
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Automatic Parallelization: Executing Sequential
Programs on a Task-Based Parallel Runtime

Alcides Fonseca · Bruno Cabral · João
Rafael · Ivo Correia

Received: date / Accepted: date

Abstract There are billions of lines of sequential code inside nowadays’ soft-
ware which do not benefit from the parallelism available in modern multicore
architectures. Automatically parallelizing sequential code, to promote an effi-
cient use of the available parallelism, has been a research goal for some time
now.

This work proposes a new approach for achieving such goal. We created a
new parallelizing compiler that analyses the read and write instructions, and
control-flow modifications in programs to identify a set of dependencies be-
tween the instructions in the program. Afterwards, the compiler, based on the
generated dependencies graph, rewrites and organizes the program in a task-
oriented structure. Parallel tasks are composed by instructions that cannot be
executed in parallel. A work-stealing-based parallel runtime is responsible for
scheduling and managing the granularity of the generated tasks. Furthermore,
a compile-time granularity control mechanism also avoids creating unnecessary
data-structures.

This work focuses on the Java language, but the techniques are general
enough to be applied to other programming languages.

We have evaluated our approach on 8 benchmark programs against OoO-
Java, achieving higher speedups. In some cases, values were close to those of

This work was partially supported by the Portuguese Research Agency FCT, through
CISUC (R&D Unit 326/97) and the CMU|Portugal program (R&D Project Æminium
CMU-PT/SE/0038/2008).

Supported by the Portuguese National Foundation for Science and Technology (FCT)
through a Doctoral Grant (SFRH/BD/84448/2012).

Alcides Fonseca, Bruno Cabral, João Rafael, Ivo Correia
Department of Informatics Engineering
Universidade de Coimbra
Tel: +351 239 790 000
Fax: +351 239 701 266
E-mail: {amaf, bcabral}@dei.uc.pt,
E-mail: {jprafael, icorreia}@student.dei.uc.pt



2 Alcides Fonseca et al.

a manual parallelization. The resulting parallel code also has the advantage
of being readable and easily configured to improve further its performance
manually.

Keywords Automatic parallelization · Task-based runtime · symbolic
analysis

1 Introduction

Nowadays, in order to achieve the best performance on multicore machines,
programmers have to write parallel programs. This is typically done using
threads, either directly or indirectly through other high-level constructs of the
language. Traditionally, manually defining threads and synchronizing them
is the only way to achieve the best results. However this process is often
cumbersome and error-prone, often leading to the occurrence of problems such
as deadlocks and race conditions. Furthermore, as the code base increases it
becomes increasingly harder to detect interferences between executing threads.
Writing, debugging and tuning multi-threaded code is very time-consuming,
as there are multiple combinations of executions that make the performance
and visibility of errors non-deterministic. Furthermore, there are billions of
lines of source code inside existent software that are not able to benefit from
today’s multicore architectures. Parallelizing these programs is a daunting and
extremely costly task, one that hardly someone is eager to initiate.

The automatic parallelization of existing software has been a long run-
ning objective and prominent research subject [4]. Existing research has been
mainly focused on the analysis and transformation of loops, since these have
always been perceived as the main source of potential parallelism in sequen-
tial programs [16]. Nonetheless, other models have also been studied, such as
the parallelization of recursive methods [5], and of sub-expressions in func-
tional languages. Focusing only on the parallelization of loops is not enough
in most cases and, other approaches have not revealed significant performance
improvements.

In this paper we introduce a new approach for performing a fine-grained
automatic parallelization of programs. This approach is distinct from others,
since it parallelizes all the instructions that can, effectively, be executed in
parallel. To identify which instructions can be parallelized, we infer instruc-
tion signatures from the source code of the program. These signatures include
dependency and control flow information, which allows us to organize instruc-
tions into a task-oriented structure. The result is a program that exhibits the
maximum possible parallelism at the finest granularity level (e.g. one task
can equal one instruction). However, in order to achieve good performance
and decrease the overhead in run-time task management, the granularity of
tasks is coarsened during compilation and also during run-time. At run-time,
the system load influences granularity control. Furthermore, a work-stealing
scheduler is used to efficiently manage execution and control dependencies.



Title Suppressed Due to Excessive Length 3

Our approach can parallelize irregular recursive programs with a low run-
time overhead, resulting on up to 20x of speedup, on a 24 thread machine
and an average of 5x of speedup. Because of dependency tracking and trans-
formations during compilation, we are able to avoid harsh runtime overheads
from which existing solutions suffered. This paper contributes with an hy-
brid methodology for analyzing procedural source code and translating it to
a parallel version with a broad level of parallelism and granularity, that is
fine-tuned during execution by runtime granularity control mechanisms. The
parallelization approach was tested with popular benchmark tests for task-
based parallelism, and compared with another two approaches.

We have applied this approach to the Java language, one of the most pop-
ular programming languages, since it has a large code base of legacy sequen-
tial software. Nonetheless, our approach can be applied to any procedural or
object-oriented language.

The framework presented includes two language front-ends, the Æminium
language compiler [30], the JPar compiler for Java, the Æminium Runtime,
and a ÆminiumGPU[18] compiler and runtime, to enable GPU execution of
data-parallel programs.

This paper is organized as follows: This section introduced the Æminium
framework; In Section 2 we present the related work in automatic paralleliza-
tion; In Section 3 we describe in further detail the architecture of the frame-
work, mainly from the dynamic perspective; In Section 4 we explain the par-
allelization technique applied; In Section 5 we present the Runtime support
for executing parallel programs. Finally in Section 6 we evaluate the platform
in different programs; and in Section 7 we lay the conclusions.

2 Related Work

Given the wide availability of multicore processors, GPUs and other accelera-
tors such as FPGAs and the Xeon Phi, research on concurrent programming
has increased in the last decade. New programming models, languages and
runtime systems have been developed to improve the expression and execu-
tion of parallel programs. Much of this work has culminated in new languages,
such as X10[9], Fortress[29] and Chapel[7], in which most language constructs
are default by parallel (such as for cycles, for instance). These languages also
provide constructs to explicitly inform the compiler that certain memory re-
gions are independent and, therefore, accesses to them can be executed in
parallel. Unlike these languages, which mostly target scientific computing, the
Æminium language[30] has focused on dependable systems programming. By
annotating variables with access permissions, programs could be automatically
parallelized with guarantees that the execution would not break the defined
contracts.

Another approach for writing parallel programs is semi-automatic paral-
lelization. In this approach, programmers annotate existing sequential pro-
grams with enough information for the compiler to automatically parallelize



4 Alcides Fonseca et al.

parts of the code. Cilk[19] and OpenMP[11] are the two most common ex-
amples of such approach and work on top of the C language. Cilk focus on
divide-and-conquer recursive algorithms, while OpenMP has focus mostly on
symmetrical parallelism in for cycles. OpenMP 3.0 has introduced unstruc-
tured parallelism via the concept of Tasks[2][3]. More recently, OpenMP has
also started to generate code for GPUs[23].

The third approach is to translate unmodified sequential programs au-
tomatically to a parallel version of themselves. Functional Languages, like
LISP[20] and Haskell[25], can be easily parallelized since sub-expressions do
not interferes with each other. Imperative languages such as C and Java make
this task more difficult, since different parts of the code can access the same
memory location. In order to be able to parallelize code, there are some ver-
ifications that have to be made. The main focus of research has been the
parallelization of for loops. Different techniques can be used, depending on
the type of loop, such as DO-ALL, DO-ACROSS or DO-PIPE. DO-ALL par-
allelism does not contain any interference between loop iterations, and each
iteration (or sets of iterations, called slices), can be executed in parallel and
they must synchronize at the end of the for-cycle. DO-ACROSS has a part
of the cycle (usually minimal compared to the rest) that interferes with other
iterations. For these cases, variable privatizing can be done to aggregate values
per thread, and then another for-cycle is sequentially executed in the end to ag-
gregate the private variables. DO-PIPE can be parallelized by using different
threads for different parts of the for cycle, in which dependencies between dif-
ferent threads are minimized. In order to verify if the loops can be parallelized
or not, the Polyhedral Model is frequently used[6]. Cetus[12] and Par4All[1]
are compilers that perform this kind of transformation, which can also target
GPGPUs. Loop parallelization has been done during runtime[34], but without
any relevant speedups.

Automatic non-loop parallelization has been less studied, but it is still
a popular way of expression parallelism, specially in divide-and-conquer al-
gorithms. This analysis has been implemented in zJava[8] by analyzing data
writes and reads at a local level. In order to allow a correct parallelization,
zJava uses a runtime registry of regions, to which threads can be assigned. This
allows threads to access shared data with a synchronization overhead. OoO-
Java[21] also performs static analysis to retrieve read and write information
on annotated tasks. Then it compiles the program to a speculative C program,
that has runtime checks to resolve conflicts between threads. Because of such
speculation, OoOJava does not support I/O instructions. MP-Tomasulo[33]
also uses Out-of-Order instructions for automatically parallelizing code for FP-
GAs but removes write-after-read and read-after-write by renaming parame-
ters, keep control flow separate. This approach is not compatible with regular
multicore processors, however. Jrpm[10] also performs thread-level specula-
tion at runtime, operating over Java bytecode instead of Java code, reveal-
ing a worse speedup than compiler-time strategies. FJComp[28] also focus on
Divide-and-Conquer algorithms using the Fork-Join framework. However, the
compiler requires the programmer to annotate tasks and optionally define the



Title Suppressed Due to Excessive Length 5

cut-off mechanism, making FJComp more of a Translator from recursive calls
to FJ-style calls, than an automatic parallelizing compiler.

3 Architecture

J2JPar 
compiler

JAVA

Java
Compiler

JVM

Æminium
Runtime

Legend:

Compiler

Runtime
Library

SourceCode Outputs
file

Receives
as input

JVM Java Virtual
Machine

Parallel

ÆminiumGPU
Runtime

ÆminiumGPU
Compiler

DataParallel

JAVAJAVA JAR

Fig. 1 Information Flow in the Æminium Framework

The software architecture of the Æminium framework is heavily based on
the Java stack, making use of the Java Compiler to generate bytecode and a
JVM for executing such bytecode. The framework includes two compilers:the
JPar compiler and the ÆminiumGPU compiler. The later two make use of the
Spoon library[26] to operate on the Java Abstract Syntax Tree (AST). Figure 1
shows the information flow between the framework components. The Æmini-
umGPU components are optional, as not all programs can take advantage of
the GPU.

The JPar Compiler is a Source-to-Source Compiler for the Java language.
It parses the original Java code into an AST, performs static analysis to infer
access permissions of each node, and generates Java code that wraps some of
the operations in calls to the Æminium Runtime.

The Æminium Runtime is a Java library that provides an API for express-
ing task-parallelism. These APIs can be targeted by compilers, or directly by
programmers. The API allows the definition of tasks and dependencies be-
tween tasks. Tasks are wrappers around a set of Java statements that can
execute asynchronously, and can have any number of instructions. Internally,
the most important components are the Scheduler, Decider and Profiler. The
Runtime includes a Work-Sharing scheduler, but defaults to a Work-Stealing
scheduler, in which the programmer can configure the stealing policy. The De-
cider is a component that determines in real-time whether a new task should
be created or if it should be inlined in the caller site. Finally, the Profiler
records information during execution, such as number of tasks created, steals
and dependencies unfulfilled.



6 Alcides Fonseca et al.

The ÆminiumGPU Compiler is a Source-to-Source Compiler for the Java
language that identifies data-parallel operations, such as map and reduce, and
translates them to OpenCL. The ÆminiumGPU Runtime is a library that
executes data-parallel operations on the GPU. During execution, if the opera-
tion is heavy and/or operates on a large dataset, the runtime decides whether
to use the GPU or not. If it does, the JavaCL binding library[13] is used to
schedule OpenCL code and copy memory between the host and the GPU.

4 Compilation

This section details the compilation process, starting from access permission
analysis to code generation. The JPar is based upon the J2JPar Compiler[27],
but simplifies the access permission analysis, and performs parallelization dur-
ing code-generation, reducing compilation times. An overview of the compila-
tion phase can be seen in Figure 2.

JPar Compiler Phases Pipeline

Parsing

JAVA

Signature
Extraction

Method 
Cloning Parallelization Code 

Generation
JAVA

Fig. 2 JPar Compiler Phases

4.1 Signature Extraction

In order to automatically parallelize the program, it is necessary to analyze
the memory is accessed to understand dependencies between parts of the pro-
gram. If two program parts read and write to the same variable, then they
cannot be parallelized without guaranteeing determinism. Thus, the first step
of the compiler is to understand what each AST node reads and modifies.
Datagroups[24] are used to represent different memory sections and if two
method calls share no datagroup, it means that they can be executed in paral-
lel. After this phase, each AST node will have a signature, composed of one or
more datagroups permissions. An example of signatures in code can be seen
in Listing 1. Datagroup permissions can be one of the following:

– read(dg) - the AST subtree reads the variables represented by datagroup
dg;

– write(dg)- the subtree writes to the objects in datagroup dg;



Title Suppressed Due to Excessive Length 7

– control(dg) - the control flow of other operations in datagroup dg may
be altered. This is the case with return statements, breaks, continues, ifs
and whiles.

In the previous approach, a full analysis of the AST was possible due to a
two-pass verification. In the first pass, invocations produced a call(dg) per-
mission, and aliasing effects produced merge(dg1, dg2) permissions. On the
second pass, these permissions were replaced with the true permissions, that
could be looked up in the rest of the program. The new approach converts
the two passes into one. Aliasing is handled in-place, using HashMaps to find
the right permission of the aliased element. When finding a method invoca-
tion, the current element being processed is saved, and the compiler processes
the method declaration first. When it is complete, it returns to the method
invocation and the method data-group is already available. The only place
in which this is not possible is in recursive (direct or indirect) calls. In this
case, the stack detects loops in the recursion, uses the partial permissions, to
fill in the recursive invocation for the full permission. This process is now a
two-step process only for recursive calls, reducing the analysis time in all other
operations.

int f(int n) {
if (n < 2) { // read(n), control(f)

return n; // write(return), control(f)
}
int a = f(n - 1); // call(f), read(n), write(a)
int b = f(n - 2); // call(f), read(n), write(b)
return a + b; // read(a), read(b), control(f), write(return)

}

Listing 1 Examples of Signatures in Fibonacci Program

In this phase, whenever some operations can have different results, such as
the case of an if statement, a conservative approach is take, leaving the union
of the two possible branches, as the signature for that node. This approach does
not perform thread-level speculation, guaranteeing instead the same semantics
of the original programming and supporting I/O and other operations that
cannot be transactional. One such example is that all accesses to external
objects, such as the System.out object, are inside a single global datagroup.
This bottleneck can be removed by explicitly expressing the signatures for
those methods in a special signatures file.

4.2 Method Cloning

Executing a method in parallel may not always be worthwhile. For instance,
in the Fibonacci example, the cost of creating a new task is higher than the
cost of executing the method for a low input number. Thus, creating a task is
only useful when another thread can execute it. As such, the alternative is to
execute the original method sequentially after a certain point.



8 Alcides Fonseca et al.

In this compiler phase, methods are cloned. The original method will be
parallelized, while the clone will serve as a backup sequential version of the
method. The decision when to change to the sequential method is introduced
on the beginning of the parallel version. The decision itself is a call to the
Runtime API.

For recursive calls, using anonymous inner classes revealed to be a very big
overhead, which is not noticeable with regular parallel tasks. As such, in this
phase, for each recursive call in the code, a static class is created to represent
the asynchronous call to that method.

4.3 Parallelization

This is the phase, JPar also deviates from its predecessor. While the previ-
ous compiler would take two passes, one for generating dependencies between
operations, and other for generating the tasks, the new version generates the
dependencies when it is creating a task. This change allows to avoid creating
tasks that would only be used for dependency purposes.

Firstly, this approach identifies parallelism with the finest granularity pos-
sible. Parallelizing all possible paths is not useful, as the overhead in scheduling
may be significant. As such, the compiler decides to create tasks around parts
of the code considered large enough. By default, only invocations and loops
can be parallelized. In order to be parallelized, methods have to contain loops,
at least 10 instructions, calls to other expensive methods, or recursive calls.
The 10 instruction is a heuristic limit that can be configured.

The compiler performs three types of parallelization: Parallel Invocations,
DO-ALL and DO-ACROSS. All of the three types can be nested inside each
other.

4.3.1 Parallel Invocation

Every method invocation node is considered for parallelization if the target
function is considered large enough. Invocations are converted into a Future
call[31], with a set of dependency tasks. Using Futures has then advantage of
producing readable parallel Java, which the developer can use to learn, debug
or to manually fine-tune.

The invocation is replaced by a call to the get() method of the future.
The original invocation is moved to a lambda that represents the computation
(task body). That lambda is wrapped around a typed Future object that
represents the asynchronous execution of the task. An example is shown in
Listing 2, which shows a translation of code in Listing 1, disregarding the fact
that it is a recursive method. Recursive methods have the lambda converted
into a static class, to avoid task creation overheads.



Title Suppressed Due to Excessive Length 9

int f(int n) {
if (RuntimeManager.shouldSeq())

return jpar_sequential_version_of_f(n);

if (n < 2) {
return n;

}
Future<Integer> b_tmp = new Future<Integer>(task -> f(n-2));
Future<Integer> a_tmp = new Future<Integer>(task -> f(n-1));
int a = a_tmp.get();
int b = b_tmp.get();
return a + b;

}

Listing 2 The Fibonacci program translated with futures, without considering the special
case.

When the Future object is instantiated, the task is marked for execution
and an available thread may start to execute it. When the get() method
is called, the current task awaits for the execution of the task and reads its
result.

The main decision to make is where to introduce the Future creation, max-
imizing parallelism while keeping the same semantics of the original program.
The main requirements for the position of the Future creation are:

– Must not be declared before the declaration of all used variables;
– Must not be declared before an expression which may return inside that

method;
– Must not be declared before an expression which may change the control

flow inside that block (break, continue);
– Must not be executed before an expression that may write to a variable

accessed inside the lambda;
– Must not be executed before an expression that may reads a variable that

is written inside the lambda;
– Must be before the Future get() call.

Considering these requirements, Algorithm 18 is used to find the best po-
sition to create the future, considering θ as the function that for an AST node
returns its access permission set, meth the method in which the invocation
is found, node the invocation being processed and stmt the statement being
analyzed. block is the current block being analyzed. This block starts with the
most outer scope (the method body) and moves deeper until it is the scope
block in which the invocation is defined. This order tries to maximize how soon
can the invocation start to execute. Finally, this algorithm outputs the Hard
Dependency, which is the instruction after which the Future can be safely in-
troduced, and the Soft Dependencies, a set of already defined tasks which the
current future will have to wait to execute.

The invocation parallelization is completed when the Future declaration is
at the right position, the Future call is at the invocation site, and there is a
granularity control introduced in the beginning of each parallel method.



10 Alcides Fonseca et al.

Algorithm 1 Algorithm to find the Hard Dependency and Soft dependencies
for a Future for the current node
harddep← None
softdeps← ∅
for stmt ∈ block do

if control(meth) ∈ θ(stmt) ∨ control(block) ∈ θ(stmt) then
harddep← stmt
continue

end if
if ∃a, [read(a) ∈ θ(stmt) ∧ write(a) ∈ θ(node)] ∨ [write(a) ∈ θ(stmt) ∧ read(a) ∈

θ(node)] ∨ [write(a) ∈ θ(stmt) ∧ write(a) ∈ θ(node)] then
if isTask(stmt) then

softdeps← softdeps ∪ stmt
else

harddep← stmt
end if

end if
if stmt ⊃ node then

break
end if

end for

4.3.2 Parallel DO-ALL

Besides invocations, for and for-each loops are also targets for parallelization.
However, there are two scenarios, DO-ALL and DO-ACROSS. First, we will
focus on DO-ALL, when iterations of the loop are independent and have de-
pendencies only with code outside the for loop.

In order to verify if this is the situation, accesses to arrays or arraylists are
annotated with an indexed datagroup. This means that the code array[i] = 1

will have a permission write(array[i]) that is treated as a write(array) for
all code outside loops. Inside loops, the indexed permission is used to verify if
reads and writes are independent. The verification performed is rather näıve,
as it only considers for-loops in which the iteration variable is only increased or
decreased. Nevertheless, it is possible to apply the polyhedral model, obtaining
a better degree of parallelism.

The code generation of DO-ALL simply replaces the for loop with a call
to a static helper method, that will dynamically create parallel tasks for slices
of the range. The iteration code is defined as a lambda function passed to the
helper method. The helper method will return a Future that can be used as a
soft dependency for later Futures.

4.3.3 Parallel DO-ACROSS

In order to parallelize DO-ACROSS loops, the loop must contain the same
conditions as for DO-ALL, but some write permissions are allowed inside the
loop, namely operations that are commutative and associative. By default, the
compiler considers for these tasks the operators +,-,* and the methods Math



Title Suppressed Due to Excessive Length 11

.min(), Math.max(). However, any over operation can be annotated as such,
and will be parallelized using the same mechanism.

The compiler generates a Map-Reduce operation for the DO-ACROSS loop.
The map lambda contains the loop code, saving the new changes inside the
lambda, instead of the global state. The reduce lambda aggregates two states
together. The return type of the operation is also a Future, in order to be used
as a soft dependency.

4.4 ÆminiumGPU Integration

The ÆminiumGPU Compiler is a source-to-source compiler from Java-to-Java,
in which the final Java code has some extra OpenCL code. The compiler tar-
gets lambda functions used inside Map-Reduce style of functions. For each
of these lambdas, the compiler generates an OpenCL function. This function
is compiled as a kernel during the compilation phase, but can also be dy-
namically compiled during execution, if merged with another function. This
dynamic merging of functions into one kernel is used to avoid overheads in
kernel scheduling and eventual memory transfers to and from the GPU.

It is important to notice that not all Java code can be translated to
OpenCL. The ÆminiumGPU compiler does not support all method calls, non-
local variables, for-each loops, object instantiation and exceptions. It does sup-
port a common subset between Java and C99 with some extra features like
static accesses, calls to methods and references to fields of the Math object.

Since DO-ALL and DO-ACROSS loops generate Map and Map-Reduce
function calls, the lambdas can be automatically translated by the Æmini-
umGPU compiler and handled by the ÆminiumGPU runtime, thus taking
advantage of available GPU processing power.

5 Runtime Execution

5.1 Tasks and Dependencies

The Æminium Runtime is a Java library that exposes APIs for expressing
asynchronous execution of code. The Runtime is composed of modules that
allow for an efficient execution of the source code, by leveraging the multiple
hardware threads available.

The core concept of the Æminium Runtime is the task as a representation
of code that can execute asynchronously. Tasks have a body, which can be
represented as a lambda, an anonymous inner class or as a regular class (useful
when doing recursive calls). Tasks are also defined by a set of dependencies on
other tasks. If A depends on B, it means that A cannot execute before B is
completed. Tasks can also have a parent task to represent subcomputations.
If A is the parent of B, then A is only considered as completed when both
the body of A has completed and B is considered as completed. Finally, tasks



12 Alcides Fonseca et al.

can be characterized with hints, such as Recursive, Loops, Small or Large. An
example task graph can bee seen in Figure 3, which represents 6 tasks with
dependencies among them, as well as parent-child relationships.

A B C

D E F

Legend:

Task

Depends on

Is child of

Fig. 3 Example of a task graph.

Each task can be of one of three types:

– Non-Blocking Tasks are all operations that are purely computational.
– Blocking Tasks are tasks that have at least one operation that performs

input or output, such as disk reads/writes, communication over sockets or
other interactions with the Operative System.

– Atomic Tasks are tasks that cannot execute at the same time as other
Atomic Tasks that share the same Data Group. The Data Group acts as
the lock that each atomic task must acquire before executing and release
after executing. However, two Atomic Tasks with different Data Groups
can execute concurrently.

Figure 4 shows the lifecycle of tasks inside the Runtime. When a task is
submitted to the runtime, along with its dependencies, the runtime analyzes
if the dependencies are already met. If so, the task is sent to a queue for
execution. If not, no action is performed at this point.

The ÆminiumRuntime does not create a Thread for each task, as the over-
head would be very noticeable. Instead, there are always n threads running,
one for each processor core available in the machine (This number can be con-
figurable per program execution). These threads are responsible for executing
tasks that are considered ready. In order to reduce the locking on the queues,
each thread has its own queue. When a thread finds its queue empty, it will
“steal” a task from the queue of other thread. The ÆminiumRuntime has a
few stealing algorithms, including a random steal, stealing from the largest
queue or from the one with more dependent tasks.

Non-Blocking and Atomic tasks are stored on those regular queues. Since
the execution of Blocking Tasks may take a long time to execute, because
of OS dependencies such as Sockets or Files, they are added to a special
ThreadPool-backed queue. This avoids blocking Work-Stealing workers with
Blocking tasks.



Title Suppressed Due to Excessive Length 13

Runtime

Waiting for 
Dependencies

Ready Ready Waiting for 
Children

Completed
(GC)

Unscheduled

Legend:

Task
Non-Blocking 
Queue A Area for Tasks 

with status A
CPU Core Blocking Queue

Fig. 4 Runtime Areas for the different phases of the Task Lifecycle, for a quad-core machine.

When a task completes, it will check if there are any child tasks that were
scheduled during execution and belong to the logical concern of the current
task. When all child tasks have finished, the task is marked as completed, and
it will notify both the dependent tasks and parent task that they do not need
to wait for it anymore.

5.2 Executing DO-ALL and DO-ACROSS

Since each iteration may take a different time to execute, DO-ALL and DO-
ACROSS loops cannot simply be divided in equal parts and executed in slices.
In order to balance loads across cores, a more dynamic approach is required.
We provide two different approaches: Binary Splitting and Lazy Binary Split-
ting[32]. Binary Splitting divides the current range in two if the Decider mod-
ule considers that it is still useful to create new tasks. If not, it executes the
current range iterations immediately. With Lazy Binary Splitting, there is a
parameter PPS which represents how frequently should we check if we should
split the range in half. A PPS of 3 means that every 3 iterations the runtime
checks if the remaining range should be split in two.

For DO-ACROSS loops, the Map-Reduce approach is better than creat-
ing lock-protected atomic blocks, since it avoids locking contention when all
threads want to access that data. However, only associative and commutative
operations can be converted into Map-Reduce. This is not a large problem,



14 Alcides Fonseca et al.

as most data-intensive computations are based on those operations, such as
+,*, -.

5.3 Controlling Granularity

One of the most important factors when executing irregular programs is to
decide whether to execute a new task in parallel or inline the task body inside
the current task. This decision has a great impact since the overhead in task
creation is too high that can prevent recursive programs from having any
speedups. The solution is to start calling the parallel version, but after a
certain point, convert it to the sequential version of the method.

The Æminium Runtime provides several mechanisms for controlling the
granularity of tasks:

Maximum task recursion level (max-level) - Divide-and-conquer al-
gorithms create tasks in a tree-shaped structure. In order to avoid the creation
of too many tasks, the cut-off limit may be defined by the depth of the recur-
sion[15], which can be calculated by the number of ancestors of the running
task.

This approach limits the depth of the task hierarchy graph, which may be
suitable for more balanced parallelism programs, but not for more dynamic
unbalanced programs.

Maximum number of tasks (max-tasks) - In this approach, tasks are
created until the total number of active tasks reaches a certain threshold[15].
After that point, all new computations are inlined instead of spawning another
thread. When the number of active tasks lowers, new tasks can be created until
the threshold is reached again.

The threshold in this approach is typically defined as the number of proces-
sor threads on the machine, adapting to different machines, but being oblivious
to other factors such as memory and processor speed.

Load Based - This simple heuristic is based on whether all cores are being
used or not. A new task is only created if there is at least one idle core[14].

Surplus Queued Task Count - This approach is included in Java’s Fork
Join framework[22] and it relies on the size of work-stealing queues. Before
creating a new task, the number of queued tasks in the current thread that
exceeds the number of tasks in other queues is compared to a threshold limit
(usually 3 in existing ForkJoin benchmarks).

In order to decrease the overhead of computing the size of queues, the size
of other queues is estimated from the size of the current queue after applying
a factor of (number of idle threads / active threads), because idle threads
are known to have 0 tasks in their queue. This estimation assumes a regular
distribution among threads, which may not always happen.

Adaptive Tasks Cut-Off (ATC) - Adaptive Tasks Cut-Off[14] changes
the policy of the cut-off mechanisms according to the recursion lifecycle. Tasks
are only created if two conditions are met. The first is that there are fewer
tasks than the number of threads on a given recursion level. This condition



Title Suppressed Due to Excessive Length 15

forces the threads to expand in depth, creating work for all threads and being
within a certain bound limit. The second condition is that the depth-level
is less than a certain threshold. This is, in fact, the usage of max-level and
max-tasks together.

ATC adds a profiler that saves information regarding how much time a
sub-tree takes to execute, and predicts further subtrees (if the prediction is
larger than 1ms, the task will not be created). This is, however, based on the
assumption that all tasks inside a level have a similar behavior, which does
not happen in unbalanced parallelism.

Maximum Queue Size - We introduce this new approach, which limits
the number of tasks in the local queue to a certain threshold This approach
differs from maxtasks in only looking at the local queue, instead of all the
queues, reducing the time by not accessing information from other threads.
If the threshold is one or two tasks higher than the threshold of max-tasks,
queues will have extra tasks that can be stolen by other threads.

Stack Size - In recursive divide-and-conquer programs, the recursion limit
of the platform imposes heavy limitations on the parallelization of programs.
Recursive calls are necessary to inline the execution of tasks inside the same
worker thread. As such, the performance of programs decreases when the stack
grows beyond a certain size.

System Monitoring - Instead of looking to the task and runtime state,
this decider method analyses the system load. If it is below a given CPU
occupation and below a given memory occupation, then a new task is created.
Both the CPU and memory occupations can be configurable.

The Runtime can use any of these methods for each program execution. It
is also possible to combine two or more of the methods at the cost of increasing
the overhead of the decision.

5.4 ÆminiumGPU Integration

The ÆminiumGPU Runtime allows the execution of data-parallel operations
(such as map and reduce) on GPUs. Operations are lazy and are only executed
when the result is needed. This differs from regular Java semantics, as it can
avoid unnecessary overheads in the case two GPU operations are chained. In
that case, we merge the GPU kernels into one, making only one data copy to
each side, and starting only one kernel.

The first step is to decide how to divide work between the GPU and the
CPU cores. If the GPU is going to be used, a OpenCL kernel is compiled, data
is sent to the GPU and the kernel executes. After completion, data is copied
back to the main memory.

The decision whether to use the GPU is firstly done by analyzing the size of
input data. If it is below a given threshold (which depends on the machine) and
the operation is complex enough, then it is executed on the regular Æminium
Runtime as a DO-ALL or DO-ACROSS loop. If it is complex enough, it can
execute on the GPU or in a mix of GPU and CPU. This decision has been



16 Alcides Fonseca et al.

improved by using Machine Learning[18], in which features from static analy-
sis (number of memory writes and reads, global vs local accesses, cyclomatic
complexity, number of branch instructions and number of mathematical in-
tensive operations) and runtime information (size of data, number of chained
operations) are used to decide which platform to use for execution.

6 Evaluation

In this section, we will evaluate several design options of the JPar Compiler,
as well as Runtime configuration for its programs. We then compare it with
OoOJava and with a manually parallelized version. The experiments shown
were performed on a 12-core machine with a Intel Xeon X5660 @ 2.8GHz
processor with 12 cores and 24 hyper-threads, and 24GB of RAM. The ma-
chine was running Ubuntu 14.04 server 64-Bit and Java Hotspot 64-Bit Server
JVM. The machine was chosen for it’s high number of cores. Unless specified,
programs were executed 7 times and the average value was used.

6.1 Benchmark Programs

In order to evaluate the performance of the compiler, we used the sequential
version of 8 programs from the Æminium Benchmark Suite[17]. The configu-
ration for each program is described in Table 1, as well as the parallelization
performed for each program.

Program Parallelism Input size
Black-Scholes DO-ACROSS 100000
FFT Recursive 16777216
Fibonacci Recursive n=51
Health Recursive, DO-ALL n=6
Integrate Recursive s=-2101, e=1700, error=10−14

MergeSort Recursive n=251658240
N-Body DO-ALL it=10, bodies=25000
Pi DO-ACROSS n=1500000000

Table 1 Description of the programs used in the benchmark

6.2 Compiler Granularity Control

The JPar compiler performs a selection of whether tasks should be paralleliz-
able, based on the number of instructions. To evaluate whether this is useful,
we compared two versions of the compiler, one with fine-grained parallelism,
and other that only creates tasks if there are 10 or more instructions in the
body of the task, or have recursive calls or loops.

We used the FFT benchmark because it works with an array of Complex
objects, each with several lightweight methods, such as sin, cos, tan, times and
divide. The Full Parallel version converts invocations that can occur in parallel



Title Suppressed Due to Excessive Length 17

10-1 100 101 102

Execution Time (s)

Sequential

Full Parallel

Partial
Parallel

Fig. 5 Distribution of execution times for each version of the FFT program of a random
array with 262144 elements.

into tasks, while the Partial parallel will only create parallel tasks for the main
recursive function. Figure 5 shows the distribution of execution times of both
versions, as well as of the sequential version. With an input size of 262144
elements, there is no speedup in any of the versions. However, with higher
input sizes, the Full Parallel version will have take more than one hour to
execute, while the Partial Parallel version would provide speedups. Thus, we
confirm that enabling a threshold for task parallelization benefits programs.

6.3 Binary vs Lazy Binary Splitting

Programs that have for loops parallelized, can generate tasks in two different
ways: Binary Splitting or Lazy Binary Splitting. For Lazy Binary Splitting, we
used the recommended value of 3 for the PPS parameter, and a higher value
of 10 for less frequent decisions. Figure 6 shows the speed-up over sequential
programs of the three approaches in program with loops. The Lazy Binary
Split version achieved best results in the Black-Scholes program, running in less
than half of the time as its Binary Split counterpart, but could not complete
the other programs within a 5-minute time-out, resulting in no speed-up. The
conclusion is that Binary Split is a conservative approach that can be used
for any program, while Lazy Binary Split can be used to achieve best results,
but needs to be applied after verifying there is a speedup in that particular
program.

6.4 Cutoff Mechanism

One of the most important variables for tuning a parallel program is the gran-
ularity of tasks. Besides the compilation-time decision of parallelizing a task or
not, the Æminium Runtime has several automatic granularity control mech-
anisms. Figure 7 shows the speed-up achieved by each method on the 8 pro-
grams. For each mechanism, several parameters were previously tested, and
we used the best.

Black-Scholes is a program with a high number of tasks and each task per-
forms very small work. Creating extra-tasks in this kind of program brings a



18 Alcides Fonseca et al.

blackscholes health nbody pi

Program

0

5

10

15

20

25

S
p
e
e
d
u
p

Binary Split

Lazy Binary Split PPS=10

Lazy Binary Split PPS=3

Fig. 6 Average speedup of Binary Split and Lazy Binary Split (PPS=3 and 10) versions of
the programs with loops.

high penalty, because the task overhead is several times more expensive than
executing the task itself. max-level is the mechanism with the best performance
since all loop iterations take equal time to execute. However, a maximum level
of other value than 12 would not perform as well. The same mechanism does
not perform well on Fibonacci or Integrate given the very irregular and un-
balanced nature of the problem. The skewness in the computation tree would
leave one task with a time-consuming task similar that of the sequential ver-
sion.

Black-Scholes is the program that takes more advantage of being paral-
lelized on this machine. ATC, Load Balance, Max-Level and Surplus show a
good performance. When cutting parallelism by the stack depth or system
resources, too many tasks are created, and there is an high unnecessary over-
head.

The FFT program did not achieve high speedup values because of mem-
ory issues. Each recursive call would allocate a large array of memory, and
this revealed to be a performance hit on the java platform. The approaches
that limited the JVM stack depth achieved the best results, but still under
the desired values. The same happened with N-Body simulation because of
compiler-time granularity. N-Body is made of two loops, and the JPar com-
piler over-parallelizes the program by trying to convert both loops in DO-ALL
operations. Since the inner loop is small enough to be considered only one



Title Suppressed Due to Excessive Length 19

b
la

ck
sc

h
o
le

s

ff
t

fi
b

h
e
a
lt

h

in
te

g
ra

te

m
e
rg

e
so

rt

n
b
o
d
y p
i

Program

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

S
p
e
e
d
u
p

atc2l12

loadbased

maxlevel12

maxtaskinqueue2

maxtasks2

maxtasks2ss16

stacksize16

surplus3

sysmon2-70-70

Fig. 7 Speed-ups of different cut-off approaches for each program.

task, the compiler introduces a high overhead by trying to parallelize a block
that is already small enough.

The comparison between approaches for the overall benchmark can be seen
in Figure 8. Despite Max-Level having the highest speedup, we used as default
the Surplus3 approach because of its lower variance. Most of the difference of
speedup of Max Level is due to only one program: Black-Scholes.

6.5 Comparison with Other Approaches

We evaluated the JPar compiler against two other approaches: OoOJava and
a human programmer. The source programs were annotated with the sese
statements to identify main parallel tasks. Without these annotations, the
generated version would be equivalent to the sequential version. Since the
OoOJava compiler generates C code, a sequential version using the same com-
piler is also presented. The OoOJava compiler was unable to compile Black-
Scholes, Health and the N-Body programs, failing to identify dependencies
during code-generation. The Æminium Benchmark includes versions of the



20 Alcides Fonseca et al.

a
tc

2
l1

2

lo
a
d
b
a
se

d

m
a
x
le

v
e
l1

2

m
a
x
ta

sk
in

q
u
e
u
e
2

m
a
x
ta

sk
s2

m
a
x
ta

sk
s2

ss
1

6

st
a
ck

si
ze

1
6

su
rp

lu
s3

sy
sm

o
n
2
-7

0
-7

0

Cut-off

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

Fig. 8 Average speed-ups of different cut-off approaches across the 8 different programs.

programs manually written on top of the Fork-Join framework, and on top of
the Æminium Runtime. Manual or automatic cut-off mechanisms were selected
using a manual local search across mechanisms and parameters.

Figure 9 shows the speedup achieved by the three approaches, each with
different configurations of platform, granularity control mechanism and, in
the case of OoOJava, the sequential version is also included. Overall, the per-
formance of JPar compiler was superior to that of OoOJava. OoOJava did
not even achieve a speedup compared with the OoOJava sequential version.
The reason is that the automatic granularity control mechanism of the OoO-
Java over-parallelizes, resulting in overheads on smaller tasks and on a heavier
contention in locking. The results presented in [21] mask the overhead by in-
troducing a manual cut-off decision in the sequential programs, which should
not be aware that they are parallel.

Overall, the human versions Fork-Join and Æminium programs performed
better than those of JParCompiler, which is expected, since the programmers
have a better knowledge of the nature of the program, and select the best
parts to parallelize. Black-Scholes is an exception, since the Human version
only parallelizes inside each loop, and does not consider parallelizing different
tasks at the same time. This is a case where the compiler could find parallelism
hidden in plain sight, and this can be used to further improve the benchmarks.
In the other cases, the Human versions outperformed the JPar compiler with
the best general cut-off. It is important to notice that the best threshold in
some programs would show a speed-up similar to the human version, however
we decided not to include a manual tuning of the parallel version generated
by the JPar compiler.



Title Suppressed Due to Excessive Length 21

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

P
a
ra

lle
l

 O
o
O

Ja
v
a

S
e
q
u
e
n
ti

a
l

 O
o
O

Ja
v
a

Version

0

2

4

6

8

10

12

S
p
e
e
d
u
p

Program = blackscholes

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

P
a
ra

lle
l

 O
o
O

Ja
v
a

S
e
q
u
e
n
ti

a
l

 O
o
O

Ja
v
a

Version

0.0

0.5

1.0

1.5

2.0
Program = fft8

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

P
a
ra

lle
l

 O
o
O

Ja
v
a

S
e
q
u
e
n
ti

a
l

 O
o
O

Ja
v
a

Version

0

2

4

6

8

10

12

14
Program = fib50

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

P
a
ra

lle
l

 O
o
O

Ja
v
a

S
e
q
u
e
n
ti

a
l

 O
o
O

Ja
v
a

Version

0

2

4

6

8

10

12

14

16
Program = health

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

O
o
O

Ja
v
a

O
o
O

Ja
v
a
 S

e
q
u
e
n
ti

a
l

Version

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

Program = integrate

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

O
o
O

Ja
v
a

O
o
O

Ja
v
a
 S

e
q
u
e
n
ti

a
l

Version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Program = mergesort

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

O
o
O

Ja
v
a

O
o
O

Ja
v
a
 S

e
q
u
e
n
ti

a
l

Version

0

1

2

3

4

5

6

7

8

9
Program = nbody

A
e
m

in
iu

m
 (

a
u
to

)

A
e
m

in
iu

m
 (

m
a
n
u
a
l)

Fo
rk

Jo
in

JP
a
r 

(m
a
x
ta

sk
s2

)

JP
a
r 

(s
u
rp

lu
s3

)

O
o
O

Ja
v
a

O
o
O

Ja
v
a
 S

e
q
u
e
n
ti

a
l

Version

0

2

4

6

8

10

12
Program = pi

Fig. 9 Speed-up comparison between JParCompiler, Human and OoOJava approaches. The
JPar version includes the two best performant cut-off mechanisms, maxtasks2 and surplus3.
The Human version includes one version on top of the Fork-Join framework, and two on top
of the Æminium Runtime, one with a manual cut-off and other with an automatic cut-off
mechanism. For the OoOJava compiler, the serial and parallel versions are shown.

7 Conclusion

We have presented the JPar compiler and the Æminium framework for auto-
matically parallelizing sequential programs. By analyzing the data dependen-
cies in the sequential program, we were able to conservatively extract paral-
lelism without changing the program semantics. We have improved over our
previous work by performing the data-dependency analysis in one pass, and
by generating source-code similar to the original, but with futures replacing
parallel computations. This change allows developers to understand how par-
allelization occurs, and how to improve it.

We have also studied two granularity control mechanisms. The JPar com-
piler only considers for parallelization tasks that are considered large enough.
This change introduced speedups in several programs of the benchmark, that
would not have it otherwise. We have also applied several existing runtime
cut-off mechanisms, as well as three new (StackSize, System Monitor, and a
combination of StackSize with Max Tasks) that can be used to improve the
performance of programs. We have also studied the usage of Binary versus
Lazy Binary Splitting.

Finally, we compared our compiler with another state-of-the-art compiler,
OoOJava, and with human parallelization. While our results were not as good



22 Alcides Fonseca et al.

as if a human would write and fine-tune the programs, JPar generated pro-
grams outperformed OoOJava.

For future work, we intend to select the best granularity control mechanism
for a given program by looking at its structure. This can be performed using
machine learning techniques over a large dataset of programs. A low-overhead
combination of mechanisms that can be used to improve any program is also
currently being explored. Another aspect which needs improvement is to better
access the granularity of tasks at compile-time, for which a cost model can be
of use.

Acknowledgements This work would not have been possible without the contributions to
the Æminium language and runtime from Sven Stork, Paulo Marques and Jonathan Aldrich.

References

1. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., McMahon,
J.O., Pasquier, F.X., Péan, G., Villalon, P.: Par4all: From convex array regions to hetero-
geneous computing. In: IMPACT 2012: Second International Workshop on Polyhedral
Compilation Techniques HiPEAC 2012 (2012)

2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The design of openmp tasks. Parallel and Distributed
Systems, IEEE Transactions on 20(3), 404–418 (2009)

3. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental eval-
uation of the new openmp tasking model. In: Languages and Compilers for Parallel
Computing, pp. 63–77. Springer (2008)

4. Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.A., et al.: Automatic program
parallelization. Proceedings of the IEEE 81(2), 211–243 (1993)

5. Bik, A.J., Gannon, D.B.: Automatically exploiting implicit parallelism in java. Concur-
rency - Practice and Experience 9(6), 579–619 (1997)

6. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sa-
dayappan, P.: Automatic transformations for communication-minimized parallelization
and locality optimization in the polyhedral model. In: Compiler Construction, pp. 132–
146. Springer (2008)

7. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel lan-
guage. International Journal of High Performance Computing Applications 21(3), 291–
312 (2007)

8. Chan, B., Abdelrahman, T.S.: Run-time support for the automatic parallelization of
java programs. The Journal of Supercomputing 28(1), 91–117 (2004)

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: ACM SIGPLAN Notices, vol. 40, pp. 519–538. ACM (2005)

10. Chen, M.K., Olukotun, K.: The jrpm system for dynamically parallelizing java programs.
In: Computer Architecture, 2003. Proceedings. 30th Annual International Symposium
on, pp. 434–445. IEEE (2003)

11. Dagum, L., Enon, R.: Openmp: an industry standard api for shared-memory program-
ming. Computational Science & Engineering, IEEE 5(1), 46–55 (1998)

12. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-to-
source compiler infrastructure for multicores. Computer (12), 36–42 (2009)

13. Dominguez, R.M.: Evaluating different java bindings for opencl (2013)
14. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In: High

Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. Interna-
tional Conference for, pp. 1–11. IEEE (2008)

15. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of openmp task scheduling strategies.
In: OpenMP in a new era of parallelism, pp. 100–110. Springer (2008)



Title Suppressed Due to Excessive Length 23

16. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Parallel
Programming Model, pp. 79–103. Springer (1996)

17. Fonseca, A.: Æminium Benchmark Suite. https://github.com/AEminium/
AeminiumBenchmarks (2013). [Online; accessed 23-October-2013]

18. Fonseca, A., Cabral, B.: Æminiumgpu: An intelligent framework for gpu programming.
In: Facing the Multicore-Challenge III, pp. 96–107. Springer (2013)

19. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. In: ACM Sigplan Notices, vol. 33, pp. 212–223. ACM (1998)

20. Hogen, G., Kindler, A., Loogen, R.: Automatic parallelization of lazy functional pro-
grams. In: ESOP’92, pp. 254–268. Springer (1992)

21. Jenista, J.C., Demsky, B.C., et al.: Ooojava: software out-of-order execution. In: ACM
SIGPLAN Notices, vol. 46, pp. 57–68. ACM (2011)

22. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference on
Java Grande, pp. 36–43. ACM (2000)

23. Lee, S., Min, S.J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for auto-
matic translation and optimization. ACM Sigplan Notices 44(4), 101–110 (2009)

24. Leino, K., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and check side
effects. ACM SIGPLAN Notices 37(5), 246–257 (2002)

25. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell. In:
ACM Sigplan Notices, vol. 44, pp. 65–78. ACM (2009)

26. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon v2: Large
scale source code analysis and transformation for java. Tech. Rep. hal-01078532, INRIA
(2006). URL https://hal.inria.fr/hal-01078532

27. Rafael, J., Correia, I., Fonseca, A., Cabral, B.: Dependency-based automatic paral-
lelization of java applications. In: Euro-Par 2014: Parallel Processing Workshops, pp.
182–193. Springer (2014)

28. Senghor, A., Konate, K.: Fjcomp, a java parallelizing compiler for dealing with divide-
and-conquer algorithm. In: Computer Applications Technology (ICCAT), 2013 Inter-
national Conference on, pp. 1–5. IEEE (2013)

29. Steele, G.: Parallel programming and parallel abstractions in fortress. Lecture Notes in
Computer Science 3945, 1 (2006)

30. Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P., Aldrich, J.:
Æminium: A permission-based concurrent-by-default programming language approach.
ACM Transactions on Programming Languages and Systems (TOPLAS) 36(1), 2 (2014)

31. Swaine, J., Tew, K., Dinda, P., Findler, R.B., Flatt, M.: Back to the futures: incremental
parallelization of existing sequential runtime systems. In: ACM Sigplan Notices, vol. 45,
pp. 583–597. ACM (2010)

32. Tzannes, A., Caragea, G.C., Barua, R., Vishkin, U.: Lazy binary-splitting: a run-time
adaptive work-stealing scheduler. ACM Sigplan Notices 45(5), 179–190 (2010)

33. Wang, C., Li, X., Zhang, J., Zhou, X., Nie, X.: Mp-tomasulo: A dependency-aware
automatic parallel execution engine for sequential programs. ACM Transactions on
Architecture and Code Optimization (TACO) 10(2), 9 (2013)

34. Zhao, J., Rogers, I., Kirkham, C., Watson, I.: Loop parallelisation for the jikes rvm.
In: Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT
2005. Sixth International Conference on, pp. 35–39. IEEE (2005)


