.3.2). The concept of reliability is only

applied for each ten second time-frame in which we collect information

and it is used as an adaptation metric. On the other hand, availability

is the probability that a system is operating properly at any given time.1050

In this case, we consider availability as the probability that the system

is not failed or undergoing a repair action when it is invoked to serve.

Specifically, it is calculated by considering the failure rates in all time-

frames encompassed during the run and expressing the system probability

of readiness for correct service. In this study, availability is used as an1055

adaptation goal while reliability is used as an adaptation metric.

• Hidden VM cost – Each machine that is activated or deactivated takes

less than 3 seconds to begin serving requests. However, in the presented

Graphs which are related to the number of active servers (cost in VMs

Hour), we only consider that a machine is active if it responds to requests.1060

Thus, the cost of activation and deactivation, representing less than 3

seconds, is hidden from those results.

• Finding the ideal adaptation – In Section 6 we introduced the ideal adap-

tation run aiming to compare the results of an ideal perfect adaptation

with other adaptive approaches. This adaptation was determined through1065

testing and encompasses the corrective behavior to recover from the in-

troduced failure. Moreover, we consider this adaptation as unrealistic and

impossible to be applied to self-adaptive approaches, since it requires the

knowledge of where and when the failure is injected in the system. This as-

sumption makes it unmanageable to be applied to real world systems and1070

our purpose is to compare other adaptation results with this perfect, ideal

52

and unrealistic corrective behavior. To conclude, we regard this type of

adaptation as a novel approach in the research community for comparing

the effectiveness of different adaptive solutions.

• ’Unexpected’ or ’untested’ conditions – We consider normal conditions as1075

being a set of circumstances that the architect was expecting to find, de-

signing the system to behave accordingly. However, self-adaptive systems

are deployed in dynamic and unpredictable environments which may lead

to the occurrence of unexpected circumstances. Moreover, the configu-

ration of such systems encompasses a large number of metrics, impacts,1080

adaptation preferences and utilities leading to a large spectrum of testing

possibilities. The lack of automated tools to test and assure such possibil-

ities result in untested conditions. In these ’unexpected’ or ’untested’ cir-

cumstances, the system becomes uncertain of which adaptation to choose

to meet its goals and may lead to select a strategy that degrades the sys-1085

tem and deviates it from the defined goals.

9. Implications for practice

In this section we share several insights from our work, contributing with

answers to future research on the topic of improving decision-making on self-1090

adaptive systems through stochastic models.

• Influence of our work on the current techniques – Our approach shows that

is possible to predict the quality behavior of an adaptation allowing the

controller to perform informed decisions according to the designed adap-

tation goals. In addition, our method adds value to current techniques1095

by generating and solving stochastic models at runtime in an automated

fashion.

• Correctness of the generated mathematical model. In a previous study [27]

we show the correctness of the translation procedure from an architectural

53

description to the stochastic model. Since in this work we use the same1100

translation method, we assume that the generated mathematical models

are correct, representing correctly the system’s behavior and providing

accurate reliability values.

• Application to other quality goals – In the generated mathematical model

we predicted reliability, but it can be applied to other quality goals as1105

demonstrated by Gallotti et al. [15].

• Integration in self-adaptive approaches. Our work motivated Rainbow de-

velopment team to include in subsequent releases a feature that allows to

dynamically update the impact of each strategy from runtime prediction

of quality goals.1110

10. Conclusion

Self-adaptive systems are becoming more common in our daily tasks, al-

though this is sometimes unnoticed, until a failure occurs. When these systems

affect human lives, like self-driving cars, they only need to make one wrong1115

decision to fail and become discredited by their users and cease to be depend-

able, especially when human lives are at risk. Bearing this in mind, we applied

our automated method to predict reliability from a software architecture to en-

hance the planning phase of self-adaptive systems. Our goal was to show the

applicability of our approach and its effectiveness in improving real world issues.1120

Evidence of the limitations of current decision-making approaches and the

validity of our method was obtained by conducting a realistic experiment based

on a news infrastructure hosted in a cloud environment. The experiment which

is discussed in Section 6.2, confirms that traditional decision-making approaches

(i.e., human optimized) fail to select the best strategy in unexpected or untested1125

conditions and this leads to the degradation of the delivered service. In addi-

tion, the same experiment enabled us to conclude that our approach (i.e., im-

pact prediction) can recover from erroneous behavior, by validating the use of

54

quantitative prediction methods at runtime. This method improves the ability

to reach quality goals in unforeseen circumstances, while maintaining a similar1130

ability in known ones.

Our approach entails the generation of stochastic models and the means of

solving them, which are tasks usually seen as time-consuming and inefficient.

It can be concluded from the experiment in Section 6.2 that our approach (i.e.,

impact prediction) performs as well as other approaches by providing similar1135

values of resolved requests, throughput and resource consumption. Furthermore,

we conducted an experiment to assess the performance and scalability of our

approach. The obtained data shows that our method performs under one second

and if the system could scale to one hundred web-servers, our approach would

still fulfill the performance requirements.1140

To conclude, the experimental work covered in this chapter can be of value

to the self-adaptive community by employing a method that allows a correct

and context-sensitive strategy to be adopted to achieve the specified quality

goals. Given that self-adaptive systems are recognized as a solution for dealing

with highly complex environments, we expect our approach to further improve1145

the current solutions in unforeseen circumstances.

Acknowledgments

This research was supported by a grant from the Carnegie Mellon|Portugal

project AFFIDAVIT (PT/ELE/0035/2009). FCT – Fundação para a Ciência

e a Tecnologia also supported this work in the scope of the project DECAF:1150

An Exploratory Study of Distributed Cloud Application Failures (reference

EXPL/EEI-ESS/2542/2013) and a doctoral grant [SFRH/BD/89702/2012]. The

authors would also like to thank the contribution from Paulo Casanova.

55

APPENDIX

Appendix A. Prism model for the architectural changes for the Enlist1155

Server strategy

Following we present the generated Prism code encompassing the DTMC for

the Enlist Server Strategy illustrated in Figure 5.

dtmc

// Number of components: 6 + 2 Absorbing states

global s : [1..8] init 1;

const double p_Web0 = 1.0;

const double p_Web2 = 0.9;

const double p_DB = 1.0;

const double p_Web3 = 1.0;

const double p_LB0 = 1.0;

const double p_Web1 = 1.0;

// Component name - LB0

module LB0

[] s=1 -> p_LB0 *0.25:(s’=2) + p_LB0 *0.25:(s’=3) +

p_LB0 *0.25:(s’=4) + p_LB0 *0.25:(s’=5) +

(1-p_LB0):(s’=8);

endmodule

// Component name - Web2

module Web2

[] s=2 -> p_Web2 *1.0:(s’=6) + (1-p_Web2):(s’=8);

endmodule

56

// Component name - Web3

module Web3

[] s=3 -> p_Web3 *1.0:(s’=6) + (1-p_Web3):(s’=8);

endmodule

// Component name - Web1

module Web1

[] s=4 -> p_Web1 *1.0:(s’=6) + (1-p_Web1):(s’=8);

endmodule

// Component name - Web0

module Web0

[] s=5 -> p_Web0 *1.0:(s’=6) + (1-p_Web0):(s’=8);

endmodule

// Component name - DB

module DB

[] s=6 -> p_DB:(s’=7) + (1-p_DB):(s’=8);

endmodule

// Absorbing states

module absorbingStates

// Final states

[] s=7 -> (s’=7);

[] s=8 -> (s’=8);

endmodule

label "available" = (s=7);

label "unavailable" = (s=8);

57

Appendix B. Prism model for the architectural changes for the Dis-

charge the Least Reliable1160

Following we present the generated Prism code encompassing the DTMC for

the Discharge Server Strategy illustrated in Figure 6.

dtmc

// Number of components: 4 + 2 Absorbing states

global s : [1..6] init 1;

const double p_DB = 1.0;

const double p_Web0 = 1.0;

const double p_LB0 = 1.0;

const double p_Web1 = 1.0;

// Component name - LB0

module LB0

[] s=1 -> p_LB0 *0.5:(s’=2) + p_LB0 *0.5:(s’=3) +

(1-p_LB0):(s’=6);

endmodule

// Component name - Web0

module Web0

[] s=2 -> p_Web0 *1.0:(s’=4) + (1-p_Web0):(s’=6);

endmodule

58

// Component name - Web1

module Web1

[] s=3 -> p_Web1 *1.0:(s’=4) + (1-p_Web1):(s’=6);

endmodule

// Component name - DB

module DB

[] s=4 -> p_DB:(s’=5) + (1-p_DB):(s’=6);

endmodule

// Absorbing states

module absorbingStates

// Final states

[] s=5 -> (s’=5);

[] s=6 -> (s’=6);

endmodule

label "available" = (s=5);

label "unavailable" = (s=6);

59

References

[1] S.-W. Cheng, Rainbow: Cost-effective software architecture-based self-

adaptation, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA1165

(2008).

[2] E. M. Fredericks, A. J. Ramirez, B. H. C. Cheng, Towards run-time testing

of dynamic adaptive systems, in: Proceedings of the 8th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems,

SEAMS ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 169–174.1170

[3] F. D. Maćıas-Escrivá, R. Haber, R. del Toro, V. Hernandez, Self-adaptive

systems: A survey of current approaches, research challenges and applica-

tions, Expert Systems with Applications 40 (18) (2013) 7267–7279.

[4] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research

challenges, ACM Trans. Auton. Adapt. Syst. 4 (2) (2009) 14:1–14:42.1175

[5] R. Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, L. Baresi,

B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,

G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V. Grassi, P. Inver-

ardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,

S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,1180

C. Prehofe, W. Schäfer, R. Schlichting, B. Schmerl, D. B. Smith,

J. P. Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns,

K. Wong, J. Wuttke, Software Engineering for Self-Adaptive Systems:

A Second Research Roadmap, in: R. de Lemos, H. Giese, H. Müller,

M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems, Vol. 74751185

of Dagstuhl Seminar Proceedings, Springer, 2013, pp. 1–26.

[6] IBM Corp., An architectural blueprint for autonomic computing, IBM

Corp., USA, 2004.

[7] T. M. King, A. E. Ramirez, R. Cruz, P. J. Clarke, An integrated self-testing

60

framework for autonomic computing systems., Journal of Computers 2 (9)1190

(2007) 37–49.

[8] N. Bencomo, A. Belaggoun, V. Issarny, Dynamic decision networks for

decision-making in self-adaptive systems: A case study, in: Proceedings of

the 8th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, SEAMS ’13, IEEE Press, Piscataway, NJ, USA,1195

2013, pp. 113–122.

[9] C. Ghezzi, L. S. Pinto, P. Spoletini, G. Tamburrelli, Managing non-

functional uncertainty via model-driven adaptivity, in: Proceedings of the

2013 International Conference on Software Engineering, ICSE ’13, IEEE

Press, Piscataway, NJ, USA, 2013, pp. 33–42.1200

[10] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, K. Inoue, Learning

revised models for planning in adaptive systems, in: Proceedings of the

2013 International Conference on Software Engineering, ICSE ’13, IEEE

Press, Piscataway, NJ, USA, 2013, pp. 63–71.

[11] B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno,1205

T. J. Glazier, J. M. Barnes, Architecture-based self-protection: Composing

and reasoning about denial-of-service mitigations, in: HotSoS 2014: 2014

Symposium and Bootcamp on the Science of Security, Raleigh, NC, USA,

2014.

[12] J. C. Moreno, A. Lopes, D. Garlan, B. Schmerl, Formal Aspects of Com-1210

ponent Software: 11th International Symposium, FACS 2014, Bertinoro,

Italy, September 10-12, 2014, Revised Selected Papers, Springer Interna-

tional Publishing, Cham, 2015, Ch. Impact Models for Architecture-Based

Self-adaptive Systems, pp. 89–107.

[13] J. Cámara, D. Garlan, B. Schmerl, A. Pandey, Optimal planning for1215

architecture-based self-adaptation via model checking of stochastic games,

in: Proceedings of the 10th DADS Track of the 30th ACM Symposium on

Applied Computing, Salamanca, Spain, 2015.

61

[14] R. Calinescu, C. Ghezzi, M. Kwiatkowska, R. Mirandola, Self-adaptive

software needs quantitative verification at runtime, Communications of the1220

ACM 55 (9) (2012) 69.

[15] S. Gallotti, C. Ghezzi, R. Mirandola, G. Tamburrelli, Quality prediction of

service compositions through probabilistic model checking, in: Proceedings

of the 4th International Conference on Quality of Software-Architectures:

Models and Architectures, QoSA ’08, Springer-Verlag, Berlin, Heidelberg,1225

2008, pp. 119–134.

[16] M. Kwiatkowska, G. Norman, D. Parker, Prism: Probabilistic model check-

ing for performance and reliability analysis, ACM SIGMETRICS Perfor-

mance Evaluation Review 36 (4) (2009) 40–45.

[17] ISO/IEC/IEEE, Systems and software engineering – Architecture descrip-1230

tion, ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and

IEEE Std 1471-2000) (2011) 1–46.

[18] J. Camara, R. de Lemos, Evaluation of resilience in self-adaptive systems

using probabilistic model-checking, in: Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, 2012, pp.1235

53–62.

[19] T. Zheng, M. Woodside, M. Litoiu, Performance model estimation and

tracking using optimal filters, Software Engineering, IEEE Transactions on

34 (3) (2008) 391–406.

[20] A. Filieri, C. Ghezzi, A. Leva, M. Maggio, Self-adaptive software meets1240

control theory: A preliminary approach supporting reliability requirements,

2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011) 0 (2011) 283–292.

[21] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tambur-

relli, Dynamic qos management and optimization in service-based systems,1245

Software Engineering, IEEE Transactions on 37 (3) (2011) 387–409.

62

[22] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by

run-time parameter adaptation, in: Proceedings of the 31st International

Conference on Software Engineering, ICSE ’09, IEEE Computer Society,

Washington, DC, USA, 2009, pp. 111–121.1250

[23] J. M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1989.

[24] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and

taxonomy of dependable and secure computing, IEEE Transactions on De-

pendable and Secure Computing 1 (1) (2004) 11–33.1255

[25] J. Gray, Why do Computers Stop and What Can be Done About It?, Tech.

Rep. TR 85.7, Tandem Computers (June 1985).

[26] K. Goševa-Popstojanova, K. Trivedi, Architecture-based approach to relia-

bility assessment of software systems, Performance Evaluation 45 (2) (2001)

179–204.1260

[27] J. M. Franco, R. Barbosa, M. Zenha-Rela, Automated Reliability Pre-

diction from Formal Architectural Descriptions, in: 2012 Joint Working

IEEE/IFIP Conference on Software Architecture and European Confer-

ence on Software Architecture, IEEE computer society, Helsinki, Finland,

2012, pp. 302–309.1265

[28] M. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking,

in: Proceedings of the 7th International Conference on Formal Methods

for Performance Evaluation, SFM’07, Springer-Verlag, Berlin, Heidelberg,

2007, pp. 220–270.

[29] D. Garlan, R. Monroe, D. Wile, Acme: An architecture description inter-1270

change language, in: Proceedings of the 1997 Conference of the Centre for

Advanced Studies on Collaborative Research, CASCON ’97, IBM Press,

Toronto, Ontario, Canada, 1997, pp. 7–.

63

[30] R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software Architecture: Foun-

dations, Theory, and Practice, Wiley Publishing, 2009.1275

[31] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of prob-

abilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proc.

23rd International Conference on Computer Aided Verification (CAV’11),

Vol. 6806 of LNCS, Springer, 2011, pp. 585–591.

[32] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,1280

N. Medvidovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, E. L. Wolf, An

architecture-based approach to self-adaptive software, IEEE Intelligent Sys-

tems 14 (1999) 54–62.

[33] D. Weyns, S. Malek, J. Andersson, FORMS: Unifying reference model for

formal specification of distributed self-adaptive systems, ACM Trans. Au-1285

ton. Adapt. Syst. 7 (1) (2012) 8:1–8:61.

[34] N. M. Villegas, H. a. Müller, G. Tamura, L. Duchien, R. Casallas, A frame-

work for evaluating quality-driven self-adaptive software systems, Proceed-

ing of the 6th international symposium on Software engineering for adaptive

and self-managing systems - SEAMS ’11 1 (2011) 80.1290

[35] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow:

architecture-based self-adaptation with reusable infrastructure, Computer

37 (10) (2004) 46–54.

[36] S.-W. Cheng, D. Garlan, B. Schmerl, Evaluating the effectiveness of the

rainbow self-adaptive system, in: Proceedings of the 2009 ICSE Workshop1295

on Software Engineering for Adaptive and Self-Managing Systems, SEAMS

’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 132–141.

[37] S.-W. Cheng, D. Garlan, Stitch: A language for architecture-based self-

adaptation, Journal of Systems and Software 85 (12) (2012) 2860–2875.

[38] N. R. Storey, Safety Critical Computer Systems, Addison-Wesley Longman1300

Publishing Co., Inc., Boston, MA, USA, 1996.

64

[39] B. Kirwan, A Guide To Practical Human Reliability Assessment, Vol. 1,

Taylor & Francis, 1994.

65

	Introduction
	Related work
	Changes to the MAPE-K loop
	Decision-making approaches
	Quantitative verification or prediction of quality goals

	Approach
	MAPE-K integration
	Architectural description
	Quantitative prediction of reliability
	Translation process
	Initial state
	Components
	Connectors
	Constraints

	Automated prediction

	Hypotheses under test
	Case-study
	Adopted self-adaptive system
	Target system
	Experimental design
	Adaptation goals
	Adaptation metrics
	Adaptation strategies
	Static adaptation operators

	Example
	Our Approach
	Traditional Self-Adaptive
	Discussion of results

	Workload

	Evaluation
	Control run
	Fault injection
	Effectiveness and scalability of impact prediction
	Discussion

	Contributions
	Discussion
	Implications for practice
	Conclusion
	Prism model for the architectural changes for the Enlist Server strategy
	Prism model for the architectural changes for the Discharge the Least Reliable

