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Abstract—Clustering is a widely used solution to provide
routing scalability in wireless ad hoc networks. The design of
clustering schemes is a complex problem due to the dynamic
nature of this type of networks. This work proposes a Social-
aware Clustering Scheme (SoCS) based on link history to improve
the performance of clustering management operations. Each node
maintains a history of past links with neighbour nodes with
the prospect of improving the performance of future cluster
formations. SoCS was evaluated with the Social Network Theory
(SNT) mobility model, analysing clustering, routing and traffic
performance. Obtained results demonstrate an overall significant
improvement, proving that social-awareness is a quality attribute
in a clustering scheme.
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I. INTRODUCTION

Wireless ad hoc networks are autonomous systems, capable
of self deployment and maintenance, not requiring network
infrastructures for their operation. In such environments, the
network topology is highly dynamic, due to the unpredictable
behaviour of nodes. Numerous clustering schemes were devel-
oped, following different approaches and objectives in order to
improve the network scalability. In recent studies, a substantial
number of routing protocols, based on social relationships,
have been proposed [1][2][3]. These protocols exploit social
relations amongst nodes to help making forwarding decisions.
The recent abundance of social relationships between individ-
uals, makes social awareness a promising research topic to
tackle the dynamic problem of wireless ad hoc networks.

This work proposes a clustering solution (SoCS) capable of
exploiting social ties, while maintaining its normal functioning
when social relationships do not exist. SOCS manages the
network topology optimizing the grouping of nodes based
on the history of their past connections. There are some
routing protocols for Delay Tolerant Networks (DTNs) that
also explore the history of connections in order to predict the
reliability of nodes for message forwarding [4][5]. However,
to the best of our knowledge, this is the first social cluster-
ing scheme exploring the connection history to improve the
performance of clustering.

The next Section discusses the related work on social
grouping solutions. Section III describes the SoCS clustering
scheme. Section IV evaluates SoCS by comparison with a non
social clustering scheme. Finally, Section V concludes this
work.

II. RELATED WORK

In the past decade, clustering has been the most successful
approach to impose an hierarchical structured network aiming
to provide routing scalability. Many cluster based routing
protocols have been proposed, combining in one solution
a sectored network with route discovery. More recently a
wide range of routing protocols based on social metrics have
been exploiting social relationships to improve forwarding
decisions. In these solutions, clustering is based on identified
social groups. However, creating clusters that are only related
to social groups is insufficient, as some relationships may be
unknown or the size of social groups may be very discrepant,
originating unbalanced clusters.

Due to the complexity of human relationships, their exact
characteristics are still unknown. Therefore, it is not possible
to directly use social ties in routing or clustering schemes.
Social ties must be analysed according to metrics to identity
their features. Some of the most relevant metrics used in the
literature are as follows.

a) Degree centrality: [6] determines the number of
neighbour connections. Usually it is used to identify the most
popular node in a network.

b) Closeness centrality: [6] is the mean of geographic
distance between a node and all the nodes in the network.
Assuming that all nodes are reachable, closeness centrality is
used to measure how long is necessary to spread information
from a given node to all other nodes.

c) Betweenness centrality: [6] is defined as the amount
of shortest paths from all nodes to all nodes that pass through
a given node. It can be used to determine the amount of load
of a given node.

d) Clustering coefficient: [7] measures the tendency of
nodes to cluster together in a network. There are some
variations to calculate this metric. The most popular is deter-
mined as the number of connections between neighbour nodes
divided by the total of possible connections of the node.

e) Similarity: [8] measures common features between
nodes, such as interests and locations. It is used to identify
common groups of nodes.

f) Selfishness: [3] measures the willingness or coopera-
tion of a node with other nodes. Selfishness is considered a
negative effect for message transmission [9], particularly in ad
hoc networks. However, it can also be used to reduce traffic
in a network with low resources.



People with similar interests, location or professions are
more likely to have social ties. They are also more likely to
interact more often than strangers, thus the probability of being
located in the same geographic area is higher. The assumption
that nodes with higher similarity tend to be in-range more
frequently motivated some routing protocols [2] [10] to adopt
similarity to make forwarding decisions.

Centrality suggests the relative location of nodes in a
network. High centrality or popular nodes are more likely to
encounter other nodes than unpopular nodes. Centrality-based
routing protocols rely on these nodes to forward messages.
PeopleRank [11] is an opportunistic forwarding algorithm
that relies on popular nodes to deliver messages. Using this
paradigm often causes popular nodes to become bottlenecks,
leading to traffic congestion and fast energy depletion. This
contradiction between conserving resources and efficient mes-
sage transmission is addressed in the Socially-Based Routing
for Delay Tolerant Networks (SBR-DTN) [12]. This approach
replicates the same message in the network to increase the
probability of reaching its destination, instead of concentrating
traffic in shortest paths.

Selfishness affects willingness of node cooperation in for-
warding messages. Most routing protocols are designed on the
false assumption that nodes are willing to forward messages
for others. Mostly due to energy saving, some selfish nodes
are only willing to forward messages to nodes with whom they
have social ties, which is harmful for message transmission.
There are however, some routing protocols aware of this
phenomenon and even take advantage of it to preserve network
resources [13].

III. SOCIAL-AWARE CLUSTERING SCHEME (SOCS)

Nowadays, with the effortless extraction of social relation-
ships, social awareness can be regarded as an opportunity
to improve the performance of clustering management. The
main purpose of SoCS is to build a low overhead network
topology in order to increase the scalability of the network.
Relying on social awareness, nodes are able to maintain a
history of connections to neighbour nodes in order to improve
maintenance operations, such as aggregation to clusters. SoCS
is a distributed clustering scheme which implements some
features of the Distributed and Location-aware Clustering
(DiLoC) clustering scheme [14]. DiLoC is designed for indoor
environments exploiting potentially existent WLAN infrastruc-
tures to provide location references in order to increase the
stability of clusters.

A. Node States

In SoCS, nodes can be in one of three distinct states, namely
Unclustered, Clustered and Clustered-GW.

The Unclustered state typically represents a temporary role,
as the node is waiting to be assigned to a cluster. In this
state, when the node discovers neighbors, it waits a predefined
period of time in order to calculate the best candidate cluster to
join. The Unclustered state occurs on two different ocasions:

1) Node isolation - in this case the node does not have any
in-range neighbour nodes, therefore cannot create or be
assigned to a cluster

2) Cluster transition - the management of clusters occa-
sionally requires nodes to change clusters, due to cluster
balancing. In this phase, nodes can be unassigned from
a cluster.

Nodes on Clustered state usually represent the majority of
nodes on the network, whereas all in-range nodes must belong
to its cluster. Thus, the communication with foreign nodes (i.e.
nodes assigned to a different cluster) is performed through
gateway nodes.

Finally, the Clustered-GW state is assigned to nodes that
have in-range foreign nodes, i.e. they must have direct con-
nectivity with at least one different cluster. Thus, they are
responsible of forwarding inter-cluster maintenance messages
and typically are located on the edge of clusters.

The possible node state transitions are defined as follows.

Clustered to Clustered: This transition occurs when a
node becomes aware of an in-range cluster or an unclustered
node. In the first situation, the node joins the cluster automat-
ically. However, if the node only detects unclustered nodes, a
new cluster is created to adopt the unclustered nodes.

Unclustered to Clustered-GW: This transition is similar
to the previous, but more than one cluster is discovered.
In this case, the node determines which cluster is the most
suitable, either relying on its link history list or according
to a best clustering metric. If a link history between the
unclustered node and its in-range clustered nodes exists, this
will be the used methodology (further described in Section
II-B). However, if no previous connections existed, the node
calculates which cluster is the best, taking several parameters
into account: number of in-range nodes for each cluster and
the size of clusters. The greater the number of in-range nodes,
the stronger connection to the cluster. However, if the size of
the cluster is high, possibly close to the maximum allowed,
this cluster would be a bad choice. To measure this trade-off,
the best clustering metric 1 is used, where BC; is the metric
value for cluster .

BCi =i+ 5 )
«; is the number of the available positions in cluster ¢ until it
reaches the maximum allowed. ~; represents the number of in-
range nodes belonging to the cluster. C'is an arbitrary constant,
allowing to reduce the impact of ;. Using this metric, the
cluster with the higher BC value is chosen by the node.
Clustered to Clustered-GW: This transition occurs when
a node becomes aware of clusters, excluding its own.
Clustered-GW to Clustered: Whenever a clustered gate-
way node loses connection with all its foreign clusters, it
automatically transits to a normal clustered state.
Clustered/Clustered-GW to Unclustered: A mnode be-
comes unclustered when willingly disconnects from the net-
work or loses connection with all its neighbour nodes due to
mobility.



B. Link History

TABLE I: Simulation Parameters

Nodes keep information about their previous connections | Smulalor OPNET Modeler 17.5.A PL6
. R . . .. . Field Size (m*) 500 x 500
with neighbour nodes (i.e. at 1-hop distance). This information Mobility Model RWP: SNT
can be used in future connections to improve both the cluster Transmission range (1) 150
joining process and durability time of connections. WLAN IEEE Standard 802.11b (11 Mbps)
Simulation time (s) 900
Cluster 1 Network size (number of nodes) 40; 80; 120; 160; 200
Routing Protocol C-OLSR
Cluster 2 Traffic Pattern
8T, Eacket size (bytes) U512, 1024)
Node | TCT (s) ate (packgts/sec) U, 1)
1 252 Number of intra-group packets 5
4 215 Number of inter-group packets 5
3 112 RWP Parameters
3 321 Node speed (m/s) U, 2)
2 131 Maximum pause time (s) 50
5 318 SNT Parameters
6 35 Node speed (m/s) U, 2)
7 332 Number of groups (Caveman model) | 10
9 235

Fig. 1: Example cluster decision based on link history

Each node keeps a list of previous neighbour nodes with
which a past connection occurred. The list contains the total
of connectivity time with each neighbour, which is the sum
of the amount of time in all connections. Figure 1 shows an
example of a node making a decision to join a cluster. Three
clusters are in-range of the node, since it has at least one
in-range node inside each cluster. Based on the link history
list, it can be determined that Cluster 1 has a total of 665
seconds (sum of nodes 5, 3 and 9), Cluster 2 has a total of
954 seconds (sum of nodes 1, 2, 8, 4 and 6) and Cluster 3
has a total of 332 seconds (node 7). Thus, the decision will
favour in joining Cluster 2. To be noted that, despite nodes 9,
8 and 4 not currently being in-range with the joining node, the
latter is still able to see them, since the full table of clustered
nodes is broadcasted upon the presence of an unclustered
node. Otherwise, in this example, the decision would favour
in joining Cluster 1. The utilisation of link history potentially
increases the durability of connections, and decreases the
complexity of future cluster assignments, particularly with the
existence of repeated connection patterns, often observed in
social grouping.

I'V. EVALUATION AND RESULTS

The evaluation of SoCS was performed in a simulated en-
vironment using the OPNET Modeler [15]. The main purpose
of this evaluation is to access the overhead and scalability of
clustering regarding the gain obtained with social awareness.
This study features the performance of clustering, routing and
generated traffic.

A. Environment and Parameters

The evaluation parameters are presented in Table I. The
objective of this evaluation was to obtain the gain of clustering
scalability using social awareness presented in SoCS. The
evaluation methodology was defined as follows.

1) Scheme Comparison: SoCS was compared with DiLoC
due to the similarity of clustering characteristics, such as dis-
tributed cluster topology, type of messages, and maintenance
operations.

2) Routing Protocol: In these simulations, the C-OLSR
[16] routing protocol was used. C-OLSR is an extension of
the well known proactive OLSR routing protocol, capable of
creating an hierarchical network topology, thus supporting any
clustering scheme.

3) Mobility Models: Social relationships are strongly re-
lated with social mobility. Thus, in order to achieve a real
evaluation of a social clustering scheme it becomes necessary
to use either real movement traces or synthesised traces, gener-
ated by social mobility models. In this evaluation, the Random
Waypoint (RWP) and the Social Network Theory (SNT) [17]
mobility models are used. The SNT model studies social
relationships based on social network theory. By assuming that
social ties between individuals are symmetric, the relationships
of a group of individuals can be measured according to
an interaction matrix, which can also be interpreted as the
likelihood of geographic location of individuals. Mobility
traces are generated based on this matrix, following a model
of social attractivity between individuals within a group. After
their generation, a trace matrix is fed to each node of the SoCS
scheme before execution, in order to build the link history lists.
Each index of the matrix is translated to a link history time of
nodes. To be noted that during execution time, SoCS updates
the link history in each node, according to neighbourhood
nodes.

4) Generated Traffic: The used traffic pattern is character-
ized as follows:

o At each time interval U(0, 1) 10 nodes are randomly

selected to generate packets.

o The first 5 nodes generate one packet each, of size U(512,
1024) bytes, to a random destination node, in the entire
network.

e The remainder 5 nodes generate one packet each, size
U(512, 1024) bytes, to a random destination inside its
corresponding cluster.



This pattern intends to mimic a real scenario message ex-
change, with messages travelling within a cluster and across
different clusters.

B. Discussion of Results

This section presents the obtained results from the simula-
tion. The evaluation features the analysis of clustering, routing
and traffic performance. Each used metric is described further,
along with the discussion of the obtained results.

1) Clustering Performance: The clustering metrics evaluate
the performance of SoCS in comparison with DiL.oC, using
the RWP and the SNT mobility models.

a) Number of Clustered Nodes: This metric provides the
average number of nodes that are associated with the cluster
structure.

~5-RWP +DiLoC “~-RWP + SoCS = SNT + DiLoC ——SNT + SoCS

Clustered Nodes (%)
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Fig. 2: Amount of Clustered Nodes (in percentage)

Nodes that are isolated cannot be affiliated to a cluster. Thus,
scenarios with few nodes are likely to have more unclustered
nodes, due to poor connectivity. Figure 2 represents the per-
centage of average amount of clustered nodes. With the SNT
mobility model, the clustering scheme presents around 95%
of clustered nodes for all network sizes. With the RWP, the
amount of clustered nodes is quite irregular in the low density
networks. Nodes in low density scenarios typically have lower
connectivity, hence the lower amount of clustered nodes,
particularly with random mobility. Moreover, the difference
between SoCS and DiL.oC is not significant, meaning that the
link history of nodes is not relevant in this metric, as DiLoC
is still capable of clustering as much nodes as SoCS.

b) Cluster Stability: The stability of clusters can be
measured according to the amount of time that nodes are af-
filiated to a cluster, without suffering re-affiliation operations.
A cluster stability metric is utilised, which defines a stability
time (ST'), from which nodes are considered to be stable (2).

ST = x PV
VX0

p is the transmission range of nodes, 1 is the pause time,
v the average of node speed (mean value of minimum and

maximum speed), § the density of nodes (number of nodes per
Km?) and finally, C' represents an arbitrary constant, equal in

2

all simulation executions enabling the increase or decrease of
the stability time. A value of 1 was chosen in this simulation.
The stability metric provides a measurement on the amount of
nodes that were stable during execution, for a period greater
than the ST value.

~5-RWP +DILoC £\ RWP + SoCS -=-SNT +DiLoC -} SNT + SoCS
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Fig. 3: Amount of Stable Nodes (in percentage)

Figure 3 shows the average amount of nodes that are stable
(within a period greater than S7T') in percentage. The stability
of clustered nodes increases for larger networks, meaning that,
in denser networks, there is a lower percentage of nodes that
require re-affiliation operations. As expected, SNT provides
more stability than RWP, since nodes remain in the same areas
for longer. Also in this metric, the increase of stability with
SoCS is not significant when compared to DiLLoC. Particularly
with the SNT model, DiLoC is capable of maintaining nodes
stable, regardless of social link history.

c) Clustering Overhead: This metric represents the total
amount of traffic sent, required to maintain clusters.

~5-RWP +DiLoC A5 RWP + SoCS ~£3-SNT +DiLoC - SNT + SoCS
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Fig. 4: Clustering Overhead per second (kbit/s)

Figure 4 shows the average clustering overhead per second.
As expected, the RWP model requires a larger overhead.
As nodes move randomly the number of re-affiliations is
high, forcing the number of required maintenance messages
to increase. The standard error also increases significantly in
RWP due to the random pause time of nodes. With the SNT
model, however, nodes move with coordination, often in the



same area, thus requiring less clustering messages. The SNT
model presents a slightly decrease of overhead with SoCS,
when compared to DiLoC. The amount of clustered nodes
in DiLoC is similar to SoCS, however the former uses more
network resources as it presents a larger overhead. The link
history kept by SoCS provides the social grouping of nodes,
hence it is capable of creating more accurate clusters, resulting
in overhead reduction.

2) Routing Performance: A stable cluster structure usually
provides routing better performance. This section analyses the
routing performance to establish the quality of the cluster
topology.

a) Neighbourhood Changes or MPR Calculations: A
neighbourhood change occurs when a 1-hop or 2-hop node
neighbour is added or deleted.

-5-RWP + DiLoC

/5 RWP +S0oCS -=-SNT +DiLloC - SNT + SoCS
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Fig. 5: Amount of Neighbourhood Changes (per second)

Each neighbourhood change leads to a recalculation of the
multipoint relay (MPR) and route table recalculation. Thus,
the number of neighbourhood changes is equal to the number
of MPR calculations. Figure 5 depicts the average amount
of neighbourhood changes per second. With the RWP model,
the amount of neighbourhood changes significantly increases
with network size, due to constant connection losses. With
SNT, the DiLoC model has a larger amount of neighbourhood
changes than SoCS. Since SoCS creates and maintains clusters
according to social links, the probability of having a node
affiliated with a “foreign” cluster, not belonging to a specific
social group, is very reduced. DiLoC, lacking this information,
is more prone to more neighbourhood changes, specifically in
this metric, as it detects 2-hop node changes.

b) Topology Changes: In C-OLSR, upon recalculation
of MPRs, topology control (TC) messages are sent and
forwarded. Each received TC message leads to a topology
change. The topology changes metric can be used to access
the scalability of C-OLSR. Figure 6 shows the average amount
of topology changes per second, in the entire network. The
RWP model shows significant higher topology changes when
compared to the SNT model. Similarly to the neighbourhood
changes metric, the gain related to the social link history in
SoCS is very clear. To be noted that the topology changes of
SoCS with SNT are very low, reaching a maximum average

of 31.1 in the 200 node network size.
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Fig. 6: Amount of Topology Changes (per second)

3) Traffic Performance: The analysis of traffic outlines the
overall network performance. Here, it is discussed the amount
of received traffic and the delay.

a) Received Traffic: Figure 7 shows the average percent-
age of successfully received traffic per second.
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Fig. 7: Percentage of Received Traffic (per second)

For networks larger than 120 nodes, the increase of packet
loss is often associated with radio interferences inherent to
wireless ad hoc networks. In smaller networks, the received
traffic is also lower due to poor connectivity related with a low
node density. To be noted that in spite of most nodes in the
network being clustered, it does not mean that all clusters are
connected. A cluster may become isolated, not being able to
perform inter-cluster communication. Thus, since some part
of the generated traffic is destined to random nodes in the
network, it may not reach the destination. The amount of
received traffic is consistent with the obtained results in the
routing performance, in both SoCS and DiLoC.

b) End-to-end Delay: The End-to-end delay measures
the delay of generated packets, in seconds, in the entire
network. Figure 8 shows the average end-to-end delay for
the evaluated scenarios. The confidence intervals of delay are
considerable, particularly in larger/denser networks, which is
related with the radio interference inherent to wireless ad hoc



networks. As expected the RWP model is prone to more delay,
compared to the SNT model.
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Fig. 8: End-to-End Delay (in milliseconds)

Regarding the SNT model, even though the amount of
received traffic if higher with SoCS, the delay is not signifi-
cantly lower than DiLoC, mainly because only the successfully
delivered packets are considered for delay measurement.

V. CONCLUSION

This work proposes a Social-aware Clustering Scheme
(SoCS) exploiting the link history between nodes. A list
of connections with neighbours is preserved by each node,
attempting to create reliable clusters, consistent with social
groups. SOCS was evaluated using the C-OLSR routing pro-
tocol and compared with the DiLoC clustering scheme. To
reflect the gain of social group mobility, the Random Way-
point (RWP) and the Social Theory Network (SNT) mobility
models were used. Results demonstrate that SoCS provides
a significant increase of network scalability, improving the
routing performance and transmitted traffic. This proves that
node connection history is a key feature to further improve
the connection stability of wireless ad hoc networks. Social
mobility particularly enhances the potential of SoCS, due to
the organised dynamic of social grouping. Generally, it is
shown that SoCS outperforms DiLoC in clustering, routing
and traffic performance.
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