
A Middleware Architecture for Mobile and Pervasive
Large-Scale Augmented Reality Games1

Pedro Ferreira, João Orvalho and Fernando Boavida

LCT – Laboratory of Communications and Telematics
Centre of Informatics and Systems of Coimbra University

Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
{pmferr,orvalho,boavida}@dei.uc.pt

1 This work is being partly financed by the Portuguese Foundation for Science and Technology (FCT) and CONTENT
NoE.

Abstract

Ubiquitous or pervasive computing is a new kind of
computing, where specialized elements of hardware and
software will have such a high level of deployment that
their use will be fully integrated with the environment.
Augmented reality extends reality with virtual elements
but tries to place the computer in a relatively unobtrusive,
assistive role.

Specialized network middleware solutions for large
scale mobile and pervasive augmented reality games are,
to our knowledge, inexistent. The work presented in this
paper focuses on the creation of such type of network
middleware for mobile and pervasive entertainment,
applied to the area of large scale augmented reality
games.
In this paper we describe the architecture of the system,
which works over a 3GPP network. The paper presents
architectural and implementation aspects, along with
evaluation results. The results show that the proposed
solution is able to cope with the stringiest requirements of
augmented reality systems.

1. Introduction

Mark Weiser [1] theorized about a new kind of
computing, called ubiquitous or pervasive computing,
where specialized elements of hardware and software
would be so ubiquitous no one would notice their
presence. According to Mark Weiser [1] the technology
required for ubiquitous computing would come in three
parts: inexpensive, low power computers including
equally convenient displays, software for ubiquitous
applications, and networks that tie them all together.

In the current decade we are witnessing the merging of
telecommunications and IT worlds [2]. The Internet
Protocol (IP) is the network layer protocol in the 3GPP
specifications, and the current trend in developing new

telecommunications networks is to utilize Internet
protocols. So, the network that ties all things together is
now possible. But there are many issues under study in
the Internet community. These are mobility, quality of
service, security, management of networks and services,
discovery, ad - hoc networking and dynamic
configuration, and geospatial location.

Low cost, low power computers including equally
convenient displays are also coming closer to reality. In
fact, we can consider the latest PDA’s and mobile phones
an early version of Weiser’s ubiquitous computers.

A significant requirement of pervasive applications is
fast service development and deployment [2], which
implies the introduction of various service and application
frameworks and platforms. For this, middleware is a
common solution. The benefits of middleware utilization
are the improved programming model, and the hiding of
many implementation details, which make middleware
based application development much faster.

It is now becoming quite clear that entertainment, and
more specifically mobile gaming, will be one of the killer
applications of future wireless networks [3]. However,
mobile gaming applications face issues that are different
from fixed network applications. These issues include
fluctuating connectivity, quality of service and host
mobility. Another issue is how to manage game state
consistency with a dynamic mobile networked
environment in which devices may be physically close but
topologically distant. Further yet, there is the issue of how
to manage multiple wireless network connections such as,
for example, GPRS and IEEE 802.11 at the same time.

Augmented reality extends reality with virtual elements
while keeping the computer in an assistive, unobtrusive
role [4]. It is possible to create games that place the user
in the physical world through geographically aware
applications. The latest mobile phones are being equipped
with GPS receivers and there are software and hardware
tendencies from the largest manufacturers to equip mobile
phones with more advanced context-aware technology.

Current mobile phones are equipped with cameras and
some of the latest ones are coming with some form of 3D
rendering technology [5][6]. Bluetooth technology and
increasing miniaturization will allow, in the near future,
specialized pervasive equipment for augmented reality.
The opportunity for some inexpensive augmented reality
is here.

To the best of our knowledge, there is no specialized
network middleware solution for large-scale mobile and
pervasive augmented reality games. The main objective of
this work is the creation of such network middleware for
mobile communications that will enable integrated large-
scale augmented reality applications to be built around it.

The middleware that is being created evolved from
previous work in the area of interactive distributed
multimedia, more specifically in state transmission for a
collaborative virtual environment middleware platform,
the Status Transmission Framework (STF) [7][8]. This
platform extended ARMS – Augmented Reliable
CORBA Multicast System [9][10] – with capabilities for
the handling of state transmission in distributed
collaborative virtual environments.

In this context mechanisms are being studied, proposed
and evaluated to deal with issues such as Mobility
(fluctuating connectivity, host mobility and handling of
multiple simultaneous network connections), quality of
Service – QoS (minimizing delay and jitter ,and
reliability), security (authentication and prevention of
cheating), management of Networks and Services,
discovery, ad-hoc networking and dynamic
configuration, geospatial location and orientation,
scalability, consistency, multimedia data heterogeneity,
data distribution and replication.

This paper concentrates on the architectural issues of
the proposed middleware, with emphasis on the validation
of the main architectural choices, having in mind the
requirements identified in the next section.

The main contribution of this paper is the definition of
an architecture of a middleware for large scale mobile and
pervasive augmented reality games and the steps taken to
evaluate this architecture.

2. Requirements

Pervasive Large Scale Augmented Reality Game
Applications have many requirements.

Reliable multicast of packets is a requirement of large
scale distributed entertainment applications. However, it
has been shown that current solutions for that effect have
significant problems [11], examples of those being the
nak or ack explosion problems. The reliable multicast
transport working group of IETF [12] has been addressing
the problem of reliable multicast transport, but only for

one-to-many scenarios, leaving out many-to-many
configurations. The experimental protocol PGM [13], the
only many-to-many protocol that has reached RFC status
in IETF, requires support by network elements. This is
hard to get implemented in reality.

Delay, jitter and bandwidth are also crucial for
augmented reality applications. These parameters are at
the base of the experienced audio-visual quality as well as
other sensitive information.

Requirements that are common to all system levels are
security, trust, privacy and accounting (Authentication,
Authorization and Accounting). In addition,
manageability is another important requirement, as large
scale systems must remain under effective control, in
order to avoid the risk of global breakdown.

These requirements are taken into account in the
architecture proposed in this paper and presented in the
following section.

3. Architecture

The system targeted by the proposed middleware is
composed of 3 levels: the back-office central level, the
large scale network level, and the personal area network
level.

The back-office central level consists of one or more of
a series of parallel servers and serves as the main
controlling station of the game administrator, the person
responsible for starting, stopping and managing game
performance and general maintenance tasks.

The large-scale network is the standard 3GPP network,
where servers are distributed according to some logic of
spatial distribution, typically corresponding to
aggregations of cells of the mobile communications
network.

The personal area network level consists of the network
of pervasive devices dedicated to personal
communications and to augmenting reality, which the
person carries. These may be sensors, actuators, and other
devices that can communicate using Bluetooth or other
means of communication. All these communicate with the
mobile host, probably just a cell phone or specialized
device connected to the large-scale 3GPP network. In this
way, the player is so enabled to play games of augmented
reality irrespective of his/her location.

Targeting this architecture allows the study, evaluation
and proposal of mechanisms to deal with issues of
scalability, multimedia data heterogeneity, data
distribution and replication, consistency, security,
geospatial location and orientation, mobility, quality of
service, management of networks and services, discovery,
ad-hoc networking and dynamic configuration.

We consider that building augmented reality

applications using a network middleware is better that
building them standalone. This is because then many
game applications may then use the same application
programming interface (API) to leverage network
resources, giving it much faster service development and
deployment.

The middleware presented in this paper is being built
according to the characteristics of agile pervasive
middleware [14], such as application-awareness, mobility,
integration, interoperability, scalability, portability,
adaptability, robustness and simplicity of evolution.

4.1 Central level

At the central level, there is one server, which may be
constituted by more than one parallel server, running Java
Standard Edition 1.5.0. There will also be database
servers, which may or may not be integrated with the
same server.

This server or collection of servers will be connected to
the HSS (Home Subscriber Server) of the 3GPP Network
by the DIAMETER protocol SH application and are,
together, an IMS (IP Multimedia Subsystem) application
server.

All authentication, accounting, and authorization will
happen through this interface. All management of the
game servers will happen through this server.

Status Transmission Framework version 2.0 APIs for
the server side include a DIAMETER [15] API which
includes the base protocol, the CX and DX [16]
applications and the SH applications [17] of 3GPP. This
would communicate preferably through SCTP [18][19]
(we also developed a java SCTP API that presently only
works under Linux, but can be easily extended to other
platforms, as soon as those platforms support SCTP
natively) if available. If not, TCP will be chosen. The
DIAMETER API implementation supports TLS [20] and
works over IPSec.

The terminal (UE) from the personal area network will
communicate with the central server through SIP [21] to
initiate the session, authenticate itself and get the details
for the session through SDP [22] negotiation (that’s
another API we have developed, the J2ME SDP API - in
the server side we use JAIN SDP API based on JSR
141[23]).

The API we use on the server side for SIP
communication is JAIN SIP [24].

The SIP and SDP exchanges include enough
information to choose a distributed server to communicate
with, according to the terminal’s geographical location.
The terminal geographical location is acquired through
the use of the J2ME Location API (JSR 179) [25] on the
mobile terminal.

The schematics of the middleware architecture the
central level are represented in Figure
1.

Figure 1 - Central level architecture

4.2 Large Scale Distributed Level

At the distributed server level, there are multiple
distributed servers, linked to geographical coverage areas
which in the extreme may even be linked to the cells of
the mobile network, which will distribute the load off the
main server.

These servers run Java Standard Edition 1.5.0, also.
They will have integrated database servers running on the
same or different computers.

These servers will be interconnected by a reliable
multicast protocol capable of working in an IPv6 network,
without the support of network elements, capable of
working in the many-to-many scenario, without the nak
implosion problem but nak based, source ordered and
avoiding duplicates: The Sixrm Protocol [26]. This
protocol will also connect these servers with the central
server.

The schematic of each of the distributed servers on the
large scale distributed level is presented in Figure 2.

Figure 2 - Large Scale Distributed Level

Architecture

4.3 Personal Area Network Level

At the personal area network level we will find the
most diversified types of devices. The main device will
probably be a cell phone or a specialized device for game
playing.

The required characteristics for this device is that it
must support the Java language, more specifically, Java
Micro Edition, in its Connected Limited Device
Configuration (CLDC) version 1.1 [27], and the MIDP –
Mobile Information Device Profile - version 2.0 [28].

This central device must support also the Java
Bluetooth API (JSR-82) [29], the Java SIP (Session
Initiation Protocol) API for J2ME (JSR-180) [30] and the
location API for J2ME (JSR-179) [25].

Other devices that are needed on the personal area
network level are input and output devices. These devices
must also support at least Java (same version and
configuration) and the Bluetooth API [29].

Output devices are essentially video and audio output
devices. Video and audio output devices should also
support, besides Java (CLDC 1.1) and Bluetooth for Java
Micro edition (JSR-82), the Mobile 3D graphics API
(JSR-184)[31], and the Mobile Media API for J2ME
(JSR-135) [32].

As for input devices, in the real world environment, the
user is often used to using one or both hands to perform a
task. Therefore, the input devices used with wearable
computers need to be designed with this requirement in

mind. Appropriate input devices need to be utilized to
allow the user to efficiently manipulate and interact with
objects. For data entry or text input, body mounted
keyboards, speech recognition software, or hand held
keyboards are often used. Devices such as IBM’s
Intellipoint, trackballs, datagloves, etc., are used to take
the place of a mouse to move a cursor to select options or
to manipulate data. One of the main advantages of using a
wearable computer is that it allows the option of hands
free use.

Common factors in the design of input devices are that
they all must be unobtrusive, accurate, and easy to use on
the job.

In order for any digital system to have an awareness of
and be able to react to events in its environment, it must
be able to sense the environment.

This can be accomplished by incorporating sensors, or
arrays of various sensors (sensor fusion) into the system.
Sensors are devices that are able to take an analogue
stimulus from the environment and convert it into
electrical signals that can be interpreted by a digital
device with a microprocessor.

For a sensor or array of sensors to be supported by the
Status Transmission Framework version 2.0, it must be
accompanied by hardware that translates its electrical
impulses to digital signals transmitted over Bluetooth
communications over the personal area network to the
central device.

The central device will coordinate all the augmented
reality experience for the user, using all the multimedia
capacities of the other devices and eventually, even own
multimedia capacities of the central personal area network
device.

Here, we have developed the Status Transmission
Framework version 2.0 PAN API and the SENSACT API
[33].

Fig.3 shows the minimum required architecture for a
sensor , fig 4 shows the minimum required architecture
for a actuator, and fig 5 shows the minimum required
architecture for the central game playing device.

5. Sixrm reliable multicast

Reliable multicast of packets is a requirement of large
scale distributed entertainment applications. However, it
has been shown that current solutions for that effect have
significant problems [10], examples of those being the
nak or ack explosion problems. The reliable multicast
transport working group of IETF [11] has been addressing
the problem of reliable multicast transport, but only in the
one- to-many approach, not in the many-to-many area.
The experimental protocol PGM [12], the only many-to-
many protocol that has reached RFC status in IETF,

requires

Figure 3 - Sensor architecture (Personal Area

Network level)

Figure 4 - Actuator architecture (Personal Area

Network level)

support by network elements. This is hard to get
implemented in reality. We felt it was necessary to create
a protocol capable of working in the many-to-many
scenario, without the nak implosion problem but nak
based, source ordered and that avoided duplicates. We
also needed a protocol that could work in ipv6, and that
does not require the support of network elements. So, we
created Sixrm. We use it for communications between the
large scale distributed servers and between those servers
and the central server.

Sixrm is described extensively in [26].

6. The SENSACT API

The SENSACT API, which was introduced in [33], is
the part of the system which enables the sensors and
actuators to be deployed with the help of java CLDC 1.1
and communicate by Bluetooth with the help of JSR-82.
This API and correspondent protocols make part of the
personal area network level of the system.

Figure 5 - Central Game Device Architecture

(Personal Area Network level)

The SENSACT API is a small footprint set of classes
occupying less than 60KBytes, constituted by 5 java
packages.

In order to deploy one sensor/actuator, one has to have
the respective hardware, a CLDC 1.1 implementation that
runs on the hardware, a Bluetooth API (JSR-82)
implementation for that hardware and platform, and the
SENSACT API.

7. The STF Personal Area Network API

The STF – Status Transmission Framework – version
2.0 PAN – Personal Area Network level API is the
correspondent API on the central game device of the user
that communicates with the SENSACT API on the
sensors and actuators.

This is the API on the central personal area network
device that communicates with the distributed servers on
the large scale network level of the system. We describe
here the packages responsible for the personal area

network communications, which are responsible for
communicating with the SENSACT API on the sensors
and activators, and which functions are listed in Table 1.

Session Description Protocol [22] is used in SIP[21]
messaging to the central server and to the IMS – IP
Multimedia Subsystem [35] of 3GPP to negotiate session
parameters and QoS. For this, we make use of Java SIP-
API (JSR-180) [30] and the help of our developed SDP
helper classes in pt.uc.dei.lcst.stf.pan.sdp .

8. ARMSV6

ARMS – The Augmented Reliable corba Multicast
System [9][10] – was extended to work in IPV6 in large
scale networks by substituting, in its new version
ARMSV6, the reliable multicast protocol it used by the
Sixrm protocol.

Now, the distributed servers communicate using
ARMSV6, and so, the Sixrm reliable multicast protocol.

ARMS [9][10] is a improvement for the corba event
service that, maintaining compatibility with the standard
corba event service, adds reliable multicast
communication to it. ARMSV6 does the same thing but
now supporting ipv6 through Sixrm reliable multicast
protocol.

9. STFServer

The middleware that runs on the central level and on
the large scale distributed server level is the STFServer
API. This API makes use of ARMSV6 (and so, Sixrm).

It is an API that runs on top of J2SE 1.5.0 and its
objective is to run on the IMS – IP Multimedia Subsystem
core [34][35][36]– as an Application Server.

The central server is an application server, the
distributed game servers are also application servers.

Table 2 shows the STFServer API packages and
corresponding functions.

10. Tests

In this section we present experimental results
concerning several key system components, namely
results for the personal area networks APIs, for the large
scale network APIs, and for common system APIs.

10.1 Personal Area Network APIs
The personal area network part of the system, both the

STF PAN API and the STF SENSACT API, was subject
to extensive functional and performance tests, with
various kinds of simulated sensors and actuators and a
simulated reading and actuating application using Java
Wireless Toolkit 2.3 Beta from Sun Microsystems
running in a series of emulators in a Pentium 4 3.6 GHz
System with 1 Gb Memory. We present here results for

delay and jitter for two of those tests, one for a sensor, a
simple simulated position sensor, and one for an actuator,
a simple force actuator.

The tests ran for about ten minutes. The sensor sent
values every 100 milliseconds and the actuator received
values every 100 milliseconds, from the compatible status
transmission framework personal area network API on the
main game controller device.

Figure 5 shows the delay for the SensorValue messages
received on the controller game device from the position
sensor, while Figure 6 shows the jitter, measured as the
variation of the delay between the current message delay
and the last message delay for the same scenario.

Figure 7 shows the delay for the ActuatorValue
messages arriving at the actuator from the game device,
while Figure 8 shows the jitter, measured as the variation
of the delay between the current message delay and the
last message delay for the same scenario.

Table 1 - Packages of the STF PAN API

pt.uc.dei.lcst.stf.pan
Main package of the STF PAN API. Main services
like session control, late join, state receiving and
transmitting, state representation, timewarp support,
checkpoint and distributed checkpoint support.
Location and orientation support.

pt.uc.dei.lcst.stf.pan.comms.area
Contains a pack of discovery messages, sensor and
actuator classes already implemented that greatly
simplify building the most common types of sensors
and actuators, and classes to create more sensors and
actuators, and managers for the Personal Area
Network. Is effectively, the Personal Area Network
API for small devices.

pt.uc.dei.lcst.stf.pan.comms.link
Implemented channels of communication and helper
classes (including Bluetooth, but also ways of
communicating with the servers)

pt.uc.dei.lcst.stf.pan.comms.sdp
Contains an API for SDP (Session Description
Protocol [24]) representation in Java.

pt.uc.dei.lcst.stf.pan.net
Creates a general channel architecture that can be
used to abstract any communication mean, be it
Bluetooth or other (in the future, for example, zigbee
could be supported by simply extending classes). It
also contains implementations of communication
means to reach the distributed servers (TCP).

pt.uc.dei.lcst.stf.pan.persist
Extends persistence to the world of J2ME CLDC
with a low bandwidth alternative to the standard
Java 2 SE serialization and externalization
mechanisms.
Package exactly equal to the SENSACT of
persistence.

Table 2 - STFServer API packages

pt.uc.dei.lcst.stf
Main package of the Status Transmission Framework version

2.0 Server Side. It contains the logic that complements the
functions that the Status Transmission Framework version 2.0
provides to the mobile part of applications and also the logic that
STF v2.0 provides to the server side of the application. That
includes state representing, latejoining, state receiving and
transmitting, timewarp support, checkpoint and distributed
checkpoint support. Location and orientation support.

Pt.uc.dei.lcst.stf.applications
Package that implements some applications. Namely, the central
game server, the distributed game server, and some partially
simulated components of 3GPP IMS for testing.

pt.uc.dei.lcst.stf.applications.messages
Messages specifically used by the applications of
pt.uc.dei.lcst.stf.applications.

pt.uc.dei.lcst.stf.arms
Interface package for working with ARMSV6.

pt.uc.dei.lcst.stf.diameter
Package that implements the base diameter protocol [15] in java.

pt.uc.dei.lcst.stf.diameter.cxdx
Package that implements the 3GPP CXDX Diameter
Application [16] protocol in java.

Pt.uc.dei.lcst.stf.diameter.sh
Package that implements the 3GPP SH Diameter Application
[17] protocol in java.

pt.uc.dei.lcst.stf.net
Creates a general channel architecture that can be used to
abstract any communication mean.

Pt.uc.dei.lcst.stf.persist
A low bandwidth alternative to the standard Java 2 SE
serialization and externalization mechanisms.

pt.uc.dei.lcst.stf.sctp
Implements support for the SCTP [18][19] protocol in java in
platforms that support it (java.net style). SCTP is the default
protocol for communications in the DIAMETER[15] AAA
protocol. Currently, Linux is supported.

Pt.uc.dei.lcst.stf.uelink
Implements specific channels of communication with the UE
(mobile terminal – the personal area network central game
machine).

DELAY

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Messages

M
ill

is
ec

on
ds

DELAY

Figure 5 - Delay in milliseconds from messages
received at the game controller device from a sensor

Based on the results shown in these figures we can
conclude that our set of APIs, both the SENSACT API

and the STF PAN API, have a consistent delay that varies
from 0 to 15 milliseconds, and consequently a jitter that
varies also in the order from 0 to 15 milliseconds, in the
case of receiving data from a sensor in the main game
controller device. In the case of receiving data in the
actuator, the delay is in the area of 15 or 16 milliseconds,
and the jitter varies from 0 to 1 millisecond.

JITTER

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Messages

M
ill

is
ec

on
ds

JITTER

Figure 6 - Jitter in milliseconds from messages
received at the game controller device from a sensor

DELAY

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Milliseconds

M
es

sa
ge

s

DELAY

Figure 7 - Delay in milliseconds from messages received
at the actuator from the main game controller device

JITTER

0

2

4

6

8

10

12

14

16

18

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Messages

M
ill

is
ec

on
ds

JITTER

Figure 8 - Jitter in milliseconds from messages received at
the actuator from the main controller game device

10.2 Common APIs

We have also tested the persistence sub-package on its
own in order to estimate network bandwidth usage. For
this, we designed a program to compare the savings made
in relation to java Serialization and Externalization
mechanisms and to allow us to calculate the size of a
message for a common case. This common case was
chosen to be the transmission of a position update
(position sensor, for example). Then we ran a program to
evaluate the size of the message that is produced applying
each of the three methods, and printed the results. The
obtained results were 92 bytes for Serialization, 83 bytes
for externalization and only 22 bytes for SENSACT
persistence.

10.3 Large Scale Network Level APIs

The Sixrm protocol API was subject to various
functional and stress tests, with various profile settings. It
was demonstrated that, depending on the profile settings,
one can have many instances of Sixrm running on the
same computer (over 10 instances, if the settings are
right). It was also demonstrated that, depending on the
settings, many more instances could be run on different
computers. This is because they will not consume all CPU
time, like we did on these stress tests, but only a fraction
of CPU time, as the sources will try to adapt to the
slowest computer and weakest link (because of nak
throughput adaptation, and error throughput adaptation,
within the limits set forth in the profile). We made tests
on two computers connected by a 100 Mbps full duplex
switch configured in an IPv6 network, and tests in a
single computer configured to run multiple virtual nodes
in an IPv6 network. The test results presented here are
extracts from the tests with one computer, because they
show the delay and jitter introduced solely by the Sixrm

protocol machine. We present here graphics for delay and
jitter for one of the nodes (received at the first node) of a
Sixrm network which achieved twelve nodes in the same
computer without errors. When the thirteen’s node was
added, there were briefly some errors that were handed to
the test application by the Sixrm protocol, in a period
when the computer’s processor was at a peak load of
100% and availability was reaching at its physical limits,
which we believed were the causes of the inability of the
node to handle processing data. More details on these
tests can be found on [26].

Figure 9 represents delay for the second node on the
system as received on the first node. Figure 10 represents
jitter for the same situation.

Delay

0

500

1000

1500

2000

2500

3000

0
21
0
42
0
60
0
81
0
99
0
12
00
14
10
16
20
18
30
20
40
22
50
24
60
26
70
28
80
30
90
33
00
35
10
37
20
39
30
41
40
43
50
45
60
47
70
49
80
51
90
54
00
56
10
58
20
60
30
62
40
64
50
66
60
68
70
70
80
72
90

Message sequence number (samples)

M
ill

is
ec

on
ds

Delay

Figure 9 - Delay from second node on first node

We do not show here results for more nodes because

the results are in all cases similar to these.
From these results we can conclude that the delay is

normally close to 150 milliseconds and that the jitter
normally varies between 0 and approximately 17
milliseconds. This happens consistently except some
cases, which occur exactly on the moments where we
were adding nodes to the sixrm network and the network
was adjusting itself. We can see that in these moments the
delay and jitter briefly increase and then stabilise in
acceptable values again. In fact, they stabilize around the
steady-state values, in spite of the increase in the number
of nodes. The results clearly show that the steady-state
values of delay and jitter are adequate for most interactive
delay sensitive applications. The results also show that the
complexity and overhead of the proposed Sixrm protocol
are low, making it adequate for the support of the
intended applications.

Jitter

-500

-400

-300

-200

-100

0

100

200

0
21
0
42
0
60
0
81
0
99
0
12
00
14
10
16
20
18
30
20
40
22
50
24
60
26
70
28
80
30
90
33
00
35
10
37
20
39
30
41
40
43
50
45
60
47
70
49
80
51
90
54
00
56
10
58
20
60
30
62
40
64
50
66
60
68
70
70
80
72
90

Message sequence number (samples)

M
ill

is
ec

on
ds

Jitter

Figure 10 - Jitter from second node on first node

11. Conclusions

In this paper we have presented architectural and
implementation aspects of a network middleware for the
support of wireless and pervasive large-scale augmented
reality systems. The middleware was implemented and
extensively tested. Results obtained for the large scale
part of the system (reliable multicast protocol), for the
personal area network part of the system and for the
common part of the APIs that handle persistence
(transmission of messages on the network and/or its
storage on disk – affecting bandwidth), lead us to
conclude that both delay and jitter are adequate for this
kind of applications. In particular, jitter has a very good
behavior, which, as the main factor to consider, leads us
to conclude that the solution is indeed adequate for
pervasive large scale augmented reality games in a
wireless 3GPP environment.

Further work will address complementary aspects such
as enhanced mobility support, security and system/service
manageability, as they constitute challenging research
topics and are fundamental to achieve “release ready”
state.

12. References

[1] M. Weiser, “The Computer for the Twenty - First Century”,

Scientific American, pages 94–104, Sept. 1991.

[2] Kimmo Raatikainen, Henrik Bærbak Christensen, Tatsuo

Nakajima, “Application Requirements for Middleware for
Mobile and Pervasive Systems”, Mobile Computing and
Communications Review, Volume 6, Number 4, October
2002, pp. 16 – 24 , ACM Press

[3] Keith Mitchell, Duncan McCaffery, George Metaxas, Joe

Finney, Stefan Schmid and Andrew Scott, “Six in the City:
Introducing Real Tournament – A Mobile IPv6 Based
Context-Aware Multiplayer Game”, Proceedings of
NetGames'03, May 22-23, 2003, Redwood City, California,
USA, pp. 91-100, ACM Press

[4] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro

Katayama, “Mixed Reality:Future Dreams Seen at the Border
between Real and Virtual Worlds”, Virtual Reality,
November/December 2001, pp. 64 –70, IEEE

[5] Nokia – Developer resources (Forum Nokia),

http://www.forum.nokia.com/, Accessed April 2004

[6] Sony Ericsson Developer World,

http://developer.sonyericsson.com/, Accessed April 2004

[7] João Orvalho, Pedro Ferreira and Fernando Boavida, “State

Transmission Mechanisms for a Collaborative Virtual
Environment Middleware Platform”, Springer-Verlag, Berlin
Heidelberg New York, 2001, pp. 138-153, ISBN 3-540-
42530-6 (Proceedings of the 8th International Workshop on
Interactive Distributed Multimedia Systems – IDMS 2001,
Lancaster, UK, September 2001)

[8] Pedro Ferreira, “State transmission in distributed,

collaborative, virtual reality environments”, M.Sc. thesis,
Universidade de Coimbra - FCTUC – Department of
Informatics Engineering, October-2002

[9] João Orvalho, Fernando Boavida, “Augmented Reliable

Multicast CORBA Event Service (ARMS): a QoS-Adaptive
Middleware”, in Lecture Notes in Computer Science, Vol.
1905: Hans Scholten, Marten J. van Sinderen (editors),
Interactive Distributed Multimedia Systems and
Telecommunication Services, Springer-Verlag, Berlin
Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS 2000
– 7th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services, CTIT
/ University of Twente, Enschede, The Netherlands, October
17-20, 2000).

[10] João Gilberto de Matos Orvalho, “ARMS – Uma

plataforma para aplicações multimédia distribuídas, com
qualidade de serviço”, Phd Thesis, December 2000, DEI-
FCTUC

[11] M. Pullen, M. Myjack, C. Bouwens, “Limitations of

Internet Protocol Suite for Distributed Simulation in the
Large Multicast Environment”, RFC 2502, IETF, February
1999

[12] Reliable Multicast Transport (IETF Working group),

http://www.ietf.org/html.charters/rmt-charter.html, Acessed
April 2006

[13] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S.

Lin, D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A.
Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, L.
Vicisano, “PGM Reliable Transport Protocol Specification”,
RFC 3208, IETF, December 2001

[14] Eila Niemelä, Teemu Vaskivuo, Agile Middleware of

Pervasive Computing Environments, Proceedings of the
Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops (PERCOMW’04), 2004,
IEEE

[15] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko,
“Diameter Base Protocol”, RFC 3588, September 2003

[16] 3GPP TS 29.229 v7.0.0 , “3rd Generation Partnership
Project; Technical Specification Group Core Networks and
Terminals; Cx and Dx interfaces based on Diameter protocol;
Protocol details (Release 7)”, January 2006

[17] 3GPP TS 29.329 V7.0.0, “3RD generation Partnership
Project; Technical Specification Group Core Network and
Terminals; Sh interface based on the Diameter protocol;
Protocol details (Release 7)”, December 2005

[18] L.Ong., J. Yoakum, “An Introduction to the Stream Control

Transmission Protocol (SCTP)”, RFC 3286, May 2002

[19] Stewart, R., Xie, Q., Morneault, K. Sharp, C., Shwarzbauer,

H., Taylor, T., Rytina, I., Kalla, M., Zhang, L. and V.
Paxson, “Stream Control Transmission Protocol”, RFC 2960,
October 2008

[20] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",

RFC 2246, January 1999.

[21] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, E. Schooler, “SIP: Session
Initiation Protocol”, RFC 3261, June 2002

[22] M. Handley, V. Jacobson, “SDP: Session Description

Protocol”, RFC 2327, April 1998

[23] SDP API, http://jcp.org/en/jsr/detail?id=141

[24] JAIN SIP, https://jain-sip.dev.java.net/

[25] Location API for J2ME, http://jcp.org/en/jsr/detail?id=82

[26] Pedro Ferreira, João Orvalho and Fernando Boavida

,”Sixrm: Full Mesh Reliable Source Ordered Multicast”, in
Proc. of the SoftCom2006 - 14th International Conference on
Software, Tellecommunications & Computer Networks,
SoftCom2006 - 14th International Conference on Software,
Tellecommunications & Computer Networks, Split, Croatia,
September 2006

[27] CLDC – Common Limited Device Configuration 1.1,

http://jcp.org/en/jsr/detail?id=139

[28] MIDP – Mobile Information Device Profile 2.0,

http://jcp.org/en/jsr/detail?id=118

[29] Java APIs for Bluetooth, http://jcp.org/en/jsr/detail?id=82

[30] SIP API for J2ME, http://jcp.org/en/jsr/detail?id=180

[31] Mobile 3D Graphics API for J2ME,

http://jcp.org/en/jsr/detail?id=184

[32] Mobile Media API, http://jcp.org/en/jsr/detail?id=135

[33] Pedro Ferreira, João Orvalho and Fernando Boavida,

“Middleware for embedded sensors and actuators in mobile
pervasive augmented reality”, in Proc. of the INFOCOM

2006 (IEEE XPLORE), INFOCOM 2006 Student Workshop,
Barcelona, April 2006

[34] 3GPP TS 23.002, “3rd Generation Partnership Project;

Technical Specification Group Services and Systems
Aspects; Network architecture (Release 7)”

[35] 3GPP TS22.228, “3rd Generation Partenrship Project;

Technical Specification Group Services and System Aspects;
Service requirements for Internet Protocol (IP) multimedia
core network subsystem; Stage 1 (Release 8)”

[36] 3GPP TS 23.228, “3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
IP Multimedia Subsystem (IMS); Stage 2 (Release 7)”

