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Abstract—With the massive data challenges nowadays and
the rapid growing of technology, stream mining has recently
received considerable attention. To address the large number
of scenarios in which this phenomenon manifests itself suitable
tools are required in various research fields. Instance-based data
stream algorithms generally employ the Euclidean distance for
the classification task underlying this problem. A novel way
to look into this issue is to take advantage of a more flexible
metric due to the increased requirements imposed by the data
stream scenario. In this paper we present a new algorithm that
learns a Mahalanobis metric using similarity and dissimilarity
constraints in an online manner. This approach hybridizes a
Mahalanobis distance metric learning algorithm and a k-NN
data stream classification algorithm with concept drift detection.
First, some basic aspects of Mahalanobis distance metric learning
are described taking into account key properties as well as
online distance metric learning algorithms. Second, we implement
specific evaluation methodologies and comparative metrics such
as Q statistic for data stream classification algorithms. Finally,
our algorithm is evaluated on different datasets by comparing
its results with one of the best instance-based data stream
classification algorithm of the state of the art. The results
demonstrate that our proposal is better in some scenarios and
has shown to be competitive in others.

I. INTRODUCTION

In recent years there has been a great development in
the information technology and communications, which has
changed the data collection and processing methods [1], [2].
This phenomenon, coupled with the fact that the traditional
batch learning has limitations to deal with issues of data
stream environments, leads to other data processing techniques.
One approach is the instance-based data stream classification
algorithms. Under this scheme, each new instance is compared
with existing ones using a distance function, and the closest
existing instances are used to assign the class to the new one.
However the performance of these methods depends on the
quality of the distance function. It is necessary that the function
is able to identify the instances that are semantically similar.
Likewise, it should also identify as dissimilar those that are
semantically different [3]. The general-purpose function does
not take into account any statistical regularities that might
be estimated from a large training set of labeled examples.
However, the best results are obtained when the metric is
designed specifically for the task at hand, issue that has
received much interest from researchers in the last decade
[3], [4]. Distance metric learning consists in adapting some

pairwise real-valued metric function such as Mahalanobis to
the problem of interest using side information as supervision,
brought by training examples. Most of methods learn the
metric in a supervised manner from similarity, dissimilarity
and/or relative distance constraints, being formulated as an
optimization problem [3]. Metric learning algorithms have
key properties. Each algorithm has properties that define their
applicability and suitability for the application at hand. These
properties are: Learning paradigm, form of metric, scalability,
optimality of the solution and dimensionality reduction. Some
studies [5], [6], [7] have shown that good design metric learn-
ing can significantly improve the k-NN classification accuracy
in batch learning. This, with the scalability property of the
online distance metric learning, has motivated us to implement
a new instance-based data stream classification algorithm,
learning a Mahalanobis distance metric. One solution could
be to learn the metric in an online way. This approach leads
to complex convex optimization problems so it is unable to
address well the computational resources restrictions of data
stream environments. For that reason we choose KISS Metric
Learning algorithm [8], a simple statistical proposal of dis-
tance metric learning. We implement a KISSME-based variant
(Keep It Simple and Straightforward MEtric) in an online
setting for hybridizing it with a k-NN algorithm, being our
Online-KISSME-Stream the main contribution of this paper.
Then, to evaluate its performance we use streaming evaluation
methodologies and implement some well comparison metrics
for online learning, taking into account aspects such as concept
drift detection. The rest of the paper is organized as follows. In
Section II we briefly review the background and related work
on Mahalanobis metric learning. In Section III we describe
and present the above Online-KISSME-Stream. In Section IV
we report and discuss the results of our experiments on three
synthetic and one standard real data sets. Finally in Section V
the conclusions and outline of future work are discussed.

II. RELATED WORK

The essence of metric learning is that given a distance
function d(xi, xj) between the data points xi, xj lying in
some feature space X ⊆ IRd, for example, the Euclidean one,
together with side information as supervision, it should learn
a mapping function such that the original distance function
applied to the mapped data is better. The methods under
this approach are dubbed global since they learn a mapping
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function which is applied to the whole data. Depending on the
transformation, this approach is divided into two subclasses:
linear and non-linear. For the linear case, the aim is to learn a
linear mapping transformation from side information, which
may encode the matrix G, so that the distance learned is
||Gxi − Gxj ||2. This approach is called Mahalanobis metric
learning. The Mahalanobis distance originally refers to a
distance measure that incorporates the correlation among the
features. However, in the literature this term is used to refer
to Mahalanobis generalized quadratic distances defined as:
dM (xi, xj) =

√
(xi − xj)TM(xi − xj) and parameterized

by the matrix M that belongs to the cone of symmetric
positive semi-definite (PSD) d× d real-valued matrices; as M
is positive semi-definite it can be factorized as GTG. Then,
Mahalanobis distance corresponds to a generalized Euclidean
distance using the inverse of the variance-covariance matrix
[4], [9]. A general regularized model that captures most of
the metric learning existing techniques is proposed in [4]. To
encode supervision the author assumes a collection of m loss
functions, which denotes as c1, ..., cm. The other part of the
model is a regularizer r(M) which is a function of M . Joining
the supervision encoded as loss functions and the regularizer
the following model is obtained as a linear combination of
these two components:

γ(M) = r(M) + λ

m∑
i=1

ci(X
TMX) (1)

where λ is a trade-off between the regularizer and the loss,
and the goal is to find the minimum of γ(M) over the domain
of M , which is the space of PSD matrices. Then the metric
learning model is specified as a constrained optimization
problem. Quite a few online metric learning algorithms have
been proposed, under an approach that learns a Mahalanobis
matrix [10], [11], [12], [13]. In the sequel we describe some
of the most well-known.

A. Online Mahalanobis Metric Learning Algorithms

POLA (Pseudo-metric Online Learning Algorithm) [10],
was the first algorithm focused on online Mahalanobis metric
learning that learns a matrix M and a threshold b ≥ 1. POLA
in each step t receives a triplet: (xi, xj , yij), where yij = 1 (if
(xi, xj) ∈ S and yij = −1) if (xi, xj) ∈ D. The loss function
used by POLA is ci(XTMX) = [1 + yi(dM (xi, xj) − γ)]+
and it uses a squared Frobenius norm for regularization.
POLA performs two successive orthogonal projections [4],
[3]. Another algorithm based on POLA is LEGO (Lego Exact
Gradient Online) [11] but it is based on LogDet divergence
regularization, which gives it a better performance than POLA.
Another algorithm based on POLA is RDML which is more
flexible because at each step t it performs a gradient descent
step assuming Frobenius regularization:

M t = ΠCd
+

(M t−1 − λyij(xi − xj)(xi − xj)T ) (2)

where ΠCd
+

(M t−1−λyij(xi−xj)(xi−xj)T ) is the projection
to the PSD cone. The λ parameter implements a trade-off
between satisfying the pairwise constraints and keeping close
to the matrix of the previous step M t−1. Unlike POLA, the
authors perform the update solving a convex quadratic program
[3]. In MDML (Mirror Descent Metric Learning) [12] the
authors proposed a general framework for online Mahalanobis

distance learning. It is based on composite mirror descent
and is focused on regularization with the nuclear norm [3].
These algorithms for the best of our knowledge have not
been hybridized with a data stream classification algorithm
such as k-NN, hence the novelty of our proposal lies in
the hybridization and evaluation on data stream environments
assuming all the restrictions imposed by this context. In the
majority of these works the authors focus on finding the best
combination of regularizers and loss function according the
model described by the eq. 1. The proposals vary depending
on their regularizer and loss function. All these ones receive
the supervision information step by step taking into account
the dimension time.

III. PROPOSED APPROACH

In our proposal, we implemented KISS Metric Learning
algorithm [8] while in an online setting and hybridized it
with a k-NN data stream classification algorithm to compute
the distance in each query. We compare its performance with
IBLStream [14], which is one of the best instance-based data
stream classification algorithms.

A. KISSME Algorithm

The KISSME algorithm [8] is a simple proposal from a
statistical inference point of view, making some assumptions
about the distributions to obtain a Mahalanobis matrix from
similar and dissimilar constraints. The authors consider two
independent generation processes for observed commonalities
of similar and dissimilar pairs.

They define the dissimilarity by the plausibility of belong-
ing either to one or the other. Then, from a statistical inference
point of view the optimal statistical decision whether a pair
(i, j) is dissimilar or not is obtained by a likelihood ratio test.
Thus, the authors test the hypothesis H0 that a pair is dissimilar
and on the other hand the alternative H1: [8]

δ(xi, xj) = log

(
p(xi, xj |H0)

p(xi, xj |H1)

)
(3)

Then, H0 is validated with a high value of δ(xi, xj). In
contrast, a low value means that H0 is rejected and the pair
is considered as similar. The authors cast the problem in the
space of pairwise differences (xij = xi − xj) with zero mean
and re-write eq. 3 to: [8]

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
(4)

Where f(xij |θ1) is a probability density function with
parameters θ1 for hypothesis H1 that a pair (i, j) is similar
(yij = 1) and vice-versa H0 for a pair being dissimilar.
The authors assume a Gaussian structure of the difference
space and relax the problem, obtaining a Mahalanobis distance
metric that reflects the properties of the log-likelihood ratio test
by re-writing eq. 4 to: [8]



δ (xij) = log

 1√
2π|Σyij=0|

exp
(
−1/2x

T
ijΣ
−1
yij=0xij

)
1√

2π|Σyij=1|
exp

(
−1/2x

T
ijΣ
−1
yij=1xij

)
 (5)

where ∑
yij=0

=
∑
yij=0

(xi − xj)(xi − xj)T (6)

∑
yij=1

=
∑
yij=1

(xi − xj)(xi − xj)T (7)

are the similar and dissimilar constraints computed by the outer
vector product. Then, by re-projection of its differences:

M̂ =

(∑−1

yij=1
−
∑1

yij=0

)
(8)

onto the cone of positive semidefinite matrices. Hence, to
obtain the Mahalanobis matrix M they clip the spectrum of
M̂ by eigenanalysis.

B. Online-KISSME-Stream

For our online variant1, we initialize the k-NN classification
algorithm with an Euclidean distance function to compute
the distances among the instances setting a diagonal d × d
Mahalanobis matrix, where d is the number of attributes.
Then we define the maximun number of instances that can
be stored in the base. While the instances base does not store
the maximun number each new arriving instance is added to it
(algorithm 1, line: 3). The class of this instance is compared
with the classes of instances stored previously in the base
(algorithm 1, line: 5, 8). If the classes are the same then it
is a similarity constraint needed to update the similar matrix
calculated by the outer vector product (eq. 6) (algorithm 1,
lines: 5-7). But if the classes are not the same then it is a
dissimilarity constraint and we update the dissimilarity matrix
(eq. 7) (algorithm 1, lines: 8-10). When the base stores this
number of instances we compute the Mahalanobis matrix by
means of the difference between the inverse similarity and
dissimilarity matrices (eq. 8) (algorithm 1, lines: 14-15) and
we set that the algorithm has learned (algorithm 1, line: 16).
In the next step, we substitute the previous matrix by setting
the Mahalanobis matrix computed before. After this stage,
each arriving instance is classified by the k-NN algorithm
with the Mahalanobis matrix learned (algorithm 1, lines: 19-
41). The concept drift detection is performed by means of
Drift Detection Method [15]. Different concept drift levels are
evaluated (algorithm 1, lines: 24-30). When a warning level
is detected the Mahalanobis matrix is updated again (eq. 8)
(algorithm 1, lines: 25-27). But when the level of concept drift
is out control then all the parameters are reset to its defaults
values except the Mahalanobis matrix (algorithm 1, lines: 28-
30). It means to delete all the instances in the base and also
set the algorithm in learning mode again. However the matrix
used is the Mahalanobis one previously learned. Finally, we
edit the instances base deleting the instances that have the same
label as the arriving instance. The arriving instance is always
added. The pseudo-code of the proposed method is listed in
the algorithm 1.

1Available in: http://eden.dei.uc.pt/∼jlrivero/Online-KISSME-Stream.tar.gz

Algorithm 1 Online-KISSME-Stream
Require: Instance, maxbaseSize

1: if learned = false then
2: if instanceBase ≺ maxbaseSize then
3: instanceBase.add(Instance)
4: for instance in instanceBase do
5: if instance.class=Instance.class then
6: update similarMatrix
7: similarSize=similarSize+1
8: else
9: update dissimilarMatrix

10: dissimilarSize=dissimilarSize+1
11: end if
12: end for
13: end if
14: if instanceBase=maxbaseSize then
15: update mahalanobisMatrix
16: learned = true
17: end if
18: else
19: neighbours=search.KNN(Instance)
20: makeDistribution (neighbours,distances) true-

Class=Instance.class
21: if makeDistribution.maxIndex=trueClass then
22: prediction=true
23: end if
24: update Concept Drift level
25: if ddmLevel=ddmWarningLevel then
26: update mahalanobisMatrix
27: end if
28: if ddmLevel=ddmOutcontrolLevel then
29: resetLearning
30: end if
31: if prediction=true then
32: for neighbourInstance in neighbour do
33: if Instance.class=neighbourInstance.class then
34: deleteInstance()
35: end if
36: end for
37: end if
38: insertInstance(Instance)
39: while learner.size ≺ maxbaseSize do
40: delete the oldest instance from the instanceBase by

deleteInstance()
41: end while
42: end if

In the next section we present the experimental results ob-
tained from comparing our proposed approach with IBLStream
[14]. Our study takes into account the indicators of tempo-
ral relevance, spatial relevance and consistency. Subsequent
tasks of editing the database instances to remove or add
new instances lead to optimize the composition and size of
the case autonomously base. Unlike our proposal, IBLStream
instead of learning a distance metric, uses Value Difference
Metric (VDM) as distance measure to determine the set of
k-NN instances to classify. IBLStream is implemented in
MOA (Massive Online Analysis) [16] which is an extensible
framework, that apart from allowing to implement algorithms
also permits running experiments for online learning.



TABLE I: Experimental data sets characterization.

Dataset Numeric Attributes Nominal Attributes Concept drift Noise Number
Random Tree Generator 5 5 No No 2
Waveform 21 0 No Yes 3
SEA 3 0 No Yes 2
Rotating Hyperplane 10 0 Yes Yes 2
Random RBF 10 0 Yes Yes 2
KDD Cup 99 11 2 Yes Yes 2

IV. EXPERIMENTAL EVALUATIONS

In the case of streaming classification algorithms, there
have been some proposals [17], [18], [19], [20] on evaluation
methodologies. In particular, there have been some works on
what metrics are appropriate to evaluate the performance of
the classifiers. There are basically two data stream evaluation
methodologies known as: (i) holdout (ii) prequential. Both of
them with forgetting mechanisms. Regarding the latter, sliding
windows and fading factors are popular whenever fast and
efficient change detection are required. In [18], [17] it is argued
that prequential error with forgetting mechanisms should be
used to provide reliable error estimators. Therein it is proved
that, the use of prequential error with forgetting mechanisms
reveals to be advantageous in assessing performance and
comparing stream learning algorithms. In the design of our
experiments we use the prequential evaluation methodology
with fading factors as forgetting mechanism and we compute
some metrics such as: predictive error rates using a prequential
error estimator and the accuracy. We also implemented and
computed the McNemar’s Test to compare paired proportions
of both algorithms classification results, and the statistic Q
proposed in [17] to comparative assessment between any
two algorithms. The latter statistic allows to compare the
performance of two algorithms from the sequences of the
prequential accumulated loss for each algorithm: SAi and SBi ,

Qi(A,B) = log(
SAi
SBi

) (9)

and by using fading factors the Qi statistic takes the form:

Qαi (A,B) = log(
Li(A) + α× SAi−1

Li(B) + α× SBi−1

) (10)

where Li(A) and Li(B) are the computed loss for the current
instance and α× SAi−1, α× SBi−1 are the corresponding fading
accumulated losses. The signal of Qi is informative about the
relative performance of both models, while its value shows the
strength of the differences.

In order to assess our approach and the validity of the
statements we made, we conducted a set of experiments
on three synthetic and one real data sets. For each of the
experiments performed on the synthetic data sets we computed
and plotted the comparative metrics: prequential accuracy, and
Q statistic. Additionally, in the case of the experiment on the
real world problem data set, we compared paired proportions
of both algorithms classification results with the McNemar’s
Test and we also computed and plotted the predictive accuracy
and the percent error rate. The first five data sets shown in
Table I are synthetic and available in MOA. This framework
facilitates the reproducibility of the experiments. In those
cases the experiments were performed over a total of 100, 000
instances for each data set. The Fading Factor Classification

Performance Evaluator was used with a fading factor (α) value
of 0.999 for data streams without concept drift, while in the
concept drifting data streams the fading factor was 0.95. Both
algorithms were evaluated with setups corresponding to its
default values [14]. The results regarding the metrics above
indicated show that the performance of Online-KISSME-
Stream in the data sets in which concept drift does not
occur are better than those yielded by the IBLStream. This
is evidenced by the comparative prequential accuracy where
Online-KISSME-Stream shows better results than IBLStream,
even from the early stages. Likewise, the same holds for the
comparative predictive prequential error. In this case, the sign
of Q is mainly negative, illustrating the overall advantage of
our proposal over IBLStream. In the concept drifting data
streams although the performance of Online-KISSME-Stream
is not as good compared to IBLStream still the results yielded
by our approach can be considered as competitive. The results
of the evaluations are depicted graphically from Figure 1 to
Figure 4. We also evaluated the algorithms on KDD Cup 99. It
is a well-known real world problem data set regarding network
intrusion detection. In [21] different preprocessing techniques
that have been applied to this problem, prior to evaluate
machine learning algorithms, have been reviewed. This data
set is commonly used in the research community because it
is available, labeled and preprocessed. The original data set
contains about 5 million instances, each of which represents
a TCP/IP connection made up of 41 numeric and nominal
attributes. In many investigations a small portion representing
10% of the original data set is used, containing 494, 021
instances. In our experiments we used 111, 000 instances of
the 10% KDD Cup 99 data set.

A. Evaluation Results on Synthetic Datasets

On the Random Tree Generator with 100, 000 instances
the prequential accuracy (see Figure 1) of Online-KISSME-
Stream is higher than the IBLStream one. This leads to have
a minor prequential error than IBLStream. The Q statistic (see
Figure 1) shows a higher area under the curve for the values
less than zero meaning that Online-KISSME-Stream had less
losses on this data set. In the Waveform data set’s instances
evaluated by Online-KISSME-Stream algorithm we observe
that the prequential accuracy (see Figure 2) is higher than
IBLStream one, specifically for the earlier instances. Likewise,
the prequential error is less than the IBLStream one; and
the area under the curve for values less than zero in the
Q statistic (see Figure 2) is greater, meaning less losses in
this data set too. On the Rotating Hyperplane data set the
prequential accuracy results (see Figure 3), the prequential
error and the Q statistic (see Figure 3) show very competitive
results of classification, with a slight advantage for IBLStream
classification algorithm.



Fig. 1: Accuracy and Q statistic (Online-KISSME-Stream/IBLStream) for Random Tree Generator.

Fig. 2: Prequential accuracy and Q statistic (Online-KISSME-Stream/IBLStream) for Waveform.

B. Evaluation Results on KDD Cup 99 Dataset

Two experiments were performed on 111, 000 KDD Cup
99 instances. In the first, the prequential accuracy of Online-
KISS-Stream was better than the IBLStream (Figure 4). In
the second, we applied the McNemar’s Test. This test is non-
parametric on nominal data, which has been widely used for
the comparison of batch learning classification algorithms. In
[17] the applicability of this test to classification problems
in data stream environments is emphasized. This test has
acceptable type I error. To implement both quantities ni,j : n0,1

denotes the number of examples misclassified by Online-
KISSME-Stream and that were not by IBLStream; whereas
ni,j : n1,0 denotes the number of examples misclassified
by IBLStream and that were not by Online-KISSME-Stream.
Then, two hypotheses were defined: H0 no differences between
classifiers and H1 there are differences between classifiers. The
null hypothesis H0 is rejected if with one degree of freedom
and confidence level of 0.99, the statistic is greater than
6.635. Along with ca. the first 8000 instances H0 is accepted
showing no differences in classification since the value of
the McNemar statistic is less than 6.635. This value becomes
greater afterwards and H0 is rejected indicating differences
between both classifiers (see Figure 4). This test along with
the prequential accuracy reinforces that our proposal is better
in this real world problem.

V. CONCLUSIONS

The distance metric learning has attracted great interest
from the research community in recent years. Most approaches
define an optimization model combining the constraints of
similarity with dissimilarity as loss functions with regularizers.

There are five properties that cast these algorithms for certain
environments. An important characteristic that led us to think
about the development of this work is the scalability which
is essential to ensure incremental learning in streaming sce-
narios. In this paper we proposed Online-KISS-Stream, a new
instance-based data stream classification algorithm that learns
a Mahalanobis metric based on KISSME algorithm. The online
optimization proposed by KISSME computes the similarity
and dissimilarity matrices from outer vector product and then
computes the eigen decomposition of the difference of the
inverse of both matrices, allowing to obtain the Mahalanobis
matrix in an online way. Furthermore, by combining with
the concept drift detection it updates the Mahalanobis matrix
whenever required. To evaluate the performance of Online-
KISS-Stream several experiments were performed on synthetic
and real world data sets. We compared successfully the results
yielded by our approach with IBLStream. We implemented
the established metrics for data stream classification algo-
rithms such as prequential error, prequential accuracy, and Q
with fading factors as forgetting mechanism. For statistical
significance we used the McNemar’s Test in the KDD Cup
99 data set showing differences between our algorithm and
IBLStream. Future work will address distance metric learning
with different regularizers.
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Fig. 3: Prequential accuracy and Q statistic (Online-KISSME-Stream/IBLStream) for Rotating Hyperplane.

Fig. 4: Prequential accuracy and Q statistic (Online-KISSME-Stream/IBLStream) for KDD Cup 99.
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