
Masters’ Degree in Informatics Engineering
Dissertation

Final Report

Development of Support Vector
Machines (SVMs) in Graphics
Processing Units for Pattern
Recognition

João Carlos Ferreira Gonçalves

jcgonc@student.dei.uc.pt

Advisors:

Bernardete Ribeiro

Noel Lopes

Date: August 31, 2012

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMÁTICA
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Acknowledgements

I would like to thank my supervisor, Bernardete Ribeiro, for the invaluable advice

and support she has given me. I would also like to thank Noel Lopes for his con-

tinuous help in this project’s development. Without their suggestions, comments

and guidance this work could not have been possible.

I would like to thank my parents who have been highly supportive through-

out the time it has taken me to write this report, specially my mother for her

encouragement and giving me fortitude when times were difficult.

Finally, I can not forget my little sister’s support. Without her graphics card,

the project’s development would have been slowed down. Thank you, Inês.

Sincerely grateful,

João Carlos Ferreira Gonçalves

Abstract

Machine learning aims to develop algorithms which extract relevant (and mean-

ingful) information from existing data. Or even more exciting would be extraction

of the fundamental laws that not only govern all learning processes but as the

universe itself. Naturally, this appears to be a complicated task as the more ad-

vanced the algorithms are, the heavier requirements are needed from currently

available hardware.

Thus, current single-threaded algorithms are often unable to scale with the de-

manding processing power needed. Among the supervised learning algorithms,

Support Vector Machines (SVMs) are the most widely used algorithm due to their

generalization properties and regularization capability. SVMs are binary large

margin classifiers which have found successful applications in many scientific

fields such as engineering, bio-informatics [54], information management [1],

finance, business [52] among many others.

The SVM aims to find the optimal decision hyperplane which is equivalent to

reach both the smallest generalization and empirical errors. By making use of the

Kernel trick, the SVM shows powerful classification and regression performance

in complex non-linear problems. Thus, functions which obey Mercer’s theorem

transform the input vectors into a highly-dimensional space and by learning a

linear model in this feature space.

An important and crucial point in the SVM formulation is that it can provide

a good generalization independent of the training set’s distribution by using

the principle of structural risk minimization [49, 11]. However, they usually

require significant memory and computational burden for calculating the large

Gram matrix [10]. To circumvent this limitation fast learning methods have been

proposed [12, 21]. Nevertheless most implementations still do no take advantage

of either the multi-core architecture of today Central Processing Units (CPUs) nor

the more powerful Graphics Processing Units (GPUs).

In this work we focus on a GPU SVM classifier, developed from a previ-

ous studied Multi-Threaded parallel CPU standalone SVM version (MT-SVM)

which builds up from the scratch an implementation of the Sequential Minimal

Optimization (SMO) algorithm. Although previous approaches have been de-

veloped [8], our implementation includes a new kernel function, the Universal

Kernel Function (UKF) [53] which leads to a broad spectrum of the generalization

capabilities of the learning machine. Experiments performed on UCI datasets

benchmarks [3] yield performance competitive results as compared to state-of-

the-art LIBSVM tools while delivering better speedups on large datasets.

Finally, we used our GPU implementation to study a real case problem which

consists of offline signature recognition. This is a difficult problem arising in

many practical applications. The results achieved for the task of detecting forged

signatures are promising although more research is needed because original and

faked signatures can be extremely similar. We obtained excellent results on the

identification of an individual’s signature despite the fact that a generic classifier

configuration is complicated to achieve. Future objectives will aim to improve the

multi-class learning architecture used in the process of signature identification.

Resumo

A aprendizagem máquina é uma área da ciência que onde se estuda o desenvolvi-

mento de algoritmos cujo alvo é a extracção de informação relevante a partir de

dados já existentes. Talvez ainda mais estimulante seja não só a extracção das leis

fundamentais que governam os processos de aprendizagem como as que regem

o próprio universo. Claro que tal aparenta ser uma tarefa complicada já que

quanto mais avançados os algoritmos são, maiores são os requisitos impostos no

hardware actual.

Consequentemente, os actuais algoritmos sequenciais são incapazes de escalar

com os maiores requisitos a nı́vel de poder de computação. Entre os vários algo-

ritmos de aprendizagem supervisionados encontram-se as SVM, que são talvez

o algoritmo mais usado devido às suas capacidades de generalização. As SVM

são classificadores de grande margem que são utilizadas em muitas aplicações

cientı́ficas como engenharia, bio-informática [54], sistemas de informação [1],

finanças [52], entre outras áreas.

O objectivo das SVMs é encontrar o hiperplano óptimo de separação, sendo

esta procura equivalente a minimizar em simultâneo o erro empı́rico e de generali-

zação. Recorrendo ao truque do kernel, a SVM apresenta uma forte performance

de classificação e regressão em problemas complicados e não lineares. Para tal são

usadas funções que obedecem às condições de Mercer e que permitem transformar

os atributos de entrada num espaço de dimensão superior, aplicando neste espaço

transformado o hiperplano de decisão.

Um ponto importante e crucial na formulação das SVM é que estas permitem

uma boa generalização, independentemente da distribuição do conjunto de da-

dos, já que recorrem ao principio da minimização do risco estrutural [49, 11].

Contudo, as SVM incorrem em geral num grande consumo de memória e de

cálculo computacional, devido ao cálculo da matriz de Gram [10]. De modo a

evitar estas limitações foram propostos métodos eficazes de aprendizagem [12,

21]. Um outro factor a ter em conta é que grande parte das implementações

não fazem uso quer dos processadores multi-core quer das GPUs disponı́veis na

actualidade.

O objectivo desta dissertação é o desenvolvimento de uma SVM recorrendo

ao poder das GPUs, a partir de uma implementação multi-threaded para CPUs

estudada previamente. Ambas as implementações foram construı́das com base

no algoritmo SMO.

Embora existam implementações prévias semelhantes [8], a que apresentamos

neste trabalho inclui o novo kernel UKF [53], que possibilita à SVM um maior

poder de generalização. Resultados efectuados em datasets do UCI apresentam

uma performance semelhante à conhecida LIBSVM, com tempos mais rápidos

quer de treino quer de classificação para grandes datasets, não esquecendo o

facto que a LIBSVM é actualmente o estado da arte da investigação nas SVM.

Por fim, usámos a implementação para a GPU no estudo de um problema

que consiste no reconhecimento off-line de assinaturas. Trata-se de um problema

complicado com muitas aplicações práticas. Os resultados obtidos na detecção

de assinaturas falsas são promissores embora estudos futuros sejam necessários,

já que a distinção de assinaturas verdadeiras de forjadas é complicado, devido

à grande semelhança entre si. A nı́vel da identificação do autor de uma dada

assinatura obtivemos resultados excelentes demonstrando que tal tarefa é actual-

mente possı́vel e acessı́vel. No futuro esperamos melhorar o suporte para prob-

lemas multi-classe e melhorar a arquitectura usada no processo de identificação

de assinaturas.

Contents

Chapter 1: Introduction . 3

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Organization . 6

Chapter 2: GPU Computing . 7

2.1 Introduction . 7

2.2 The fixed-function GPU . 8

2.3 The programmable GPU . 10

2.4 General-Purpose computing on Graphics Processor Units (GPGPU) 12

2.5 Compute United Device Architecture (CUDA) 17

2.6 Conclusion . 21

Chapter 3: Support Vector Machines (SVMs) 23

3.1 Background in Machine learning . 23

3.2 The linear classifier . 25

3.3 The Support Vector Machine . 28

3.4 Soft margin SVM . 34

3.5 The kernel SVM . 37

3.6 The Sequential Minimal Optimization (SMO) algorithm 39

3.7 Multi-Threaded CPU implementation 42

3.8 GPU implementation . 43

3.9 Existing GPU SVM implementations 46

3.10 Conclusions . 47

Chapter 4: Experimental results . 49

4.1 Evaluation metrics . 49

4.2 Datasets . 54

4.3 Experimental setup . 57

4.4 Results . 58

4.5 Discussion . 66

4.6 Conclusions . 68

Chapter 5: Signature recognition using the GPU 71

5.1 Introduction . 71

5.2 Dataset . 71

5.3 Experimental setup . 77

5.4 Results . 80

5.5 Discussion . 90

5.6 Conclusion . 91

Chapter 6: Conclusions and future work . 93

Bibliography . 95

List of Tables

4.1 Confusion Matrix. 52

4.2 Datasets used in the validation of the GPU implementation. 54

4.3 Configuration used in the Radial Basis Function (RBF) kernel. . . . 57

4.4 Settings used in the Universal Kernel Function (UKF) experiments. 58

4.5 NVIDIA GeForce 570 GTX characteristics 58

4.6 Performance results for the Adult dataset. 59

4.7 Performance results for the Breast Cancer dataset. 59

4.8 Performance results for the German dataset. 59

4.9 Performance results for the Haberman dataset. 60

4.10 Performance results for the Heart dataset. 60

4.11 Performance results for the Ionosphere dataset. 60

4.12 Performance results for the Sonar dataset. 60

4.13 Performance results for the Tic-Tac-Toe dataset. 61

4.14 Performance results for the Spiral dataset. 61

4.15 Performance results for the Peptidases dataset. 61

4.16 Performance results for the MP3 Steganalysis dataset. 61

4.17 Improvements on the amount of Support Vectors, F-Score and SMO

iterations of the GPU version compared to LIBSVM. A negative

value indicates that our GPU obtained lower results which is also

graphically shown with a decreasing arrow. 62

4.18 Speedup and iterations taken by the classifiers for the Adult dataset. 62

4.19 Speedup and iterations taken by the classifiers for the MP3 Ste-

ganalysis dataset. 63

4.20 Speedup and iterations taken by the classifiers for the Spiral dataset. 63

4.21 UKF vs RBF kernel results for the eleven datasets using our Multi-

Threaded CPU SVM. 64

4.22 Number of training iterations and both classification and training

times when using the RBF and UKF kernels. The classifier used

was the Multi-Threaded CPU SVM. 65

4.23 Speedup achieved by the multi-threaded CPU SVM over the se-

quential CPU version (one thread) using the “adult” dataset. For

comparison, we include the LIBSVM times. 66

5.1 Number of attributes for each feature of the signature dataset. . . . 77

5.2 RBF kernel configuration used in the first experiment, the generic

identification of original and forged signatures. 79

5.3 The configuration of all kernel functions used in the first experi-

ment, when using the combination of features DCT + MDF. 79

5.4 Accuracy, Precision, Recall and False Positive Rate for the first

identification experiment, using the RBF kernel. 81

5.5 False Discovery Rate, F-Score and Specificity for the first identifi-

cation experiment using the RBF kernel. 82

5.6 Accuracy, Precision, Recall and False Positive Rate for the first

experiment using the all kernels and the combination features MDF

+ DCT. 82

5.7 False Discovery Rate, F-Score and Specificity for the first experi-

ment using the all kernels and the combination features MDF +

DCT. 82

5.8 Forged/original signature identification per individual (second ex-

periment). Shown performance metrics are Accuracy, F-Score,

False Discovery Rate and False Positive Rate. 84

5.9 Forged/original signature identification per individual (second ex-

periment). Shown performance metrics are Precision, Recall and

Specificity. 85

5.10 Results related to the One-Against-One (binary) signature author

identification (third experiment) using the given features. Shown

performance metrics are Accuracy, F-Score, False Discovery Rate

and False Positive Rate. 88

5.11 Results related to the One-Against-One (binary) signature author

identification (third experiment) using the given features. Shown

performance metrics are Precision, Recall and Specificity. 89

List of Figures

1.1 Main components of the GPUMLib [29, 26]. 5

2.1 GeForce 256 architecture. 9

2.2 Fixed-Function-Pipeline [7]. 10

2.3 More advanced pipeline of a programmable GPU. 11

2.4 Examples of shading effects . 12

2.5 NVIDIA GeForce 8800 GTX (G80) architecture [7, 38]. 13

2.6 A Streaming Multiprocessor in the G80. 14

2.7 Very Long Instruction Word (VLIW) efficiency varies with scenario. 15

2.8 CPU and GPU performance comparison between 2003 and 2007 [36]. 15

2.9 The different philosophies behind CPU and GPU design [36]. . . . 16

2.10 The blocks are automatically distributed according to the GPU’s

amount of Streaming Multiprocessors (SMs) [36]. 18

2.11 Threads, blocks and memory spaces [36]. 19

2.12 The tree structure behind a reduction. 20

2.13 An example of a efficient reduction-sum in Compute United Device

Architecture (CUDA) [19]. 21

3.1 A black-box which applies some function to its inputs, presenting

the result on its outputs. 24

3.2 An example of unsupervised learning – binary clustering. 25

3.3 A hyperplane discriminating two classes. 26

3.4 The perceptron with a step transfer function. 27

3.5 A hyperplane discriminating two classes. 28

3.6 Two possible hyperplanes which discriminate both classes. 29

3.7 Structural risk minimization balances generalization with training

error, through the classifier’s complexity. 30

3.8 Two possible hyperplanes, but the one with the label ”direction 1”

has a greater margin. 31

3.9 An example with slack variables. Samples marked with white

circles correspond to support vectors. 35

3.10 The SVM working in a hypothetical higher feature space. (a) A

non-linearly separable case. (b) A higher dimensional feature space

where the hyperplane can discriminate both classes. (c) The margin

projected back into the original feature space. 37

3.11 Profiling of the SMO algorithm executing on the GPU. The algo-

rithm executes on stream 1 while its convergence is verified on

stream 6. 45

3.12 Overhead of both the data requests and query status from the GPU. 45

3.13 Using a batch of 16 iterations for the SMO algorithm. 45

4.1 Example of “K-Fold” cross-validation using four folds. The green

folds correspond to the testing set while the red folds correspond

to the training set. 51

4.2 Scatter plot of the dataset “Spiral”. 56

4.3 Speedup achieved by the CPU version when increasing the number

of threads. Using the results shown in table 4.23. 66

5.1 Two signatures from the GPDS database [15]. 72

5.2 Six-fold surface feature extraction. 73

5.3 Best Fit feature extraction. 74

5.4 Geometric Parameters (Polar) feature extraction. 74

5.5 Geometric Parameters (Cartesian) feature extraction. 75

5.6 K-Means feature of a signature. 76

5.7 Discrete Cosine Transform of a signature. 76

5.8 Wavelet Transform of a signature. 77

5.9 Two-dimensional Linear Discriminant Analysis (LDA) reducing an

initial feature space (left) to a new feature space (right) where the

separation of the classes is improved. Images taken from [18]. . . . 80

5.10 Two dimensional projection of LDA for the first experiment using

features MDF and DCT. 83

5.11 False Positive Rate statistical summary for the forged/original sig-

nature identification per individual (second experiment). The fea-

tures used were Discrete Cosine Transform (DCT) + Modified Di-

rection Feature (MDF) + Cartesian and Polar coordinates. 86

5.12 F-Score statistical summary for the forged/original signature iden-

tification per individual (second experiment). The features used

were DCT + MDF + Cartesian and Polar coordinates. 86

5.13 F-Score RBF grid search using the DCT features for the detection of

forged/original signature identification, author number 23 (second

experiment). 87

5.14 F-Score RBF grid search using the MDF features for the detection of

forged/original signature identification, author number 23 (second

experiment). 87

5.15 F-Score histogram for the One-Against-One (binary) signature au-

thor identification (third experiment) using both the MDF and DCT

features. 90

Acronyms

AI Artificial Intelligence

ALU Arithmetic and Logic Unit

ANN Artificial Neural Network

API Application Programming Interface

CC Compute Capability

CGA Colour Graphics Adapter

CGI Computer Generated Imagery

CPU Central Processing Unit

CUDA Compute United Device Architecture

DAC Digital-to-Analogue-Converter

DCT Discrete Cosine Transform

DDR Double-Data-Rate

FDR False Discovery Rate

FN False Negative

FPR False Positive Rate

FPS First Person Shooter

FPU Floating Point Unit

FP False Positive

GLSL Graphics Library Shading Language

GPGPU General-Purpose computing on Graphics Processor Units

GPU Graphics Processing Unit

HDR High-Definition-Rendering

HLSL High Level Shading Language

IDCT inverse Discrete Cosine Transform

ILP Instruction-Level-Parallelism

KKT Karush-Kuhn-Tucker

LDA Linear Discriminant Analysis

LSB Least-Significant Bit

MCC Matthews Correlation Coefficient

MDF Modified Direction Feature

NN Neural Network

OPENCL Open Computing Language

OPENGL Open Graphics Library

PCA Principal Component Analysis

QP Quadratic Programming

RAMDAC RAM Digital-to-Analogue-Converter

RAM Random Access Memory

RBF Radial Basis Function

ROC Resource Operating Characteristic

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SISD Single Instruction Single Data

SMO Sequential Minimal Optimization

SMP Symmetric-Multi-Processing

SM Streaming Multiprocessor

SPMD Single Process Multiple Data

SP Shading Processor

SVM Support Vector Machine

SV Support Vector

TNR True Negative Rate

TN True Negative

TPC Thread Processing Cluster

TPR True Positive Rate

TP True Positive

UKF Universal Kernel Function

UMA Unified Memory Access

VLIW Very Long Instruction Word

VPU Video Processor Unit

VR Virtual Reality

Notation

In this section we give the mathematical notation used throughout the disserta-

tion. Naturally, a minimum level of knowledge from the areas of calculus, algebra

and probability theory is required for the interpretation of this work.

Global symbols

d number of features

c number of classes

n number of samples or patterns

b bias or offset

χ pattern or sample set

Ω class set

2

Mathematical Symbols

x a variable (real number)

y classifier result

ci class of sample i

ωc set of samples belonging to class c

xi sample vector i from the sample set

yi classification or training target for sample i

u sample u of the feature space

v sample v of the feature space

w weight vector

x sample or pattern

f (x) function f evaluated at x

f (x) classification f of pattern x

R the set of real numbers

Rd the d-dimensional real set

α a Lagrange multiplier

θ a real number

a, b real numbers

A a matrix

AT transpose of matrix A

wT transpose of vector w

σ a real number, usually as the standard deviation variable in a normal distribution

ξ a slack variable representing a misclassification error

〈u, v〉 dot product between vector u and v

e Euler’s number, approximately 2.71828 · · ·

Φ(x) projection of x in another space

fi Karush-Kuhn-Tucker optimality condition for a given sample xi

Chapter 1

Introduction

In this chapter we present the main reasons which led to the development of

this work and its objectives. Section 1.1 gives the background and context of

this project, including current hardware capabilities and software requirements.

Section 1.2 summarizes the goals and project planning of the dissertation. Section

1.3 lays out the organization of this report.

1.1 Motivation

The amount of data produced by humans and machines grows at an unparal-

leled rate, year after year. The challenge is to extract meaningful and relevant

information from such data. In this context, Machine Learning systems that can

extract relevant and useful information from large repositories of data are ex-

tremely important [29, 26]. However, machine learning algorithms often require

high-processing capabilities and current CPUs are not able to put up with the

demanding processing power needed. Hence, the pressure to shift development

towards parallel architectures with high-throughput has been accentuated [29, 26].

The GPU which has become an integral part of today’s mainstream computing

systems, represents a compelling solution to address the increasing demand for

processing power. First used as a processor to accelerate graphics rendering

on screen, the enormous computational potential of GPUs has led to research

for GPGPU. GPGPU uses GPU for non-graphics computations such as image and

signal processing, neural networks, linear algebra, sorting, computational physics

and database queries [7, 38, 28].

Over the past few years, the raw computational power of GPUs due to its

parallelism has surpassed by far that of top range CPUs. Unlike general-purpose

processors, GPUs are optimized to perform floating-point operations on large

4 Chapter 1. Introduction

data sets using the paradigm Single Instruction Multiple Data (SIMD). This is

specially important with machine learning algorithms which are often complex,

placing high demands on memory and computing resources and CPUs are simply

not powerful enough to solve them quickly for use in interactive applications.

To cope with this complexity NVIDIA developed a parallel technology namely

CUDA (Compute United Device Architecture) which provides a programming

model for its GPUs with an adequate API for non-graphics applications using

standard ANSI C, extended with keywords that designate data-parallel functions.

Among the supervised Machine Learning algorithms, SVMs are perhaps the

most widely used algorithm due to the exceptional generalization proprieties

of the resulting models. SVMs are large margin classifiers which have found

successful applications in many scientific fields such as engineering and bioinfor-

matics [54], information management [1], finance and business [52] among many

other. However, as many other machine learning algorithms they can be slow

especially when large datasets are involved. Thus, a GPU implementation of this

particular algorithm is desirable to reduce drastically the time needed to create

SVM models.

1.2 Objectives

The goal of this Dissertation is to design, develop and implement a GPU SVM com-

ponent to integrate/support GPUMLib software1. GPUMLib is a high-performance

GPU machine learning library, implemented in CUDA, that aims to provide ma-

chine learning researchers and practitioners with a high performance library by

taking advantage of the GPU enormous computational power [29, 26]. Figure 1.1

presents the main modules of the referred library [29, 26].More specifically, the

component to be developed includes the implementation, test and experimenta-

tion of Support Vector Machines (SVMs).

Additionally, another important goal is to extend the software component with

an advanced kernel which can simplify the kernel selection in a given problem

and with stronger mapping ability to deal with large scale pattern recognition

problems. This second goal is meant to contribute to the scientific part os this

Dissertation.

More detailed, the aim is three fold: first, to test the multi-threaded CPU SVM

implementation with benchmark data sets against the state-of-the-art LIBSVM;

1GPUMLib is a software component of the Doctoral work of the first author in the papers [29, 26]
(in progress).

1.2. Objectives 5

Host (CPU) and device (GPU) memory access framework

HostArray

DeviceArray

HostMatrix

DeviceMatrix

DeviceAccessibleVariable

. . .

C++ classes (algorithms)

Back-
Propagation

Multiple Back-
Propagation

Radial Basis
Functions

Support Vector
Machines

Restricted
Boltzmann
Machines

Non-Negative
Matrix Fac-
torization

Deep Belief
Networks

. . .

Common Host
(CPU) Classes

Common
CUDA Kernels

CUDA (GPU) Kernels

Common Device
(GPU) Functions

Multiple Back-
Propagation

Radial Basis
Functions

Support Vector
Machines

Restricted
Boltzmann
Machines

Non-Negative
Matrix Fac-
torization

Nonlinear
Dimension
Reduction

. . .

Figure 1.1: Main components of the GPUMLib [29, 26].

6 Chapter 1. Introduction

second, to realize the SVM GPU implementation and compare the results with

both the standalone CPU version and LIBSVM using the same benchmark datasets

while retrieving speed-ups yielded by the implementations; third, to use the

GPU SVM implementation in a study of a real life problem, off-line handwritten

signature recognition.

1.3 Organization

The organization of this report is as follows. Chapter 2 analyses the state-of-the-

art concerning GPU applications and frameworks. First, we summarize the main

events that lead to the creation of the first GPU. Then we focus on the GPUs

evolution into a fully programmable parallel device, which in turn capture the

interest of programmers to use it as general-purpose computation device. To

conclude Chapter 2 we analyze the NVIDIA’s CUDA (Compute Unified Device

Architecture) architecture, which is the platform that we will use to develop the

proposed SVM GPU implementation.

Chapter 3 describes the SVMs and focus implementation aspects for both in

CPU and GPU. In this chapter, we start by contextualizing SVMs in the broader

area of machine learning. Then we define and introduce the concepts of linear

classifiers, and describe formally the SVMs as large margin classifiers. Further-

more, we detail the convex optimization problem and in particular we analyze

the Sequential Minimal Optimization (SMO) which is crucial to proceed to im-

plement the algorithm. To conclude we survey issues regarding several aspects

related both to the CPU and GPU implementations of the SVMs algorithm.

Chapter 4 presents the validation results for both the CPU and GPU imple-

mentations. First, we define the metrics to compare our SVMs with LIBSVM – a

state-of-the-art SVM implementation. Then we describe the datasets used for that

purpose. To conclude the chapter we present and analyse the results obtained

with the implementation, which are very promising.

Chapter 5 gives a brief introduction to the problem of off-line handwritten

signature recognition, describes the features and the dataset, exposes the results

obtained using the GPU SVM and we give some conclusion on the study.

Finally in Chapter 6 we draw some conclusions about the work developed in

the framework of this report and present future work guidelines.

Chapter 2

GPU Computing

This chapter gives an overview of GPGPU and the CUDA (Compute Unified

Device Architecture) architecture which is the foundation of GPUMLib. We begin

by introducing to the Graphics Processing Unit (GPU) predecessors (Section 2.1).

Section 2.2 summarizes the main events that lead to the creation of the first GPU.

Section 2.3 focus the GPUs evolution into a programmable parallel processor.

Section 2.4 describes the events that lead the GPU to be used as general-purpose

computation device. Section 2.5 details the NVIDIA’s CUDA (Compute Unified

Device Architecture) architecture for programming GPUs. Finally, Section 2.6

summarizes and concludes this chapter.

2.1 Introduction

Before the GPU appearance, there have always been specialized co-processors to

help with the graphical operations in a computer. Those co-processors, known as

Video Processor Units (VPUs), received commands from the CPU and executed

them independently, freeing the CPU for other tasks. This was required whenever

more graphical power was needed, for example in graphical workstations or

gaming consoles. There are many examples of this separate flow of tasks like

graphical, audio or I/O, such as the original IBM PC, with its Colour Graphics

Adapter (CGA) card and the Commodore Amiga, which was a breakthrough in

multimedia home computing.

On economic systems, for instance, the Sinclair’s c© ZX Spectrum range, the

graphics circuitry was largely a system memory area connected to a Digital-to-

Analogue-Converter (DAC), which copied the image hold in the Random Access

Memory (RAM) to the computer’s monitor. This design could, for extreme cases,

deny the CPU access to the central RAM. This occurred when the memory area,

8 Chapter 2. GPU Computing

holding the image, was scanned by the RAMDAC while at the same time the CPU

was given HALT/SLEEP states. Because the memory couldn’t be accessed by more

than one device at the same time and multi-port memories were expensive, the

CPU was denied access to central memory [47]. Additionally, it was up to the CPU

to manipulate the graphics stored in the RAM. This always resulted in a slower

performance because the machine had very little parallelism and too many tasks

to perform at the same time.

2.2 The fixed-function GPU

In mid-nineties, the gaming industry was pushing the limits of contemporary

computers. The earliest First Person Shooter (FPS) games, for instance Wolfenstein

3D c© and Doom c©, heavily used the Floating Point Unit (FPU) for rendering a

3D perspective view of the game. With the purpose of freeing the heavily loaded

CPU, manufacturers like ATI c©, NVIDIA c©, 3DFx! c© and S3 c©, among others,

began to build dedicated VPUs which offloaded some of the graphical tasks from

the CPU.

Initially these VPUs accelerated only some specific tasks, for example filling

areas of the screen with some color or moving sprites and blocks on the screen.

The more advanced VPU chips also accelerated the stages of 3D rendering and

lighting, while few supported the acceleration of geometry processing (vertex

manipulation using matrix transformations), which was at the time done on the

CPU. The VPUs were usually programmed using one of the two mainstream

Application Programming Interfaces (APIs): OpenGL and Microsoft’s R©DirectX.

These APIs were then in a process of being standardized so that portable appli-

cations could be developed. Naturally, they represented a high-level view of the

hardware, which was (and still is) forced to evolve constantly, with the release of

new and more demanding software (e.g. games).

Later on, in 1997, appeared the first mass produced VPU, the 3DFx! VooDoo

c©, capable of accelerating both the rendering and the rasterizing process. This,

relieved the CPU from graphical tasks as the VPU could perform them faster,

thanks to the parallelism obtained by using multiple pixel pipelines. The same

applied to other VPUs like the NVIDIA c©Riva TNT (twin’n’texel’) and ATi’s Rage.

At that time the VPUs were only specific to Computer Generated Imagery (CGI),

used almost exclusively for games, Virtual Reality (VR) and computer animation.

Nowadays, they are present in most mainstream computing systems.

The first GPU (a term coined by NVIDIA), was unveiled in 1999 when they

2.2. The fixed-function GPU 9

Transform
Engine

Lighting
Engine

Setup
Engine

Rendering
Engine

Rasterizer

Pixel
pipe

0

Pixel
pipe

3

Pixel
pipe

2

Pixel
pipe

1

RAM

Figure 2.1: GeForce 256 architecture.

presented the GeForce 256 c© describing it as a single-chip processor with integrated

transform, lighting, triangle setup & clipping and rendering engines [32]. A simplified

schematic of the GeForce 256 is shown in Figure 2.1. In the same way as the

VPUs, additional tasks, like the geometry processing stage, were now offloaded

from the CPU to the GPU [31, 38]. However, these first processors were not

entirely programmable and were mostly state machines, with very rudimentary

programming support. In contrast with current architectures, more evolved, this

older technology is now named Fixed-Function-Pipeline. Figure 2.2 presents a

typical Fixed-Function-Pipeline [7].

The GeForce 256, as well as most contemporary graphics cards of the time,

already employed some parallelism (see Figure 2.1). The evident concurrency was

easily extracted by rendering multiple pixels per clock cycle [38]. These pixels

originate from the polygons composing the scene and this process is named

rasterization. Consequently, before the common usage of shading techniques like

blur, bloom, field-of-view, etc. the processing of each pixel could be easily done

independently, because their color does not depend on neighbouring pixels.

To produce the image shown on a computer monitor, each object in the scene is

rendered in a four-step engine consisting of the stages in the given order: geometry

processing, rasterization, fragment processing, and frame buffer processing, as shown in

Figure 2.2 [7]. The geometric data, composed of vertices, lines and triangles (more

complex figures are tessellated into triangles) enter the vertex processing block,

where the specified geometric transformations are performed [7]. Examples of

these transformations are the translation, scaling and rotation of geometric objects,

and the camera transformation. In the GeForce GPUs this stage is hardware

10 Chapter 2. GPU Computing

vertex
processing rasterization

fragment
processing

framebuffer
operations

vertex
data

texture
maps

color
buffer

depth
buffer

vertices
(x, y, z,w)

triangles,
lines,
points

pixel
fragments
(r, g, b, a)

final pixels
(r, g, b, a)

Figure 2.2: Fixed-Function-Pipeline [7].

accelerated by the transform engine, relieving the CPU from its processing. In

summary, this geometry stage produces a 2D projection of the scene composed

of planar triangles, which in fact corresponds to the scene’s projection into the

screen.

The next stage, rasterization, converts each incoming 2D-triangle into a group

of pixels fragments – the output of a discrete sampling of the area covered by the

triangle [7]. These pixels are then manipulated by the fragment processing stage,

which takes in account the triangle’s lighting properties and its textures [7, 38].

The resulting pixel fragments are written to the color buffer, part of the frame-buffer,

which stores a single fragment for each pixel composing the final image [7, 38].

This buffer, as well as most graphics data, may be stored in a dedicated memory

module or in the CPU’s RAM (shared memory) for low-cost systems.

In a typical scenario, a 3D application can have a very large amount of data to

process: vertices and pixels. Exploiting the fact that most of the data is indepen-

dent, the GPU can process it in parallel by pipelining the above fixed-function

stages. This quest for maximum performance made the GPU evolve into a com-

plex parallel processor.

2.3 The programmable GPU

With the advances in miniaturization and the costs reduction in the manufacturing

processes, the early 2000s witness the addition of more advances in the GPUs

pipeline [7]. The initial demand from the entertainment industry required more

realistic effects and more stylized images [41, 7]. This greater desire of expression

demanded more flexibility which could not be addressed by the old fixed-function

2.3. The programmable GPU 11

pipeline [38]. Before new capabilities were added, special effects were generated

by doing rendering multiple passes through the scene, combining them with

different transforms and texturing operations.

Vertices

Vertex
Processor Rasterizer Fragment

Processor

Frame
Buffer

RAM

Texture
Memory

Pixel
Fragments

Frame
Buffer tests

Traditional
Vertex

Processing

Traditional
Fragment
Processing

Figure 2.3: More advanced pipeline of a programmable GPU.

These new capabilities were added in the form of small programs, named

“shaders”, invoked for each vertex and pixel fragment [7, 33, 34]. The shaders allow

the pipeline to be controlled with a greater degree, beyond what was done before,

enabling the subroutines to manipulate data on-the-fly. The new architecture

also allowed the rendering results to go to another section of the pipeline or to

the ending buffer (frame-buffer or a texture). This can be seen in Figure 2.3.

With the new architecture the applications may use both the fixed-function and

shader pipelines or disable the old fixed-function pipeline and use only the new

rendering engines, by making use of shading programs [35, 41].

To execute the user specified subroutines, the GPU includes two new stages

in the pipeline being these the processor phases in Figure 2.3. The new pro-

grammable geometry stage is processed at the vertex processor and manipulates

vertices without the CPU intervention. Consequently, the GPU can apply func-

tions (deformations or morphings) to a group of vertices, for example to simulate

waves of a sea (See Figure 2.4a). The same applies to the fragment processor,

which handles the pixel fragments coming from the rasterizer using custom

shaders. This stage may apply effects like High-Definition-Rendering (HDR) or

water translucency (see Figure 2.4b), among others [41].

In order to offer programmers the possibility of developing code indepen-

12 Chapter 2. GPU Computing

(a) A vertex shader effect, surface deformation. (b) Two fragment shader effects, HDR and wa-
ter simulation.

Figure 2.4: Examples of shading effects

dent of the underlying platform, the hardware manufacturers had to support

machine-independent shading languages. These languages are very similar to

C and function as a form of concurrent execution for their operands (pixels or

vertices) [7]. Well known shading languages are HLSL (for Microsoft’s DirectX)

and GLSL (for the API OpenGL) [7]. Naturally, these dedicated to graphics pro-

gramming APIs are still in use today and continue to evolve.

2.4 General-Purpose computing on Graphics Proces-

sor Units (GPGPU)

In the fall of 2007, NVIDIA released a new GPU, the GeForce 8800 GTX (codename

G80). This graphics card made the transition from a GPU with dedicated process-

ing units (Vertex and Pixel processors) to a new unified pipeline paradigm [7]. In

reality, the first GPU to support unified shaders was the Xenos chip (Microsoft’s

R© XBOX360) [38], thus the G80 simply made the shift to the PC architecture.

Initially, this served the purpose of supporting applications with different vertex

or pixel workloads. If, let’s say, a game had extreme geometry detail with little

pixel effects, or vice-versa, the new unified architecture should offer greater per-

formance than the older separate Vertex-Pixel approach [7, 38]. In sum, the new

unified pipeline allows the GPU to support higher level languages and a greater

numerical computation.

Figure 2.5 depicts the G80 architecture [7, 38]. In this architecture the GPU

is composed of 8 Thread Processing Clusters (TPCs) (not shown in the figure)

segmented in two SMs. Each SM has a simple in-order Single Instruction Multiple

Data (SIMD) processor containing one instruction dispatcher which decodes one

2.4. General-Purpose computing on Graphics Processor Units (GPGPU) 13

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

SP SP

SP SP

SP SP

SP SP

Shared
memory

Dispatcher

SFU SFU

D cacheI cache

SM

Host Thread execution manager

R
A

M

Figure 2.5: NVIDIA GeForce 8800 GTX (G80) architecture [7, 38].

instruction per clock cycle to one block of 8 parallel processing units, designated

by Shading Processors (SPs) (see Figure 2.6).

In the GeForce 8800 GTX, each instruction (excluding transcendental opera-

tions) takes 4 cycles to complete and is shared by the 8 SPs contained in a SM.

Therefore, the SPs executes instructions in groups of 4 × 8 = 32 instructions. This

number is in CUDA (see Section 2.5) terminology named a warp and corresponds

to 32 consecutive threads. Because the SPs run in groups, if some of them have

to execute different instructions (for instance, due to a condition), threads are

divergent in their execution. Basically, if within the same SM the SPs follow a

different execution path, some of them execute one of the paths while the others

are disabled. The same applies to the other path. Hence while the other SPs are

executing their path, the former ones are disabled. For example, if the warp finds

a conditional switch, execution is serialized N times, one for each different path

taken [38, 36].

14 Chapter 2. GPU Computing

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared memory

Instruction fetcher and dispatcher

Instruction cache Data cache

SM

(a) A Streaming Multiprocessor (SM).

FPU ALU

Operand collector

Results queue

Dispatch port

Scalar Processor

(b) A Scalar Processor (SP), also known as a
CUDA core.

Figure 2.6: A Streaming Multiprocessor in the G80.

Each SPs behaves as a simple scalar CPU with both an Arithmetic and Logic

Unit (ALU) and a FPU supporting full IEEE.754 32-bit single-precision floating

point. Consequently, the SP can be seen as a simple Single Instruction Single

Data (SISD) processor, that operates a single instruction on a single destination

operand at a time (per clock cycle).

The SM also includes two Special Function Units (SFUs) with the sole purpose

of handling complex mathematical operations such as square roots, reciprocals,

trigonometric functions and other transcendental (not algebraic) operations. Ba-

sically, each SM is responsible by a single and independent flow of execution.

While ATi’s GPUs make use of multiple Very Long Instruction Word (VLIW)

processors, with greater theoretical performance, the G80, by implementing scalar

processors, lowers the burden on the shading compiler. Because ATI’s compiler

can not make full use of the VLIW units (figure 2.7), the theoretical performance

may not be achieved. Consequently, the code produced may not explore the

available instruction parallelism, where different operations could be executed

by the same instruction.

The G80 and its variants, with their scalar processors and lightweight thread

execution, do not require the compiler to expose the program’s parallelism. In this

case, it is up to the programmer to write multi-threaded code, for what NVIDIA

calls a Single Instruction Multiple Thread (SIMT) approach.

With this design, the G80 has definitely more capabilities for massive data

processing than the CPU. The greater performance of the GPU, especially in the

last years, has sparked a large performance gap between CPUs and GPUs. Figure

2.8 shows the performance of both architectures over the period 2003–2007. The

slower performance improvement of the CPU is mainly due to difficulties in

2.4. General-Purpose computing on Graphics Processor Units (GPGPU) 15

MAD r2.xyzw, r0.xyzw, r1.xyzw – 100% utilization

DP3 r2.w, r0.xyz, r1.xyz – 75%

MUL r2.xy, r0.xy, r1.xy – 50%

ADD r2.w, r0.x, r1.x – 25%

4

3

2

1

Figure 2.7: VLIW efficiency varies with scenario.

achieving higher clock speeds, which led CPU manufacturers to develop multi-

core processors. Contrasting with the GPUs oriented data processing approach,

the CPUs are tailored to handle both data control and data processing. On the

other hand, modern GPUs are designed to run thousands of threads concurrently.

Quadro
FX 5600

NV35 NV40

G70
G70-512

G71

Tesla
C870

NV30

3.0 GHz
Core 2 Quad3.0 GHz

Core 2 Duo
3.0 GHz Pentium 4

GeForce
8800 GTX

0

100

200

300

400

500

600

Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007

G
F

L
O

P
S

Figure 2.8: CPU and GPU performance comparison between 2003 and 2007 [36].

GPUs have much more transistors dedicated to mathematical operations, as

compared against modern CPUs. For example in a GeForce 8800 GTX (with 128

SPs) running at a clock speed of 1.35 GHz, each SP cam execute one FPU and one

ALU operation per clock cycle. Thus, the G80 can achieve a peak performance

of 1.35 × 128 × 2 = 345.6 GFlops. When compared to current CPUs, it’s still very

impressive for a GPU designed in 2007.

On the other hand, over time the CPUs have evolved to extract the best

possible performance from single threaded operations. These optimizations come

mostly from the fact that these processors have super-scalar pipelines, allowing

instructions, after being decoded, to get executed in parallel functional units on

16 Chapter 2. GPU Computing

Cache

ALUControl

ALU

ALU

ALU

DRAM

(a) CPU.

DRAM

(b) GPU.

Figure 2.9: The different philosophies behind CPU and GPU design [36].

the processor, if they’re operator independent.

Current GPUs, such as the NVIDIA GeForce 460 GTX, already have a limited

form of super-scalar execution. In this GPU, the SM has more groups of SPs than

its instruction dispatcher can feed. But it can extract independent instructions

from the incoming flow and assign them to those additional groups of SPs, when

they belong to the same thread block. Note that this execution is done in-order,

that is, the CPU does not try to find independent instructions ahead of time to

execute. This contrasts with the out-of-order execution, explained next.

Another reason for the greater control area of the CPU is the support for out-of-

order execution, where the processor attempts to extract independent instructions

on the incoming flow of instructions, executing them on the available functional

units, even if their result is irrelevant because those instructions maybe weren’t

supposed to be executed after all. Naturally, as this technology is quite complex,

it isn’t supported on modern GPUs, for the lack of silicon area.

To support the locality of data access and to maintain the internal pipeline

occupied, the CPUs have much more dedicated on-chip cache than the GPUs. In

contrast, the GPUs with a smaller cache per SM, must use software techniques to

maintain the SPs occupied. The main approach to this problem is to have the SPs

processing thousands of calculations in different threads, in order to hide memory

latency.

With better programming support, the GPU has become a new target for ap-

plications with significant data parallelism, for instance physics simulation, fluid

dynamics, mathematical computations, etc. These tasks were done previously

with complex and expensive Symmetric-Multi-Processing (SMP) systems, inac-

cessible to most people. With the widespread availability of graphics cards and

2.5. Compute United Device Architecture (CUDA) 17

their reduced cost when compared to other systems, like computer clusters, a new

programming paradigm has emerged, referred as GPGPU.

2.5 Compute United Device Architecture (CUDA)

The GeForce 8800, with its unified shader pipeline, is capable of executing parallel

tasks written in a higher level language, as explained in the last section. In order to

support the development of applications for the G80 and its successors, NVIDIA

released in November 2006 the CUDA API. This was the first API supporting

GPGPU. Initially oriented towards the C programming language, CUDA grow to

support other languages like C++ and FORTRAN. CUDA runs on UNIX, Windows

and MacOS systems. However, it is only supported by NVIDIA GPUs.

Before CUDA, researchers had to resort to the Vertex/Pixel (V/P) approach,

which was quite cumbersome to program. One example of an older V/P API still

in use today is BrookGPU. This C research project aimed to deliver the higher arith-

metic performance of the GPU as an abstract streaming processor. This streaming

model, also followed by CUDA and other GPU computing architectures, requires

programs to explicitly specify the separate flow of task and consequently, the

software’s parallelism.

In order to allow applications to make use of massive parallel GPUs, CUDA

was designed from the beginning to scale with the available hardware resources.

In order to maximize the architecture’s performance, the programmer must make

use of the following key concepts: hierarchies of thread groups, shared memories,

and barrier synchronization [36]. But first, the algorithm to be implemented must

have the property where many data operations can be safely performed in parallel.

In CUDA, a single GPU is handled as a compute device so that the programmer

can run multiple pieces of software in various compute devices [36]. Naturally,

each GPU has its own dedicated memory, named device memory and in current

architectures this may hold a capacity up to 4 GB of high bandwidth Double-Data-

Rate (DDR) RAM. There’s always at least one host device controlled by the CPU

(called the host) which launches parallel executions on the compute device. The

CPU has also its memory space, which is in CUDA named host memory. Therefore,

the software must manage both memories and exchange data between them in

order for the GPU to do useful work [36].

Each parallel execution, in CUDA and in Open Computing Language (OPENCL),

is named a kernel. A kernel is in fact a function, written in C with CUDA exten-

sions, which is run N times in parallel, by each individual SP, on the compute

18 Chapter 2. GPU Computing

device [36]. Consequently, the execution of a kernel corresponds to a variant of

SIMD, known as Single Process Multiple Data (SPMD) where a single program

spawns multiple lightweight threads on the same process [38].

In turn, each kernel is run across a grid of thread blocks, were a single block is

executed on a single SM (see Figure 2.10) [36]. Depending on the GPUs Compute

Capability (CC), which specifies the hardware limits imposed on a specific GPU

architecture, the amount of threads included in a block may be limited for in-

stance, to 512 elements on CC 1.0. Letting each thread block execute in whatever

SM available allows automatic scheduling and scalability, independently of the

amount of available SMs on the GPU (see Figure 2.10) [36].

Device with 2 SMs

SM 1SM 0

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device with 4 SMs

SM 1SM 0 SM 3SM 2

Block 0

Block 4

Block 1

Block 5

Block 2

Block 6

Block 3

Block 7

5 Block 6

Kernel Grid

Block 0

Block 4

Block 1

Block 5

Block 2

Block 6

Block 3

Block 7

Figure 2.10: The blocks are automatically distributed according to the GPU’s
amount of SMs [36].

To be executed on the GPU, every kernel declaration requires the identifier

global . Within this function, every thread has its own private variables and

may access additional memory, as the shared memory, the constant memory

and the global device memory (see Figure 2.11) [36]. Threads must have both a

local and global identifiers, so that tasks can be isolated and given different data

to work on. These identifiers are calculated from the thread’s base ID and the

block it belongs to [36]. In turn the GPU manages and executes blocks within

a greater group called the grid. For convenience, both threads and blocks may

be identified using one to three dimensional indexes, allowing the problem to be

easily extended to other domains like a vector, a matrix or a volume [36].

A common example of a kernel given in introductory courses is shown in

Algorithm 1. This sample code adds two vectors, A and B both of length N,

storing the results into vector C. Note that the initialization of the three arrays

and their transfers between host and device’s memories are not shown.

2.5. Compute United Device Architecture (CUDA) 19

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Figure 2.11: Threads, blocks and memory spaces [36].

Algorithm 1 Sample code for a kernel which adds two vectors

1 #define N vector_size
2 // Kernel definition

3 __global__ void vec_add(float A[N], float B[N], float C[N])
4 {

5 int i = blockIdx.x * blockDim.x + threadIdx.x; //compute global thread ID
6 if (i < N)
7 C[i] = A[i] + B[i];

8 }

9

10 int main()
11 {

12 // initialize A, B & C arrays in host...

13 // copy arrays to device...

14 // etc.

15

16 // Kernel invocation

17 // must be careful to respect the device’s compute capability

18 int threads_per_block = 256;
19 //guarantees enough threads & blocks, amount of threads >= N

20 int num_blocks = ceil((double)N/(double)threads_per_block);
21 vec_add<<<num_blocks , threads_per_block >>>(A, B, C); // run kernel

22 }

On the above code, each thread executing the kernel performs one pair-wise

addition. Because there is a hardware limit on the amount of threads per block,

these are usually calculated in accordance to the GPU capabilities (CC). In the

code, for simplicity, this is statically set to 256 threads. In order to process the

arrays of length N, the required amount of blocks is calculated such that the total

amount of threads is at least N. The threads in excess do not execute the addition

because of the explicit conditional. As said on the beginning of this section, the

kernel’s execution follows the SIMT design.

Each block of threads may access internally a small shared memory with a

20 Chapter 2. GPU Computing

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Figure 2.12: The tree structure behind a reduction.

limited amount of capacity - 16 KB for devices with CC below 2.0 and 48 KB

for capability 2.0. This small cache is visible to all the threads of a block and

its lifetime is as long as a block’s, because its contents may be replaced by the

next scheduled block to execute on the SM. Additionally, an intelligent usage of

this memory is necessary to maximize performance, especially to get above the

device’s memory bandwidth limit [36].

The reason for this is simple. For instance, the GeForce 8800 GTX has a

theoretical processing power of 345.6 GFlops. But the graphics card memory has

a bandwidth of 86.4 GB/s, and as each standard floating point and integer data-

type require 32 bits (4 bytes) of storage, feeding the SPs directly from the device’s

memory will hold a throughput of 21.6 GFlops. Consequently, in order to hit a

better performance, the SPs must get their data from a nearer and faster memory

- the shared memory (see figure 2.11).

With the strong appealing from the GPU’s raw performance, researchers and

manufacturers began to developed basic parallel building blocks on GPUs, like

the operations reduce, scatter, gather and other distributed procedures [38]. An

example of a reduction-sum can be seen on Figure 2.12, where the elements of

a list are reduced into a final result, the sum. Figure 2.13 represents a graphical

view of the algorithm.

The basic building blocks are then used to design higher level constructs,

which can be used to develop more advanced programs. Examples are CUBLAS

- a Basic Linear Algebra System and CUFFT - a Fast Fourier Transform interface,

both ported by NVIDIA to CUDA.

Building on the above basic blocks, researchers have developed more ad-

vanced uses of GPU computing. The solving of differential equations, physic’s

simulation, tomographic reconstruction algorithms and machine learning, among

others, are just some examples of the areas gaining with the usage of the GPU.

2.6. Conclusion 21

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Figure 2.13: An example of a efficient reduction-sum in CUDA [19].

2.6 Conclusion

In this chapter, we gave an overview on the evolution of the GPU, from a fixed-

function device into a fully programmable parallel device capable of running gen-

eral purpose applications. Moreover, we detailed the NVIDIA Compute United

Device Architecture (CUDA) (CUDA), which will be used to develop the SVM

GPU implementation to be integrated in the GPUMLib library.

Chapter 3

Support Vector Machines (SVMs)

In this chapter a class of learning mechanisms known as the Support Vector

Machines (SVMs) which are the main focus of this dissertation are described.

We start by giving the machine learning framework, define and introduce the

concepts of linear classifiers, and describe formally the SVMs as large margin

classifiers. We focus on the convex optimization problem and in particular we

deal with the Sequential Minimal Optimization (SMO) which is crucial to proceed

to implement the algorithm. Finally we detail issues of the SVMs implementation.

Regarding the latter, several aspects related to CPU and GPU implementation are

surveyed. Our aim is two fold: first, we implement the CPU version, test it in

benchmark data sets; then we proceed with the GPU version. By the end of this

work we expect to have results on the GPU platform, in both synthetic and real

large scale problems. As one important component of this Dissertation is the

implementation and performance surveillance of the SVMs, decisions on how to

make SVMs run faster (and better) are taken. We end the chapter with a summary

of conclusions.

3.1 Background in Machine learning

Machine learning deals with the development of technologies which allow ma-

chines to learn. The challenge is to create algorithms that can take a group of

patterns (on a broader range, the existing knowledge) and automatically make

new inferences from the initial information, with or without human interven-

tion [30].

Certainly, most algorithms discovered until now are based on the efforts of

both psychologists and neurologists to understand not only the human mind,

but even the simplest brain of a more humble organism. Helping with this task

24 Chapter 3. Support Vector Machines (SVMs)

mathematicians and engineers apply statistical methods, by studying random

variables in order to understand their behavior and their properties. It is also

very likely that both areas will somehow help on the understanding of the fun-

damentals behind the learning process [30]. More detailed aspects of Machine

Learning can be found in [42].

Comparing with the common computer programming, a program or ma-

chine learns whenever it changes its internal structure in accordance to external

impulses. It is natural to notice a resemblance to the process of human learn-

ing. The learning by the machine itself is a well-known application of Artificial

Intelligence (AI), which comprises many learning mechanisms, besides other

tasks, such as planning, control, prediction, etc. One typical example of machine

learning, which matches closely this dissertation, is to “teach” the machine to

distinguish two classes of pictures, let us say, apples from oranges. This falls in a

typical problem in Pattern Recognition [13]

input: x output: y
black box

?

f(x)

Figure 3.1: A black-box which applies some function to its inputs, presenting the
result on its outputs.

The learning process can then be seen as a black-box (see Figure 3.1) which

receives the inputs of several samples of each fruit, from the domain χ and the

label of each image from the domain Y. The domain usually represents some

value associated to each class, or in the above case, the kind of fruit.

Using some learning mechanism hidden inside the black-box, the machine

will, hopefully, remember (the technical term is classify) each picture of a fruit to

its kind. This association and the black box correspond to a function, f(x), which

takes an input vector x and assigns it one class from the domain Y. The learning

mechanism relates to how this function is in fact built.

The initial n examples fed to the algorithm, while training, constitute the train

set:

χ = {x1, x2, ..., xn} (3.1)

where each x ∈ Rd and d is the size of the feature set. For the current example,

d might be the amount of individual pixels that compose each picture and n the

number of images that constitute the training set.

3.2. The linear classifier 25

The values to be learnt are the targets or classes:

Ω = {y1, y2, ..., yn} (3.2)

Additionally, it is sensible to validate the learning process with a different

group of samples, the test set, so that its classification performance can be mea-

suredand perform correctly inferences from the data [5] . There are various metrics

available to assess the results of classification as will be discussed later.

Class 1

Class 2

Figure 3.2: An example of unsupervised learning – binary clustering.

This process of giving the machine the value associated with each image is

known as supervised learning, because there is an external entity - the supervi-

sor - which helps with the learning process, giving training examples and their

classes. This supervisor corresponds to what we know as a teacher, who teaches

us something to be learnt. Finally, using the above example of the fruits, as its

co-domain is comprised of only two classes (the banana and the orange types), it

is known as a two-class (binary) classification problem (c = 2) [30].

The supervised learning contrasts with the unsupervised learning, where it

is up to the algorithm to decide to which class each sample belongs. This can

be done, for example, using some form of clustering, where nearby samples are

clustered in the same class (see Figure 3.2).

3.2 The linear classifier

The theory behind the SVM has its ground on linear binary classifiers. These are,

on their simplest form, used as a solution to problems with two linearly separable

classes. In these situations, the linear classifier tries to find one boundary between

the two training samples, one for each class. Most problems can be broken in the

form of boundaries and SVMs are no different. Thus they are easier to understand

using a geometric approach, which will be introduced by the use of simpler linear

26 Chapter 3. Support Vector Machines (SVMs)

classifiers.

Class 1

Class 2

(a) Two classes which can be
linearly discriminated.

W

b

0

w.x + b = 0

(b) Geometric interpretation of the
hyperplane’s variables, the w vec-
tor and the bias (b).

Figure 3.3: A hyperplane discriminating two classes.

These classifiers, being linear, discriminate between two classes by using a

hyperplane (see Figure 3.3a). Each class of the binary problem has a corresponding

value on the set Ω = {−1, 1}. Assuming both classes are linearly separable, a

decision surface can always be found and the hyperplane discriminating both

classes is defined as:

0 = w · x + b (3.3)

Figure 3.3b shows the geometric interpretation of the hyperplane and its pa-

rameters. As a consequence the linear classifier discriminating surface is a func-

tion of both w (also known as weight vector) and the bias, b. The vector
→

w is

always perpendicular to the hyperplane, that is, the hyperplane’s direction is

defined through w. The variable b represents the plane’s exact position in the

feature space χ. Both parameters are deduced on the training process, from the

training samples [48].

The output of the linear classifier is calculated by using the dot product be-

tween the vector x and the weight vector w, which is the same as taking a linear

combination between both vectors:

y(x) = w · x + b = 〈x,w〉 + b =

d∑
i=1

(wi · xi) + b (3.4)

This corresponds, geometrically, to check if the projection of a given input x in

the equation 3.4 is above (or below) the decision hyperplane defined by equation

3.3, which can be accomplished simply by checking the signal of y(x).

One example of a linear classifier, which learns the hyperplane after some

iterations, is the perceptron (see Figure 3.4). Invented in 1962 by Frank Rosen-

3.2. The linear classifier 27

blatt [30], the perceptron was a major discovery in the field of AI and in machine

learning. The perceptron may have different activating functions, from which the

step, sigmoid and hyperbolic tangent are the most common examples.

∑ y

w0

w1

w2

wd b

x0

x1

x2

xd

d∑
i=1

(wi · xi) + b

+1

-1

Figure 3.4: The perceptron with a step transfer function.

As a linear classifier, the perceptron takes a weighted sum (linear combination)

of its inputs and then applies a step transfer function. In this case, the classification

for a binary problem is given by the signal of the function f (x) (see equation 3.5).

When its output is above zero, the perceptron identifies it as the class labeled {1},

otherwise it corresponds to {−1} (see Figure 3.5a). The test for zero may be chosen

randomly to fall in either one of the classes. Hence, the classification will be the

following:

y(x) = sign

 d∑
i=1

(wi · xi) + b

 (3.5)

During the perceptron’s training, the algorithm updates both the weight vector

and the bias with a small percentage of the training error. This error, e, is defined

as follows:

e = ci − y(x) (3.6)

As one can expect, the training error is the difference between the desired

output and the perceptron’s classification for a given input. When the algorithm

starts, both w and b are usually initialized to zero or to a random configuration,

so that different decision hyperplanes may be generated in various runs. In

each training iteration, both the weight vector w’ and bias are corrected with a

(small) fraction of the classification error. With the mechanism described above

the perceptron’s learning process can be viewed as a sort of stochastic gradient

descent search:

28 Chapter 3. Support Vector Machines (SVMs)

w′i = wi + θ · exi (3.7a)

b′ = b + θ · e (3.7b)

The additional parameter θ controls the convergence rate, where smaller val-

ues may converge to a better training error. On the other hand, larger values

for θ may force the error to display an oscillatory behavior. In summary, the

parameter change is a driver for the rate of convergence for training error in the

algorithm [13].

Visually, the perceptron decision surface (hyperplane) changes with the vec-

tor’s w weights and the bias value, b. Minor shifts in the hyperplane may still

discriminate all of the training samples (figure 3.5b). The solution that the al-

gorithm eventually converges is dependent on the initial values picked for the

vector w and the bias b, including the order by which the samples are given.

w.x + b = 0 w.x + b > 0

w.x + b < 0

(a) A linear classifier which uses the function
3.5 to discriminate between the two classes.

w.x + b = 0

(b) Infinite possibilities for the hyperplane
when the classes are linearly separable.

Figure 3.5: A hyperplane discriminating two classes.

3.3 The Support Vector Machine

Support Vector Machines (SVMs) are large margin classifiers which have found

successful applications in many scientific fields such as engineering and bioinfor-

matics [54], information management [1], finance and business [52] among many

other.

From the explanations in above section and also taking into account Figure

3.5b it can be seen that there are countless even infinite possibilities to build the

separation hyperplane. Considering the perceptron’s formulation we consider

3.3. The Support Vector Machine 29

Figure 3.6: Two possible hyperplanes which discriminate both classes.

that there is a boundary between the two classes limited by two margins. The

margins delimiting the boundary are defined with the following equation (the

canonical representation of both the negative and positive hyperplane):

ci(w · xi + b) ≥ 1 (3.8)

If we aim to reach an optimal hyperplane, we should try to find the one that

gives the smallest generalization error, that is, to minimize the empirical error.

For instance, given both hyperplanes in Figure 3.6, we should reach for the thick

black line, because it leaves more space on either side of the decision plane and

creates the widest gap between both classes. In this way, the classifier is best

prepared for unknown data [5, 48].

An important and crucial point in the SVM formulation is that it can provide

a good generalization independent of the training set’s distribution by making

use of the principle of structural risk minimization (see Figure 3.7) [49, 11]. This

principle provides a trade-off between the complexity of the classifier (accuracy

in the training set) and the quality of fitting the training data (generalization -

empirical error). Therefore, the SVMs belong to a class of algorithms which are

known as Maximum-Margin Classifiers [50, 46]. The size of the gap is decided

upon the training samples which are between the margins. These samples are the

so-called support vectors and are associated with αi, the Lagrange multipliers,

which are greater than zero as explained further below. As we do not want to give

preference to any of the classes, the hyperplane will be at the same distance of

each classes’ margins. In figure 3.8 we can see a non-linear separable case where

the support vectors correspond to the samples with marks, standing exactly on

the margin’s limits.

30 Chapter 3. Support Vector Machines (SVMs)

underfitting
overfitting

training error

ge
ne

ra
lis

at
io

n
er

ro
r best model

Figure 3.7: Structural risk minimization balances generalization with training
error, through the classifier’s complexity.

As explained, the goal of the SVM’s algorithm is to search for the direction that

gives the widest margin. Doing so, we will find both the vector w and the offset b.

Resorting to geometric definitions, the distance from each class boundaries to the

discriminating hyperplane is ‖w‖−1. As a result the size of the margin between

both classes will be:
1
‖w‖

+
1
‖w‖

=
2
‖w‖

(3.9)

Note that the size of the margin is inversely proportional to w. For each

training pattern its classification must be on the corresponding side of the margin.

This SVM does not assume misclassified samples, consequently is known as a

Hard Margin SVM. The canonical form of each classes’ boundary is:

w · x + b ≥ 1, ∀x ∈ ω1 ⇔ c = +1 (3.10a)

w · x + b ≤ −1, ∀x ∈ ω2 ⇔ c = −1 (3.10b)

These equations are equivalent to equation 3.8. With the above in hand, we

want to maximize the size of the margin while making sure that all the training

points are on the correct side of the hyperplane. This formulation is known as the

3.3. The Support Vector Machine 31

x1

x2
dire

cti
on 1

direction 2

||w
||

2

Figure 3.8: Two possible hyperplanes, but the one with the label ”direction 1” has
a greater margin.

primal problem and can be written as:

minimize
1
2
‖w‖2 =

1
2

w ·w (3.11a)

subject to ci(w · xi + b) ≥ 1, i = 1, 2, . . .n (3.11b)

Note that equation 3.11a corresponds to a simplification of the vector’s w

norm. In this way there is no need to calculate its exact length (through the

square root) while searching for its minimum which is equivalent to find the

largest margin. The factor 1
2 is only present for an easier derivation further ahead

(in the development of 3.14). Arriving to this formulation makes it a quadratic

optimization task, because of equation 3.11a. The search for the minimum of ‖w‖

is done on a convex surface (a parabola in Rd) and consequently it has a single,

optimal solution [48].

The problem can be written as a Lagrangian formula from the above equations,

where it can be searched for a minimum [11]. For each constraint in 3.11b there is

a corresponding Lagrange multiplier, αi. The Lagrangian function, L , will then

32 Chapter 3. Support Vector Machines (SVMs)

be:

L (w, b,α) =
1
2
‖w‖2 −

n∑
i=1

αi[yi(w · xi + b) − 1] (3.12)

As a quadratic programming problem with constraints, the Karush-Kuhn-

Tucker (KKT) [11] conditions can be applied to function 3.12. As a consequence,

the solution represents the hyperplane that gives the maximum margin. The KKT

conditions are the following:

∂
∂w

L (w, b,α) = 0 (3.13a)

∂
∂b

L (w, b,α) = 0 (3.13b)

αi ≥ 0, i = 1, 2, . . . ,n (3.13c)

αi[yi(w · xi + b) − 1] = 0, i = 1, 2, . . . ,n (3.13d)

By applying the KKT conditions to the Lagrangian function L in 3.12, the

composition of vector w can be found analytically as:

∂
∂w

L (w, b,α) = 0⇔ (3.14)

⇔ 0 =
∂
∂w

1
2
‖w‖2 −

∂
∂w

n∑
i=1

αi[yi(w · xi + b) − 1] (3.15)

=
2
2

w −
∂
∂w

n∑
i=1

αi[yi(w · xi + b) − 1] (3.16)

= w −
n∑

i=1

αi[yi(xi + 0) − 0] (3.17)

= w −
n∑

i=1

αiyixi ⇔ (3.18)

⇔ w =

n∑
i=1

αiyixi (3.19)

3.3. The Support Vector Machine 33

And the same for b, the offset:

∂
∂b

L (w, b,α) = 0⇔ (3.20)

⇔ 0 =
∂
∂b

1
2
‖w‖2 −

∂
∂b

n∑
i=1

αi[yi(w · xi + b) − 1]⇔ (3.21)

0 = 0 −
∂
∂b

n∑
i=1

αi[yi(w · xi + b) − 1]⇔ (3.22)

0 = 0 −
n∑

i=1

αi[yi(0 + 1) − 0]⇔ (3.23)

0 = −

n∑
i=1

αiyi ⇔ (3.24)

⇔

n∑
i=1

αiyi = 0 (3.25)

According to both 3.13c and 3.13d there is a Lagrange multiplier for each

constraint, so when αi is greater than zero the corresponding point x belongs to

one of the margin’s hyperplanes. As said before, these points are the so-called

support vectors. In case of αi = 0, the related points may be outside their class

boundary or a degenerate case, as developed in [48].

With the definition of the problem set initially in 3.11, the next step is the

calculation of the αi values. In this case, the theory behind quadratic (or convex)

programming tells us to transform the problem in an equivalent one, called the

Lagrangian dual. Continuing from formulation in 3.12 and the conclusions taken

in 3.14 and 3.20, the dual will be:

maximize L (w, b,α) (3.26)

subject to w =

n∑
i=1

αiyixi (3.27)

n∑
i=1

αiyi = 0 (3.28)

α ≥ 0 (3.29)

Replacing 3.27 and 3.28 into the Lagrangian formula 3.26 to be optimized, we

34 Chapter 3. Support Vector Machines (SVMs)

obtain the dual optimization problem:

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jx ·i x j (3.30)

subject to
n∑

i=1

αiyi = 0 (3.31)

and αi ≥ 0, i = 1, 2, . . .n (3.32)

To find the optimal Lagrangian multipliers there are various methods which

can be employed, like the gradient descent algorithm, the Newton’s method or the

SMO algorithm [22], this last being used on this work. These “simple” methods

can be applied here because, as said before, the function to be optimized is convex

(equation 3.11a). After retrieving the solution, the vector w can be built using the

equation 3.27 and the offset b by the constraint’s equation 3.13d.

Note that the formulation in 3.30 contains pairs of variables, similar to dot

products. This will be useful to reformulate the problem for non-linearly separable

classes, by making use of the kernel trick.

The classification can be done in the same way as for the perceptron, by using

equation 3.5:

y(x) = sign

b +

d∑
i=1

wi
Txi

 (3.33)

or by using the dual and the Lagrange multipliers. This method uses a subset of

the training set – the support vectors – which are the samples for which αi > 0.

This has the advantage of the less SVs the SVM uses, the faster the classification

is. The predicted class is calculated as follows:

y(z) = sign

b +

n∑
i=1

αiyixT
i z

 (3.34)

3.4 Soft margin SVM

The last section considered the case where a binary classification problem can be

perfectly separated by a hyperplane. However, this does not correspond to the

majority of the situations encountered in the real world. When trying to find the

largest margin, the SVM must allow some misclassified samples. Naturally, these

are penalized because they are on the wrong side of the decision hyperplane and

we want to minimize this amount. Consequently, this SVM will try to minimize

3.4. Soft margin SVM 35

the influence of difficult samples on the optimization problem.

This kind of SVM is known as the soft margin version, because it “softens” the

constraints regarding the misclassification of the patterns considered problematic.

The support vectors are not required to be positioned exactly on their canonical

hyperplanes, but they are allowed to go beyond the other classes’ hyperplane (see

Figure 3.9). The decision hyperplane is now built from both correct and incorrect

samples, all support vectors [45].

y = 1

y = 0

y = -1

0 > ξ > 1

ξ = 0

ξ = 1

ξ > 1

ξ = 0

ξ = 0 ξ > 2

Figure 3.9: An example with slack variables. Samples marked with white circles
correspond to support vectors.

The constraints are updated to include some errors in the training process, in

the form of slack variables ξi. These measure “how far” the sample xi is from the

correct decision hyperplane’s side, or, in another words, how deep they are on

the wrong side. A visual example can be seen in Figure 3.9 [49].

Samples which are on the correct side of the boundary and beyond their

classes’ canonical hyperplane have ξi = 0, because their misclassification error

is zero. The same applies for samples sitting exactly on their classes’ canonical

hyperplane. Because half of the margin’s length is 1, samples which are beyond

this hyperplane but not on the other classes’ region have 0 > ξi > 1. Samples on

the other side of the optimal hyperplane have ξi > 1.

Note that this penalization is linear (see equation 3.36). In this manner, the

constraints are updated to include this error:

ci(w · xi + b) ≥ 1 − ξi, i = 1, 2, . . .n (3.35)

Naturally, ξi ≥ 0 because both the positive and negative cases are taken into

account by ci. Therefore, the sum of the errors for each sample is given by:

n∑
i=1

ξi (3.36)

which represents a measure of the degree of misclassified training patterns. To

36 Chapter 3. Support Vector Machines (SVMs)

set a ceiling in the training error, a penalization parameter, C, is added to the

problem. The inclusion of the variables ξ in the optimization task turns it into:

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi (3.37)

subject to yi(w · xi + b) ≥ 1 − ξi, i = 1, 2, . . .n (3.38)

ξi ≥ 0, i = 1, 2, . . .n (3.39)

The existence of C is required for controlling the amount of misclassified

samples and the margin’s length, that is, the structural risk. A larger C allows the

training error sum to reach a higher value, which makes the SVM more specific

and it could, possibly, overfit the data. In this case, the SVM ends up with a

smaller margin. On the other hand, forcing a lower ceiling in the error sum makes

the SVM more generic. This may underfit the training data and consequently, the

SVM gets a larger margin. Unfortunately, this parameter must be carefully chosen

to achieve the best model of the data.

After formulating the optimization task, the same steps used in the Hard

Margin SVM are used to add the slack variables - the merge of the KKT conditions

in a dual problem and solve the Lagrangian. Naturally, we want to minimize the

total sum of these penalties, so they are included in the function to be optimized

(see equation 3.37).

These steps are not explained here for the sake of simplicity. More details can

be found in [5]. In the end the following optimization task is obtained:

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jxi · x j (3.40)

subject to
n∑

i=1

αiyi = 0 (3.41)

and 0 ≤ αi ≤ C, i = 1, 2, . . .n (3.42)

There is only one difference between this problem and the one in the hard

margin SVM - the Lagrange multipliers are now between a lower bound (zero)

and an upper bound given by C. The penalization induced by the slack variables

ξi is not present in this optimization task but indirectly through C.

Finally, the classification is once again accomplished using equation 3.34.

3.5. The kernel SVM 37

3.5 The kernel SVM

While the Soft Margin SVM can give a good performance with non-linearly

separable classes, it can be further improved by working in a different feature

space [49, 50, 45]. This allows the SVM to find a decision boundary which better

discriminates both classes. The new feature space is of a higher dimension and

created using the kernel trick by means of a projection Φ(x). Therefore with a

non-linear kernel the margin corresponds to a linear boundary in this new feature

space. A geometric interpretation can be seen in figure 3.10.

(a) (b) (c) c

Figure 3.10: The SVM working in a hypothetical higher feature space. (a) A
non-linearly separable case. (b) A higher dimensional feature space where the
hyperplane can discriminate both classes. (c) The margin projected back into the
original feature space.

As said above at the end of section 3.3, the optimization task appears in a form

of inner products (see equation 3.30) between samples of indexes i and indexes

j. Thus, we only need to compute the dot products and do not require, in the

optimization task, the concrete data about samples xi and x j. This allows the SVM

to be made non-linear, as shown shortly. The dot products which were previously

in the form of xi · x j can now be written as:

K(u,v) = 〈Φ(u),Φ(v)〉 (Mercer’s Theorem) (3.43)

considering Φ(x) = x (3.44)

38 Chapter 3. Support Vector Machines (SVMs)

Consequently, the task to be optimized becomes:

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jK(xi, x j) (3.45)

subject to
n∑

i=1

αiyi = 0 (3.46)

and 0 ≤ αi ≤ C, i = 1, 2, . . .n (3.47)

Note the presence of C. We are adding the kernel trick to the soft-margin SVM,

where we have control over the structural risk. The function to be maximized

is a convex one and therefore, a quadratic programming problem like the ones

described before. As said above, the inner products are only required to be

calculated in the kernel’s space. This can be done before the optimization phase

and in this case the dot products are stored in matrix known as the Kernel Matrix:

Kn,n =


〈Φ(x1),Φ(x1)〉 〈Φ(x1),Φ(x2)〉 · · · 〈Φ(x1),Φ(xn)〉

〈Φ(x2),Φ(x1)〉 〈Φ(x2),Φ(x2)〉 · · · 〈Φ(x2),Φ(xn)〉
...

...
. . .

...

〈Φ(xn),Φ(x1)〉 〈Φ(xn),Φ(x2)〉 · · · 〈Φ(xn),Φ(xn)〉


Each element of the kernel matrix is a dot product between two vectors, xi and x j.

Thus, the matrix K is square and with n2 elements, because there are n vectors x

in the training set. Some examples of kernels are the following:

Linear

K(u,v) = 〈u,v〉 =

d∑
i=1

uivi (3.48)

Polynomial of degree q

K(u,v) = a · (〈u,v〉 + b)q, q > 0 (3.49)

the parameter a represents the function’s derivative while b sets the function’s

offset, i.e., where a(· · ·)q = 0.

RBF

K(u,v) = e−γ‖u − v‖2 (3.50)

the parameterγ controls the bell’s aperture. Its length is inversely proportional

3.6. The SMO algorithm 39

to the value of γ.

Hyperbolic Tangent or Sigmoid function

K(u,v) = tanh (a · 〈u,v〉 + b) (3.51)

the parameter a represents the variation at which the function increases while

b sets the function’s offset, i.e., where tanh(· · ·) = 0.

UKF

K(u,v) = L(‖u − v‖2 + σ2)−α (3.52)

in the same way as for the RBF kernel, the parameter σ controls the bell’s

aperture. α affects the decreasing speed around the origin and the constant L is

used to normalize the kernel, having usually the value 1 [53]. This kernel aims

to gather points near to each other, in a higher dimension space, since they are

strongly correlated. Therefore it can provide a smaller number of SVs and thus

fasten both the training and classification tasks. Additionally, the UKF kernel can

yield better performance generalization [4].

One limitation of the kernel SVM is that there are no practical methods for

selecting the best kernel function. Consequently, each classification case must be

investigated in order to find an appropriated kernel [48].

The classification is done using a modified version of equation 3.33, because

the weight vector w was calculated in a modified feature space. Hence, the classi-

fication is done after projecting vector x trough the kernel function K. Because we

are no longer working on the initial feature space, the classifier is now specified

using the Lagrange multipliers αi. Therefore, the SVM’s classification for a given

point z is an extension of the function 3.34 using the kernel trick:

y(z) = sign

b +

n∑
i=1

αiyiK(xi, z)

 (3.53)

3.6 The SMO algorithm

Most methods used before the SMO algorithm are slow because they are based on

Numerical Optimization libraries, in the form of third-party Quadratic Program-

ming (QP) solvers. Additionally, they require very high amounts of memory to

solve the task at hand. There are some better alternatives like working in chunks

40 Chapter 3. Support Vector Machines (SVMs)

of training samples [49] or decomposing the problem into a series of smaller QP

sub-problems [37, 39]

As a solution for the SVM’s existing slow optimization task, Platt developed

in 1998 an algorithm which he named Sequential Minimal Optimization(SMO).

This algorithm is based on Osuna’s decomposition scheme [37] and solves the

smallest possible optimization task at each step, updating two α variables. At

each step, only two α variables are required to be solved, because the function to

be optimized (equation 3.45) has in each instant two Lagrange multipliers in its

definition, αi and α j. Both multipliers must obey one linear constraint (equation

3.46) and be within the range defined by equation 3.47 [39, 8].

The training process for the soft-margin SMO algorithm with the kernel trick

is described below in Algorithm 2, which is a short resume based on Catanzaro’s

work [8].

Algorithm 2 Sequential Minimum Optimization

Require: xi ∈ χ, yi ∈ Ω, i ∈ {1 · · · n}
1: Initialize:
αi=0,
fi=−yi,
i ∈ {1 · · · n}

2: Initialize:
bhigh = −1,
blow = 1,
ihigh = min{i : yi = 1},
ilow = min{i : yi = −1}

3: Update: αilow, αihigh

4: repeat
5: Update fi, i ∈ {1 · · · n}
6: Compute: bhigh, blow, ihigh, ilow

7: Update αilow , αihigh

8: until blow ≤ bhigh + 2τ

Initially, all the αi are set to 0 as they satisfy the constraints defined in equation

3.47. After choosing ihigh and ilow in each SMO iteration (lines 5 trough 8 in

algorithm 2), the new values for the two Lagrange multipliers αnew
i are computed

as follows:

αnew
ilow

= αilow + yilow

bhigh − blow

η
(3.54)

αnew
ihigh

= αihigh + yilow yihigh(αilow − α
new
ilow

) (3.55)

where η corresponds to the second derivative of the objective function (equation

3.6. The SMO algorithm 41

3.45) and is defined as:

η = K(xihigh , xihigh) + K(xilow , xilow) − 2 · K(xihigh , xilow) (3.56)

η can be non-positive if a given kernel K does not obey Mercer’s conditions.

As noted by Platt [39] η can be zero if two samples share the same input vector.

Because the algorithm always chooses Lagrange multipliers which violate the

KKT conditions, the algorithm converges [37, 39].

Both αilow and αihigh must be in the range 0 ≤ αi ≤ C. If αilow changes by some

amount δ, αihigh changes with the same amount on the opposite direction (−δ),

because of the constraint defined in equation 3.46. Next, the KKT conditions

must be updated for each sample xi using:

fi = w(α) · zi − yi =

d∑
j=1

αiyiK(xi, x j) − yi (3.57)

which can be simplified to:

fi = f old
i + (αnew

ihigh
− αihigh)yihighK(xihigh , xi) + (αnew

ilow
− αilow)yilowK(xilow , xi) (3.58)

Since this algorithm is faster and uses less memory than other QP solving al-

gorithms, the implementations developed in this work use the described method.

The indexes of the next Lagrange multipliers to be updated, ilow and ihigh are

chosen from two corresponding sets:

Ilow = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C} ∪ {i : yi < 0, αi = 0} (3.59)

Ihigh = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0} ∪ {i : yi < 0, αi = C} (3.60)

Naturally, because there is some imprecision involved in the numerical pro-

cess, these indices are computed using a tolerance ε between each Lagrange

multiplier and limits 0 and C.

The optimality coefficients blow and bhigh are calculated as:

blow = max{ fi : i ∈ Ilow} (3.61)

bhigh = min{ fi : i ∈ Ihigh} (3.62)

For simplicity reasons, the mechanism used to chose ilow and ihigh is the first

42 Chapter 3. Support Vector Machines (SVMs)

order heuristic from [22]. For the next iteration, these indices are calculated in the

following way:

ilow = arg max{ fi : i ∈ Ilow} (3.63)

ihigh = arg min{ fi : i ∈ Ihigh} (3.64)

The algorithm is executed until the the optimality gap (blow − bhigh) is smaller

than threshold 2τ

blow ≤ bhigh + 2τ⇔ blow − bhigh ≤ 2τ (3.65)

where τ is a value in the range of 0 < τ < 1. After converging, the parameter b can

be calculated in two ways: as an arithmetic mean between blow and bhigh or as a

weighted average using the support vectors. As this last method is more precise

it is the one used. In this case b is calculated as follows, being nNS the amount of

support vectors, i.e., the number of samples having αi > 0:

b =
1

nSV

nSV∑
j=1

 n∑
i=1

αiyiK(xi, x j)

 − y j (3.66)

3.7 Multi-Threaded CPU implementation

In order to study the feasibility of the GPU implementation we first developed

a multi-threaded soft-margin kernel SVM. The classifier supports the five kernel

functions described in section 3.5 which are the following: linear, polynomial,

Gaussian (RBF), sigmoid and UKF kernels.

The program was written in C++ using OpenMP whose API allows developers

to write multi-threaded programs which use shared memory (also named Unified

Memory Access (UMA)). Programs written using this approach are in Flynn’s

taxonomy classified as SPMD because the same program is executed by different

threads but each processing a different subset of the data. This corresponds to a

modern multi-core computer with a centralized memory (RAM).

The OpenMP library uses the fork-join model of parallel execution where

programs begin as a single process: the master thread. The master thread executes

sequentially until the first parallel region construct is encountered. Shortly, the

execution is split by multiple threads and in the end of the region the master

3.8. GPU implementation 43

threads waits for the arrival of the other threads.

Even though the execution of the SMO algorithm is composed of sequential

tasks our emphasis is that some of the tasks can be safely parallelized. In fact,

these steps match the areas where most of the computation is done and, therefore,

where the algorithm consumes more time [24, 8]. One of such steps can be easily

identified as the KKT’s conditions update (using fi and the kernel Gram matrix),

which is the costliest arithmetic step in the SMO algorithm, as noticed in [24].

This corresponds to what is known as an embarrassingly parallel task, because

the calculus of each fi is independent of each other. Consequently, it fits nicely to

the multi-core CPU architecture.

The computation of the next blow, bhigh, ılow and ıhigh variables are done in the first

order heuristic search, which can be executed in parallel using the well-known

reduction operations min and max. Each thread works on a subset of both Ihigh and

Ilow and finds locally the variables specified in the beginning of this paragraph. The

master thread waits for the other thread’s results and then applies the reduction

operators. The calculus of offset b is also implemented in parallel for each SV. The

only SMO which are not parallelized are the Lagrange multipliers (αilow and αihigh)

update and the convergence verification (step 5 on algorithm 2).

From equation 3.53 it can be concluded that the classification is itself inherently

parallel as the classification of each sample is independent of the others. In

this implementation each thread classifies a group of points, equally distributed

between the threads (if possible).

The above parallel tasks are divided into equal parts, each one assigned to

a corresponding thread. In theory, if the original single-threaded SMO training

process takes Ts time, using a processor with P cores, the multi-threaded SMO

would execute in Tp = Ts
P and offer a speedup of P×. However, this theoretical

speedup is rarely achieved in practice because part of the code is not parallelized.

Even though the algorithm can be fully parallel, the sequential sections always

exist (Amdahl’s law) due to: (i) synchronization, where some threads must wait

for the completion of others, (ii) memory bandwidth, which is shared by all CPU

cores, and (iii) mutual exclusion areas, among other reasons.

3.8 GPU implementation

The GPU implementation is based on the multi-threaded CPU version and exe-

cutes the same SMO steps in parallel. It was written in C++ using both the API

CUDA and supporting classes provided by the library GPUMLib.

44 Chapter 3. Support Vector Machines (SVMs)

Being the GPUs massively parallel processors with many cores the multi-

threaded algorithm was modified in order to take advantage of both the greater

computing power and memory bandwidth available in modern GPUs. Therefore,

the implementation has multiple threads running where each thread works on

an independent sample and is handled by the SMs. The aim of our work is to

have enough threads executing in parallel handled in order to maximize the SMs

occupancy, unless there is not enough data to fill all the SMs. The worst case

scenario is when the SMs have a minimal amount of calculus to be done and are

mostly waiting for their data to be fetched from the shared memory or the GPU

RAM. The major example of this bottleneck is the first order heuristic because

it cycles trough all the elements of the training data in order to find a minimum

and maximum value (constrained to the sets in 3.6). Naturally, this is a memory

bandwidth bound step [36].

For the remaining SMO steps and to minimize thread divergence, if possible,

each thread follows the same path as the remaining threads of its block (executes

the same instruction). In case the thread’s result is not needed, it is simply dis-

carded. Also, to maximize the performance of each SMO step this implementation

makes use of C++’s templates so that there is an optimized version of each function

depending on the program’s execution.

The classifier is also parallelized. Unlike the multi-threaded CPU implemen-

tation where each thread classifies a equally sized group of samples, in the GPU

version each thread classifies a single sample. This is efficient because all the

threads in a block (having increasing IDs) classify sequential patterns and there-

fore work in sync, executing the same instruction in their warp and minimizing

thread divergence. For datasets with a higher number of features the speed of the

training algorithm will be limited by the SPs computing speed and on the other

hand, datasets with a smaller number of features will be limited by the GPUs’s

memory bandwidth because there is a smaller computation to be done in each

SMO step.

In order to minimize the overhead incurred by checking the convergence of

the SMO algorithm, the implementation makes use of kernel streams. Streams

are fluxes of execution which can be done in parallel by both the GPU driver and

the hardware. Because the SMO algorithm is sequential, the execution of its steps

is done entirely in one stream (stream 1 in figure 3.11). In parallel, the CPU uses

another stream (stream 6 in figure 3.11 which corresponds to the transfer of data

from the GPU device to the host) to periodically retrieve some variables from the

GPU’s memory. These variables are required to check if the learning process has

3.8. GPU implementation 45

converged. Consequently, the SMO algorithm occupies most of the GPU’s time

while being minimally disturbed for checking its convergence.

Figure 3.11: Profiling of the SMO algorithm executing on the GPU. The algorithm
executes on stream 1 while its convergence is verified on stream 6.

Figure 3.12: Overhead of both the data requests and query status from the GPU.

Figure 3.13: Using a batch of 16 iterations for the SMO algorithm.

An additional improvement was done after noting that while still using mul-

tiple streams the algorithm did not fully fill the GPU usage. As can be seen in

figure 3.12 either when the CPU (host) requests asynchronously the transfer of

the required variables or queries their delivery the next SMO step is executed

on average 1.6 ms later (using a NVIDIA GeForce GTX 570 on a Windows 7 x64

46 Chapter 3. Support Vector Machines (SVMs)

operating system). Naturally, when compared with the time spent on each step

of the algorithm this unused time may be much larger, depending on the dataset.

Because the algorithm’s convergence must be verified and its execution is done

on the GPU device, the solution used to maximize the GPU occupancy is to exe-

cute more steps of the SMO algorithm while requesting less data from the GPU.

Consequently, we execute a “batch” n of iterations and only then the convergence

is verified. After some experiments we concluded that an acceptable value for

n is 16 (figure 3.13). Naturally, this forces the number of iterations done in our

GPU implementation to be a multiple of n which may increase the time spent

by the algorithm. However, doing more iterations of the algorithm decreases the

optimality gap and improves the classifier performance. The parameter n can be

specified by the user.

3.9 Existing GPU SVM implementations

To date, there are four implementations of SVM for the GPU: Catanzaro’s gpuSVM

[8], Herrero’s multiSV [20], Carpenter’s cuSVM and Lin’s sparse SVM [25]. All of

these are written in CUDA for NVIDIA’s GPUs.

This work follows the first implementation of a SVM classifier using pro-

grammable GPUs, named “gpuSVM” and actually a binary classifier. This imple-

mentation was largely the work of Catanzaro, Sundaram and Keutzer and was

developed targeting the first programmable GPU, the G80 (GeForce 8800 GTX).

It explores the heaviest compute bound step of the SMO algorithm, the update

of KKT conditions. Also done on the GPU is the search for the next Lagrange

multipliers to be updated, using a first order heuristic. Their implementation also

makes use of a second order heuristic from [14] which tries to choose the next

Lagrange multipliers so that these may cause a higher change in the objective

function. However, this heuristic’s computation may take some time and conse-

quently, the algorithm may take a performance hit. Finally, their algorithm caches

the most calculated kernel dot-products in RAM in order to minimize the amount

of calculus. Compared to the well known LIBSVM software, they had a perfor-

mance increase in the range of 9× to 35× for the training implementation. For the

classifier, they parallelized the kernel dot product between the support vectors

and the testing samples using the CUBLAS library, all in a single step. Then a

sum-reduce operation is done for each testing sample (equation 3.53). Using this

approach, their speedup was in average about 110× [8].

Another implementation, this one supporting multiple classes, is Herrero et

3.10. Conclusions 47

al’s “multiSVM”. Their work is very similar to Catanzaro’s, but it executes differ-

ent binary classifiers at the same time on the GPU. Additionaly, i uses NVIDIA’s

CUBLAS algebra library to help calculating the kernel matrix.

An implementation which is also largely based upon “gpuSVM” is “cuSVM”

by Carpenter. The major improvement to Catanzaro’s work is the usage of mixed

precision floating point arithmetic. In “cuSVM” most computations are done in

32-bit precision (float) but some computations like the sum of dot products are

done and stored in double precision floating point (64-bit double). According to

the author, this can be of extreme importance for some data sets, like the “Forest”

data set, which in fact doesn’t appear in Catanzaro’s results. However, this

requires the support of double precision floating point from the GPU, something

which is not available in older GPUs.

Finally, Lin et al proposed the usage of sparse matrices for cache the kernel

matrix. Their work is also very similar to Catanzaro’s SVM. They claim an

speedup over “gpuSVM” of 1.9× to 2.41×. However, in one dataset, Usps, they

had a slower result than Catanzaro’s implementation. It seems that on their

case, the dataset has an impact on the program’s training time. As they state

on their article, the sparse matrix structure is affected by the dataset. Also, the

non-existence of efficient sparse matrix-matrix multiplication algorithms means

their implementation could be better.

3.10 Conclusions

In this Chapter we thoroughly reviewed Support Vector Machines (SVMs) from

the standpoint of making possible an implementation. There are many imple-

mentations of SVMs both in CPU and GPU. However, one main driver of this

Dissertation is to incorporate the GPU-SVM component software in the GPUMLib

Software which is Open Source available. The main advantage of our implemen-

tation will be its open source architecture allowing researchers and practitioners to

use and extend it for research or any other suitable purposes. Besides we added a

new kernel which brings an increased value to this component from the scientific

point of view. As expected, it will be possible to run with improved performance

large scale problems such as those occurring in bioinformatics, biometrics, image

processing and web mining.

Chapter 4

Experimental results

In this chapter we present the validation results obtained with our multi-threaded

CPU and GPU SVM implementations. In section 4.1 we define the metrics used

to assess both the classifier’s speed and performance. The datasets used in the

experiments are described in section 4.2. Eight of the datasets were taken from

the UCI Machine Learning repository, available at http://archive.ics.uci.

edu/ml/. The “spiral” dataset was produced exclusively for this dissertation, in

order to test the UKF kernel performance. The MP3 Steganalysis dataset was

extracted from a real problem using the four methods described in [40]. This

dataset is composed of two classes: normal MP3 audio files (cover) and the

same MP3 files with hidden information (stego). The Peptidases dataset is also

a real problem consisting in the prediction of peptidases and non-peptidases

proteins [27]. Section 4.3 contains the configuration used for each dataset. In

section 4.4 we present the results in the form of tables and graphs. Finally, in

section 4.5 the results are discussed and we give a short conclusion about our

GPU implementation.

4.1 Evaluation metrics

In this section we define the metrics used in Machine Learning to assess the

classifier’s performance.

Cross validation is an evaluation method which helps to decide the optimal

parameters for a given classifier and estimate how well the classifier will respond

when it is required to make new predictions for data which it was not trained for.

Because in real applications we only have access to a limited number of samples,

the methods used to assess the classifier’s performance will have an impact on

its future performance [17, 23]. There are many kinds of validation algorithms,

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

50 Chapter 4. Experimental results

some of which are summarized in the following sections.

Holdout

The holdout is the simplest validation method. From the initial dataset, two sub-

sets are created, one for training and another for testing. It has the problem of in

the case we have a small dataset, it may be difficult to put aside a significant part

of the data exclusively for validating the classifier.

Random Sub-sampling

This method, also known as Monte Carlo cross-validation, is a repeated version

of the holdout. It randomly selects individual samples to build the training set

and without replacement, it assigns different samples to the test set. After the

training and testing set are build, the classifier is evaluated. The final classifier

performance is obtained from the average results obtained with each run.

K-Fold

The K-Fold cross-validation is similar to the random sub-sampling validation.

Being k the number of folds in each training phase, the training dataset has K−1
K

elements from the initial dataset. The remaining 1
K of the dataset are used as the

testing set so that the classifier’s performance can be measured. This process is

repeated K times while the folds rotate and get attributed to either the training

or the testing sets (figure 4.1). The classification error is averaged through all

K runs and consequently its standard deviation decreases as K is increased. In

short, cross-validation allows us to figure how the classifier will generalize in a

new dataset [44]. When compared to random sub-sampling, K-Fold eventually

uses all the samples for both the training and testing sets, which doesn’t happen

with sub-sampling because of its random nature.

The choice of the number of folds K naturally has an impact on the classi-

fiers’ performance. A larger number of folds will allow a good estimative of the

classifiers performance on the real world. However this estimative will have a

larger variance because many test sets may fall outside of the model learned by

the classifier and be incorrectly predicted. And naturally, more folds imply more

executions of the training and classification tasks which could make the validation

procedure costly.

4.1. Evaluation metrics 51

original
dataset

four folds

Figure 4.1: Example of “K-Fold” cross-validation using four folds. The green
folds correspond to the testing set while the red folds correspond to the training
set.

On the other hand, a smaller number of folds presents opposing advantages

and disadvantages. The computation time done by the validation procedure and

the variance of the estimator (performance) will be both smaller when compared

to using a higher number of folds. However, the variance of the testing error

will also be smaller and therefore more conservative, which may not reflect what

would happen in a real problem.

In practice, the number of folds depends on the size of the problem, including

the complexity of the dataset and training. According to literature, typical values

for K are 5 and 10 [17, 23].

Leave-one-out

This method can be seen as an extreme version of the K-Fold validation, when K

is equal to the number of samples n. Thus, the training set is always comprised

of n − 1 samples and the test set composed of a single sample. As for the K-Fold

technique, the process is repeated n times. This validation method has the clearly

disadvantage of requiring the most training time and therefore of running the

experiments.

52 Chapter 4. Experimental results

Performance metrics

The performance metrics are defined using the well known Confusion Matrix,

shown in table 4.1. To create this matrix, the classifier is trained with the training

set and later is given the testing set, where it predicts a classification based on

the testing set. The first row of the matrix lists the possible values for the actual

(desired) class and in the first column we have the same values for the predic-

tion. Therefore, the elements of the confusion matrix compare each positive or

negative prediction against the same two possibilities of the actual class. When

the classifier’s result is predicted correctly, the outcome is either a true positive

or a true negative, depending on the class. On the other hand, if the classifier

misclassifies the actual class, we have a false outcome.

Actual class

Negative Positive

Predicted class
Negative True Negative (TN) False Negative (FN)

Positive False Positive (FP) True Positive (TP)

Table 4.1: Confusion Matrix.

The performance metrics, calculated from the confusion matrix are presented

next.

• Precision

Precision shows the proportion of the correctly predicted positive cases

relative to all the positives:

Precision =
TP

TP + FP
(4.1)

• Recall

The recall, sensitivity or True Positive Rate (TPR) represents how many

positives the classifier did correctly predict. That is, a high recall means the

classifier could have given some false positives, but classified correctly most

of the positives.

Recall =
TP

FN + TP
(4.2)

• False Positive Rate (FPR)

4.1. Evaluation metrics 53

FPR is the proportion of how many incorrect positives did the classifier

predict in all positive predicted cases:

FPR =
FP

FP + TP
(4.3)

• Specificity

The Specificity or True Negative Rate (TNR) refers to how accurately the

classifier did predict the positives without giving false positives.

Sensitivity =
TN

TN + FP
= 1 − FPR (4.4)

• False Discovery Rate (FDR)

The FDR is the expected proportion of false positives among all predicted

positive cases:

FDR =
FP

FP + TP
(4.5)

• Accuracy

The accuracy represents how many predictions were in fact correct:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.6)

• F-score

The F-score is a harmonic mean of the precision and recall. It is similar to

accuracy.

F1 =
2 · Recall · Precision
Recall + Precision

(4.7)

A different metric, shown in equation 4.8 is needed to measure the performance

of the parallel implementation in relation to the sequential version. This metric,

the speedup, which is basically the reduction in time done by the parallel version

against the sequential:

Speedup =
Tsequential

Tparallel
(4.8)

Usually all algorithms which focus in improving speed over an existing version

have their speedup shown using the above formula.

54 Chapter 4. Experimental results

When comparing SVM implementations it is also useful to compare the amount

support vectors (SVs) generated. The least the implementation uses while still

having a good classification performance, the better.

4.2 Datasets

Both our multi-threaded CPU implementation and the GPU version are currently

binary. Therefore, we use two-class datasets for the experiments. Table 4.2

presents the main characteristics of the chosen datasets, where the last two rows

correspond to the real datasets from [27, 40]. Before running the experiments, all

of the datasets were normalized using standard score normalization.

Dataset #Samples #Features #Classes

Adult 32561 14 2

Breast Cancer 569 30 2

German 1000 59 2

Haberman 306 3 2

Heart 270 20 2

Ionosphere 351 34 2

Sonar 208 30 2

Tic-tac-toe 958 9 2

Spiral 2097152 2 2

Peptidases 20778 24 2

MP3 Steganalysis (stego) 1994 742 2

Table 4.2: Datasets used in the validation of the GPU implementation.

With the exception of the MP3 Steganalysis, the Spiral and the Peptidases, the

remaining datasets were obtained at the UCI repository. The UCI datasets are

summarized below:

• The task of the adult dataset consists of predicting if a person as an annual

income greater than 50,000 dollars per year based on attributes such as age,

sex, job, education, etc. This dataset was extracted from the 1994 census

database.

• The Breast cancer dataset aims to discriminate between benign and ma-

lignant diagnosis. It is composed of samples taken from pictures of breast

4.2. Datasets 55

masses. Each feature corresponds to a characteristic of the cell nuclei present

in the pictures.

• The German dataset classifies credits attributed to individuals as good or

bad (risky) credits, using characteristics as the person’s salary, employment,

possessed goods, age, type of housing, etc. The name (german) comes from

the fact it is a study done in Germany.

• The Haberman dataset contains cases from study conducted on the survival

of patients who had undergone surgery for breast cancer.

• The Heart dataset is similar to the “Breast Cancer” dataset but related to the

diagnosis of heart problems.

• The Ionosphere dataset relates the evidence of some kind of structures in

the ionosphere using data retrieved from 16 high-frequency antennas.

• The Sonar dataset contains patterns composed of signals extracted from the

reflection of radio waves on two types of objects: metal cylinders and rocks.

Each individual signal corresponds to the intensity of a frequency present

in the received radio wave after being reflected by the target. The aim of the

dataset is to detect the type of the target.

• The Tic-tac-toe dataset encodes the complete set of possible board config-

urations at the end of various games when the “X” player starts the game

and wins in the end. Naturally, the game finishes when player “X” makes

three-in-a-row.

The Two-Spiral dataset was produced in order to assess the UKF kernel effi-

ciency. The main task consists of learning to discriminate between data distributed

on two distinct spirals that coil around each other in the x-y plane. As this dataset

has two features it can be easily understood using a graphical plot (see Figure 4.2).

The peptidases dataset consists of discriminating between peptidases and

non-peptidases. Protein classification into functional and structured groups is

an important task in the understanding of the inner biological cell functioning.

Peptidases are a class of enzymes that catalyze chemical reactions, allowing the

decomposition of protein substances into smaller molecules. The data composing

this dataset was extracted using the mechanisms described in Lopes et al. [27]

and kindly provided by the authors.

Lastly, we used a real dataset produced by the authors for a study regard-

ing stegalaysis - the MP3 Steganalysis dataset. This field comprises techniques

56 Chapter 4. Experimental results

210-1-2

2

1

0

-1

-2

Figure 4.2: Scatter plot of the dataset “Spiral”.

used to hide and detected confidential information behind innocent data. As the

dataset name suggests, the dataset was extracted from compressed MP3 audio

files divided in two groups: original MP3 audio files (cover) and files with hid-

den information (stego). The data was extracted from a real problem using the

methods described in [40].

The datasets were normalized before being used in the experiments using

the standard score procedure which normalizes each sample (x) according to the

population’s mean (x̄) and standard deviation (σ) as follows:

xi =
xi − x̄
σ

(4.9)

In machine learning, normalization is very important in order to minimize the

impact that features, with a wide range of values may have upon the learning

algorithm. Using normalized data, SVMs are able to achieve a better performance,

because the kernel’s parameters are independent of the features. For example,

when using the RBF kernel, the user cannot specify a different σ for each feature.

Therefore all features should have the same range. This can be accomplished by

normalizing.

4.3. Experimental setup 57

Dataset C γ τ

Adult 1.0 0.100 0.01
Breast Cancer 3.0 0.050 0.01

German 1.0 0.050 0.01
Haberman 1.0 1.000 0.01

Heart 0.1 0.050 0.01
Ionosphere 1.0 0.500 0.01

Sonar 3.0 0.050 0.01
Tic-tac-toe 3.0 0.250 0.01

Spiral 0.56 11.30 0.01

Peptidases 0.1 0.250 0.01
MP3 Steganalysis 1.0 0.001 0.01

Table 4.3: Configuration used in the RBF kernel.

4.3 Experimental setup

We ran the experiments 10 times for each dataset which were normalized using

standard score normalization. We used a 5 K-Fold cross validation. Consequently,

each classifier was run 50 times.

As our implementation doesn’t make use of a kernel cache we set LIBSVM’s

cache to one MegaByte. This was the only way to minimize LIBSVM’s cache usage

as it does not have an option to completely disable it. However, one MegaByte

of cache can still be a significant improvement. LIBSVM is a purely sequential

program, consequently it has no options to change the amount of threads. The

LIBSVM version we used was 3.12. For our CPU implementation, we set the

number of threads to 4 so that each thread can be assigned to one of the four cores

of the system’s CPU.

Unless otherwise specified, the three classifiers used the RBF (Gaussian) ker-

nel. All the parameters, including those used in the UKF kernel, were chosen

using a grid search in order to obtain the best classification performance from the

classifiers. This test was done to compare the generalization capability of the UKF

kernel. These are shown in tables 4.3 and 4.4. The numerical tolerance ε used in

the first order heuristic was set to 1 × 10−5 and the optimality gap τ to 0.01. For

comparing the UKF against the RBF kernel we used our Multi-Threaded CPU

SVM in order to have the same heuristic search and algorithms for both kernels.

The system used to extract the results had 12 GB of RAM and an Intel Quad

Core i5-750 (3.33 GHz) processor. As a result of this CPU having Intel’s Turbo

Boost technology, which changes the processor’s speed according to the proces-

58 Chapter 4. Experimental results

Dataset C L σ α

Adult 0.16 0.64 0.64 0.01
Breast Cancer 6.10 6.10 6.10 0.16

German 0.16 10.24 0.02 0.16
Haberman 6.10 0.06 0.01 0.16

Heart 6.10 0.97 0.06 0.01
Ionosphere 5.25 3.50 5.25 0.04

Sonar 5.25 1.50 5.25 0.53
Tic-Tac-Toe 2.44 6.10 2.44 0.39

Spiral 0.10 5.15 0.50 7.78

Peptidases 2.56 10.24 0.16 0.04
MP3 Steganalysis 2.56 10.24 10.24 0.64

Table 4.4: Settings used in the UKF experiments.

sor’s load, that technology was disabled in order to have the same clock speed

throughout all the experiments. The machine has a NVIDIA GeForce 570 GTX

GPU. Its characteristics are described on table 4.5.

Table 4.5: NVIDIA GeForce 570 GTX characteristics

Number of SPs 480

IEEE single precision (float) performance 748.8 GFlops

Number of SMs 15

Shading clock speed 1.56 GHz

Memory size 1.25 GB

Memory bandwidth 152.0 GB/s

Shared memory per block 48 KB

One important difference between the GPU-SVM and the other classifiers

(CPU-SVM and LIBSVM) is that the GPU version only uses single precision (32-

bit) floating point data types because of architectural limitations.

4.4 Results

In this section we present the classification performance obtained using the three

classifiers for all the datasets. We also compare differences in performance be-

tween the GPU version and LIBSVM training times for the three heaviest datasets

(adult, spiral and mp3 steganalysis).

4.4. Results 59

The next tables present the classification performance for each classifier and

dataset followed by a table comparing the number of SVs, F-Score and iterations

between the GPU implementation and LIBSVM. The two last results compare the

speedup obtained by our GPU implementation against LIBSVM in both classifi-

cation and training tasks.

Adult dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 84.65±0.39 88.01±0.42 92.37±0.42 90.13±0.28 9781.76 ±56.38

GPU-SVM 80.97±0.80 91.89±0.64 82.19±1.45 86.76±0.67 9801.94 ±56.43

LIBSVM 84.72±0.38 86.62±0.30 94.47±0.36 90.38±0.24 9788.40 ±48.90

Table 4.6: Performance results for the Adult dataset.

Breast Cancer dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 97.48±2.26 96.95 ±2.68 96.32±2.92 96.59±1.90 113.28±5.18

GPU-SVM 95.42±2.02 100.00±0.00 87.64±5.45 93.32±3.12 115.46±4.85

LIBSVM 97.76±1.49 97.93 ±2.26 96.09±3.10 96.96±2.02 114.44±4.89

Table 4.7: Performance results for the Breast Cancer dataset.

German dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 73.61±1.65 74.40±0.98 95.00±1.94 83.44±1.08 713.70±5.53

GPU-SVM 73.28±2.90 80.04±1.73 82.41±4.14 81.15±2.36 718.94±5.04

LIBSVM 73.03±1.32 73.11±0.76 97.24±1.27 83.46±0.82 718.74±5.14

Table 4.8: Performance results for the German dataset.

60 Chapter 4. Experimental results

Haberman dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 71.85±4.42 77.17±2.59 87.99±5.64 82.14±3.13 149.14±4.84

GPU-SVM 72.72±4.06 76.51±2.31 91.05±4.12 83.11±2.66 152.42±4.55

LIBSVM 72.92±3.50 75.55±1.99 93.39±4.21 83.49±2.31 151.20±4.41

Table 4.9: Performance results for the Haberman dataset.

Heart dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 83.18±4.64 83.33±5.04 88.00±5.97 85.44±4.09 175.74±3.09

GPU-SVM 83.33±4.92 87.15±5.01 82.74±6.61 84.73±4.70 178.28±2.98

LIBSVM 82.37±4.96 79.72±5.33 91.95±4.38 85.30±4.00 177.18±3.10

Table 4.10: Performance results for the Heart dataset.

Ionosphere dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 89.66±3.38 98.49±1.57 85.02±5.37 91.16±3.13 215.10±3.08

GPU-SVM 67.52±2.00 66.23±1.35 99.60±0.85 79.55±1.06 218.72±3.20

LIBSVM 89.06±3.58 98.58±1.51 84.22±5.64 90.72±3.29 217.74±3.23

Table 4.11: Performance results for the Ionosphere dataset.

Sonar dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 85.77±4.90 82.32±5.67 93.47±6.84 87.30±4.39 151.10±2.57

GPU-SVM 88.16±4.57 92.20±5.15 85.07±9.42 88.06±5.18 154.82±2.39

LIBSVM 84.65±4.78 80.93±5.65 94.18±6.15 86.83±4.00 153.74±2.36

Table 4.12: Performance results for the Sonar dataset.

4.4. Results 61

Tic-Tac-Toe dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 97.70±1.22 96.72±1.72 99.90±0.26 98.28±0.90 548.36±10.08

GPU-SVM 98.98±0.88 98.98±1.10 99.47±0.74 99.22±0.67 553.18±10.58

LIBSVM 97.72±1.26 96.74±1.77 99.90±0.26 98.29±0.93 551.78±10.89

Table 4.13: Performance results for the Tic-Tac-Toe dataset.

Spiral dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

LIBSVM 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 939.86±58.23

CPU-SVM 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 698.80±28.65

GPU-SVM 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 1053.10±67.49

Table 4.14: Performance results for the Spiral dataset.

Peptidases dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 88.93±0.15 88.71±0.13 99.99±0.01 94.02±0.07 6467.36±18.49

GPU-SVM 96.25±0.24 97.57±0.23 98.13±0.31 97.85±0.14 6849.42±23.73

LIBSVM 96.04±0.23 96.63±0.26 98.90±0.17 97.75±0.13 3829.62±17.31

Table 4.15: Performance results for the Peptidases dataset.

MP3 Steganalysis dataset

Accuracy (%) Precision (%) Recall (%) F-Score (%) nSVs

CPU-SVM 97.05±0.87 96.87±1.17 97.26±1.28 97.06±0.88 346.16±7.11

GPU-SVM 96.07±1.29 93.75±2.23 98.80±0.74 96.19±1.21 348.82±7.06

LIBSVM 96.92±1.00 96.40±1.42 97.50±1.24 96.94±0.99 348.08±7.16

Table 4.16: Performance results for the MP3 Steganalysis dataset.

62 Chapter 4. Experimental results

Number of Support Vectors (SVs), F-Score and SMO iterations

comparison

nSVs (%) F-Score (%) Iterations (%)

Adult -0.89↓ -3.90↓ -29.98↓

Breast -0.14↓ -4.17↓ -40.66↓

German -0.03↓ -2.85↓ -5.55↓

Haberman -0.81↓ -0.45↓ -50.49↓

Heart -0.62↓ -0.67↓ -1.69↓

Ionosphere -0.45↓ -14.05↓ -14.96↓

Sonar -0.70↓ 1.40↑ -11.87↓

Tic-tac-toe -0.25↓ 0.94↑ -17.12↓

Spiral -33.64↓ 0.0= -54.05↓

Peptidases -78.85↓ 0.10↑ -49.03↓

Steganalysis -0.21↓ -0.78↓ -33.17↓

Mean -10.60↓ -2.21↓ -28.052↓

Table 4.17: Improvements on the amount of Support Vectors, F-Score and SMO
iterations of the GPU version compared to LIBSVM. A negative value indicates
that our GPU obtained lower results which is also graphically shown with a
decreasing arrow.

Adult dataset speedup

Classifier Classification (s) Training (s)

CPU-SVM 0.84±0.12 14.83±0.42

GPU-SVM 0.03±0.01 2.24 ±0.22

LIBSVM 2.02±0.07 30.49±0.72

CPU improvement over LIBSVM ↑2.27× ↑2.06×

GPU improvement over LIBSVM ↑67.33× ↑13.61×

Table 4.18: Speedup and iterations taken by the classifiers for the Adult dataset.

4.4. Results 63

MP3 Steganalysis dataset speedup

Classification (s) Training (s)

CPU-SVM 0.02±0.01 0.34±0.02

GPU-SVM 0.06±0.01 0.68±0.07

LIBSVM 0.57±0.02 2.37±0.05

CPU improvement over LIBSVM ↑29.53× ↑6.88×

GPU improvement over LIBSVM ↑9.5× ↑3.48×

Table 4.19: Speedup and iterations taken by the classifiers for the MP3 Steganalysis
dataset.

Spiral dataset speedup

Classification (s) Training (s)

CPU-SVM 3.02±0.50 21.26±0.19

GPU-SVM 0.04±0.11 0.89±0.01

LIBSVM 11.72±0.19 146.72±0.42

CPU improvement over LIBSVM ↑3.88× ↑6.90×

GPU improvement over LIBSVM ↑265.85× ↑165.15×

Table 4.20: Speedup and iterations taken by the classifiers for the Spiral dataset.

64 Chapter 4. Experimental results

UKF kernel results

Dataset Kernel Accuracy Precision Recall F-Score nSVs

adult RBF 84.65±0.39 88.01±0.42 92.37±0.42 90.13±0.28 9781.76±56.38

adult UKF 83.36±0.37 86.12±0.33 93.09±0.33 89.47±0.26 12543.60±56.63

german RBF 73.61±1.65 74.40±0.98 95.00±1.94 83.44±1.08 713.70± 5.53

german UKF 71.79±3.15 71.62±3.41 98.96±1.08 83.04±2.08 795.60±13.89

breast RBF 97.48±1.41 96.95±2.68 96.32±2.92 96.59±1.90 113.28±5.18

breast UKF 98.11±1.00 98.33±2.11 96.51±1.91 97.39±1.46 63.08±3.03

haberman RBF 71.85±4.42 77.17±2.59 87.99±5.64 82.14±3.13 149.14±4.84

haberman UKF 72.45±4.91 76.06±4.67 91.31±5.13 82.85±3.58 231.08±4.03

heart RBF 83.18±4.64 83.33±5.04 88.00±5.97 85.44±4.09 175.74±3.09

heart UKF 82.93±3.59 83.57±6.35 86.83±6.00 84.85±3.41 181.52±5.52

ionosphere RBF 89.66±3.38 98.49±1.57 85.02±5.37 91.16±3.13 215.10±3.08

ionosphere UKF 94.28±3.04 93.68±3.59 97.70±2.20 95.61±2.30 101.40±3.99

sonar RBF 85.77±4.90 82.32±5.67 93.47±6.84 87.30±4.39 151.10±2.57

sonar UKF 85.10±4.81 84.83±6.86 88.07±6.14 86.19±4.69 129.76±3.84

tic-tac-toe RBF 97.70±1.22 96.72±1.72 99.90±0.26 98.28±0.90 548.36±10.08

tic-tac-toe UKF 98.17±0.94 97.60±1.30 99.61±0.78 98.59±0.76 475.64±10.95

spiral RBF 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 698.80±28.65

spiral UKF 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 324.00±3.66

peptidases RBF 88.93±0.15 88.71±0.13 99.99±0.01 94.02±0.07 6467.36±18.49

peptidases UKF 96.73±0.25 97.18±0.28 99.11±0.17 98.14±0.14 5097.64±57.52

steganalysis RBF 97.05±0.87 96.87±1.17 97.26±1.28 97.06±0.88 346.16±7.11

steganalysis UKF 93.02±0.78 91.67±1.87 94.68±1.54 93.12±0.83 1019.44±8.51

Table 4.21: UKF vs RBF kernel results for the eleven datasets using our Multi-
Threaded CPU SVM.

4.4. Results 65

UKF kernel times and iterations versus RBF kernel

Dataset Kernel Classification (s) Training (s) Training iterations

adult RBF 1.03±0.06 17.73±0.59 15316.02±325.10

adult UKF 2.21±0.03 15.52±0.16 6866.16± 32.37

german RBF 0.01±0.00 0.09±0.00 755.60±16.25

german UKF 0.01±0.00 0.14±0.02 1032.76±21.83

breast RBF 0.01±0.00 0.03±0.00 273.20±26.07

breast UKF 0.00±0.00 0.03±0.01 225.84±24.54

haberman RBF 0.01±0.00 0.03±0.00 337.42±48.24

haberman UKF 0.00±0.00 0.03±0.01 281.56± 8.23

heart RBF 0.01±0.00 0.01±0.00 91.14±2.37

heart UKF 0.00±0.00 0.01±0.00 135.72±4.47

ionosphere RBF 0.01±0.00 0.03±0.00 313.30±16.30

ionosphere UKF 0.00±0.00 0.01±0.00 141.08±18.43

sonar RBF 0.01±0.00 0.02±0.00 213.58± 9.09

sonar UKF 0.00±0.00 0.01±0.00 155.08±11.65

tic-tac-toe RBF 0.01±0.00 0.15±0.01 1649.22±64.93

tic-tac-toe UKF 0.00±0.00 0.21±0.02 1970.84±66.02

spiral RBF 3.02±0.12 21.26±2.03 495.50±39.09

spiral UKF 2.94±0.34 13.21±0.52 165.60± 1.69

peptidases RBF 0.42±0.03 3.97±0.20 4430.64±20.59

peptidases UKF 0.64±0.06 7.80±0.83 6040.76±64.32

steganalysis RBF 0.02±0.00 0.34±0.02 465.18±22.06

steganalysis UKF 0.05±0.01 0.92±0.04 1148.24±11.62

Table 4.22: Number of training iterations and both classification and training times
when using the RBF and UKF kernels. The classifier used was the Multi-Threaded
CPU SVM.

66 Chapter 4. Experimental results

Speedup vs number of threads (adult dataset)

Training Classification

Threads Time (s) Speedup Time (s) Speedup

5 21.79 ± 0.36 2.44 1.03 ± 0.14 3.20

4 14.83 ± 0.42 3.58 0.84 ± 0.12 3.93

3 19.04 ± 0.41 2.79 1.10 ± 0.08 2.99

2 27.94 ± 0.66 1.90 1.66 ± 0.03 1.99

1 53.13 ± 1.06 1.00 3.30 ± 0.03 1.00

LIBSVM 30.49 ± 0.72 1.74 2.02 ± 0.07 1.63

Table 4.23: Speedup achieved by the multi-threaded CPU SVM over the sequential
CPU version (one thread) using the “adult” dataset. For comparison, we include
the LIBSVM times.

54321

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Number of threads

S
p

ee
d

u
p

1.74 (LIBSVM training)

1.63 (LIBSVM classification)

Training
Classification

Variable

Figure 4.3: Speedup achieved by the CPU version when increasing the number
of threads. Using the results shown in table 4.23.

4.5 Discussion

Using the Gaussian (RBF) kernel the performance and amount of support vectors

used by our classifiers is within 1% tolerance of the same number used by LIBSVM

4.5. Discussion 67

(table 4.17). In most datasets the GPU implementation has a similar performance

to the other classifiers. The only exception is with the dataset “Ionosphere” (table

4.11. The inferior performance in this case can only be explained by the usage of

a lower floating precision arithmetic (float data type) which is the only significant

difference between our implementations.

The speedups achieved with the multi-threaded CPU SVM (shown in table

4.23) are promising and prove that a GPU SVM was feasible and can provide faster

execution times. Using four threads in the quad-core CPU of the test machine gave

the fastest times so we conclude that in that case all the threads are given work

fully occupied. As can be seen in table 4.23 and figure 4.3 when using two or more

threads our simple implementation outperforms LIBSVM using on average 68.5

% less time in both classification and training. Naturally, the classification task

scales better with increasing number of threads when compared to the training

task. The main reason behind this is that the classification process is essentially

parallel. More details regarding the results we obtained with our Multi-Threaded

CPU SVM can be seen in Gonçalves et al. [16].

LIBSVM makes use of two important optimizations our implementation does

not: second order shrinking heuristic and caching of kernel computations [9].

Caching can be very useful, as we did verify in the “adult” dataset while debug-

ging the calculated kernel dot products. If using caching, the classifier could have

reduced the total amount of kernel dot products in about 33 %. If our imple-

mentation could cache these repeated calculus, that alone could in theory provide

a speedup of 100
100−33 ≈ 1.5×, for the given dataset. The second order heuristic

[14] is also reported in the literature to usually reduce the training time although

sometimes it can increase it [8]. Another advantage of the LIBSVM is the use of

optimized matrix manipulation operations which our implementation does not

make use of [9]. Therefore, our CPU implementation is only faster when using

two or more threads. It is comprehensible as LIBSVM has many years of research

and optimizations behind the training algorithm [9].

The GPU implementation used, in average, 28% more iterations in the SMO

algorithm than those of LIBSVM. This is caused by the usage of a second order

heuristic by LIBSVM and therefore chooses optimal lagrange multipliers to fasten

the algorithm’s convergence. However, the raw computation power of a modern

GPU allowed our implementation to achieve both faster times in training (up

to 13.61×) and classification (up to 265.85×). However, it can be seen that our

implementations have an impressive speedup for the “Spiral” dataset. Although

the classification speedup is easily explained by the embarrassingly parallel nature

68 Chapter 4. Experimental results

of the classification task, the same does not apply to the training process, where it

can be seen that LIBSVM has problems with the training task. Therefore our GPU

implementation had a training improvement of 165.15× and the CPU version a

speedup of 6.9×, being this last value greater than the amount of used threads

(4). Naturally, as we achieved a faster than linear speedup with our CPU version

against LIBSVM, the result is related to algorithmic differences.

Naturally, the speedups were greater with more complex datasets. For the

Multi-Threaded CPU SVM there is always an overhead of creating (forking) and

merging (synchronizing) threads. In the GPU SVM, this overhead comes from the

initialization of the GPU context, copying data between the GPU’s memory and

the host’s RAM and controlling the CUDA’s kernels, which is done by the local

CPU.

In table 4.21 we show that the UKF kernel yields similar performance to the

one obtained the RBF kernel. Each kernel can give a smaller improvement when

compared to the other, depending on the dataset. Using the Wilcoxon signed

ranked test [51] with a significance level of 5% we found no statistical evidence

of the UKF kernel performing worse than the RBF kernel and vice-versa. It is

interesting to note that, with the exception of the Sonar dataset, UKF yields better

F-Score results in the datasets that present a smaller number of SVs than the

corresponding number for the RBF kernel. This seems to indicate, as the “spiral”

dataset is an example of, that UKF presents better classification performance

when it is able to gather points near to each other, in a higher dimension space,

as intended.

Regarding the classification and training times between both RBF and UKF

kernels, shown in table 4.22, we can not conclude that one kernel is faster than

the other. When compared with the RBF kernel, the only issue we found with the

UKF kernel is the increased grid search complexity caused by the greater number

of parameters. Therefore, the choice of the ideal kernel depends on the problem

being considered.

4.6 Conclusions

In this chapter we presented a study consisting of the feasibility of both our CPU

and GPU SVM classifiers. We analysed various datasets, the performance of all

classifiers and LIBSVM and the speedup achieved by our versions.

After analysing the results obtained with our CPU and GPU classifiers it can

be concluded that both implementations are correct. The faster classification

4.6. Conclusions 69

and training times available using the GPU SVM make it an interesting choice

for complicated datasets or when choosing the best SVM and kernel parameters

(grid searching). Thus, these tasks can be now executed in less time using the

GPU of a modern computer and laptop.

In case there is no GPU available, our CPU implementation, although simple,

can cope with the described tasks by making fully use of modern multi-core CPUs.

We also shown that in addition to the usual kernels, the new UKF kernel has

good generalization properties in the high-dimensional feature space and gives

an added value for our SVM classifiers.

Chapter 5

Signature recognition using the GPU

In this chapter we study the problem of off-line signature recognition. The chapter

is organized as follows: a brief introduction is done in section 5.1 and we describe

the features in section 5.2. The experimental setup and dataset characteristics are

shown in section 5.3 and we present the results obtained in section 5.4. In section

5.5 we discuss the results we obtained and in section 5.5 we conclude our study

regarding the off-line signature recognition problem.

5.1 Introduction

The problem of handwritten signature recognition is a challenging one that plays

an important role in many official documents. The idea consists of creating an off-

line classifier to discriminate between fake signatures (forgery) and genuine ones

in a database of digitalized signatures, after identifying the author. The database

was obtained from the GPDS (Grupo de Procesado Digital de Señales), available at

http://www.gpds.ulpgc.es/download/. Figure 5.1 shows two signatures from

the referred database.

5.2 Dataset

The database contains data from 300 individuals. For each individual there are

24 genuine signatures, plus 30 forgeries of his/her signature making 54 images

per individual and a total of 16200 images. The 24 genuine specimens of each

signer were collected in single day writing sessions. The forgeries were produced

under the following conditions: The forger imitates a genuine signature from

the static image of the genuine signature (scanned at 300 DPI) and the forger is

allowed to practice writing the signature for as long as s/he wishes. Each forger

http://www.gpds.ulpgc.es/download/

72 Chapter 5. Signature recognition using the GPU

(a) Genuine Signature. (b) Forged Signature.

Figure 5.1: Two signatures from the GPDS database [15].

has to imitate three signatures of five signers in a single day writing session. The

genuine signature shown to each forger is chosen randomly from the 24 genuine

ones. Therefore, for each genuine signature, there are 30 simple forgeries made by

10 forgers from 10 different genuine specimens. The dataset used consists of 16200

handwritten off-line signature recognition (each signature is a 649 × 462 pixels

image). Additional information on this database can be found in Ferrer et al. [15].

Although the image dataset could be used directly its size in memory would make

it impractical to use as it would be composed of 16200× 649× 642 = 6.749.859.600

pixels (roughly 6.75 Gigapixels). As each pixel would be translated to a single

precision floating type (four bytes per pixel) its storage would require 25.15 GB

of RAM. One solution could be the use of a Principal Component Analysis (PCA)

or LDA feature reduction technique however the use of raw data does not give

acceptable results. Therefore, feature extraction constitute an essential step of a

signature verification system in order to achieve a good performance [43].

Previously, research was by done by Ribeiro et al [43], Armand et al [2],

Blumenstein et al. [6] and Ferrer et al [15] in order to study better features from

the original dataset. More information regarding the extraction algorithms are

referenced in their paper. The authors in [43] describe fourteen algorithms, but

only twelve were used as the other two were not useful for the learning process.

These were the width and height of each image. All images were centred and

added borders to make them the same size, thus these two attributes would not

help with the learning process. The other twelve attributes are summarized in

the next sub-sections.

Gravity Center Angle

This feature consists in dividing an image using a centred vertical axis, cropping

two equally sized sections of the image. The “Centroid” of each section is calcu-

5.2. Dataset 73

Figure 5.2: Six-fold surface feature extraction.

lated and the angle of the vector between the two centroids is used as the final

feature.

Maximum Intensity Points

This feature returns either the line or the column of the image containing the

greatest number of black pixels.

Tri-fold surface

This feature corresponds on the proportion of pixels contained in three vertical

divisions of the image. Therefore it represents the dispersion of pixels within the

three sections.

Six-fold surface

Following the last feature this extends the algorithm by additionally dividing the

image in three horizontal sections. However the horizontal divisions done on

each vertical section are done using the gravity center of the vertical sections, as

can be seen in image 5.2.

Best Fit

This feature represents the angle between the signature and the horizontal axis.

Therefore, two lines are interpolated using the two centroids, one on the left side

74 Chapter 5. Signature recognition using the GPU

Figure 5.3: Best Fit feature extraction.

Figure 5.4: Geometric Parameters (Polar) feature extraction.

of the image and the other on the right side (Figure 5.3). Additionally, the authors

added the proportion of pixels inside each centroid to represent the dimension of

the centroids.

Geometric Parameters (Polar)

This feature characterizes the distribution of the image radially, starting on its

gravity center. Therefore, the image is equally divided into equally sized angular

sections using equidistant points on the outer edge of the image (figure 5.4).

Extracted features are the distance of each point to the center, its angle with the

center and the proportion of black pixels contained in each section.

5.2. Dataset 75

Figure 5.5: Geometric Parameters (Cartesian) feature extraction.

Geometric Parameters (Cartesian)

This feature identifies the image’s morphology by doing an analysis using two

cartesian axis (figure 5.5). The same principle behind the extraction of the polar

features is applied, however using sections evenly distributed in a rectangle

centred in the image.

Modified Direction Feature (MDF)

This feature identifies the direction of the different segments composing the sig-

nature’s line and the location of the areas were pixels change from white to black.

This last method is done either vertically either horizontally.

K-Means

Another feature which identifies the position of the main elements of the signature

is K-Means clustering using the image’s black pixels. The number of clusters is

fixed for all the images and set to five [43]. An example can be seen in figure 5.6.

Histogram Frequencies

In order to characterize the signature’s intensity variations either vertically and

horizontally this feature calculates the vertical and horizontal frequency his-

tograms of the pixels in each image. These frequencies are calculated using

the Fast Fourier Transform.

Discrete Cosine Transform (DCT) Frequencies

This feature uses the two dimensional Discrete Cosine Transform (DCT) to change

the initial amplitude-time space to a new amplitude-frequency space, therefore

76 Chapter 5. Signature recognition using the GPU

Figure 5.6: K-Means feature of a signature.

Figure 5.7: Discrete Cosine Transform of a signature.

representing the intensity in frequencies of the initial image (figure 5.7). It is the

same algorithm behind JPEG and some video compression codecs.

Wavelet Transform feature

This feature is similar to the DCT but it extracts temporal resolution by capturing

both frequency and time information. The base (mother) wavelet used to extract

the features is the Haar (rectangular) wavelet. Figure 5.8 shows an example of a

two level wavelet decomposition.

5.3. Experimental setup 77

Figure 5.8: Wavelet Transform of a signature.

5.3 Experimental setup

For extracting the results we used 9 images for the testing set and the remaining

45 for the training set. Both training and testing sets were randomly generated

from the initial data, being the test set composed of 4 genuine signatures and 5

forged. The experiments were run 10 times per configuration.

Feature Number of attributes
Best Fit 4

Discrete Cosine Transform (DCT) 5
Geometric Parameters (Cartesian) 180

Geometric Parameters (Polar) 192
Gravity Center 1

Histogram Frequencies (hist) 6
K-Means 10

Max Intensity Points (maxint) 1
Modified Direction Feature (MDF) 160

Six-fold-Surface 6
Three-fold-Surface 3

Wavelet Transform Feature 12

Table 5.1: Number of attributes for each feature of the signature dataset.

In table 5.1 we present the number of attributes for each extracted feature from

the image dataset. For that purpose we used a tool developed by Ivo Gonçalves

and Sérgio Santos, also used in [43].

The system’s configuration is the same as the last chapter, composed of an Intel

78 Chapter 5. Signature recognition using the GPU

Core i5 running at 3.33 GHz with 12 GB of RAM and an NVIDIA Geforce GTX

570 with its characteristics described in table 4.5. Naturally, all of the datasets

were normalized using standard score normalization.

Being the GPU SVM currently binary, the multi-class functionality is not sup-

ported. Therefore the identification of an individual by using its signature is done

only by comparing against another individual. We also developed an external

program (driver) which controls the GPU SVM allowing for fine tune of the grid

search algorithm, K-Fold cross-validation or a custom validation scheme and sup-

porting multiple parallel executions of either the Multi-Threaded CPU and GPU

SVMs. This is useful as in most experiments the training process is faster than the

dataset loading time. Therefore it is possible to run multiple training instances at

the same time in order to minimize the total execution time.

We did three kinds of experiments. The first was simply the identification of

original and forged signatures. For that purpose, we used all the 300 individuals

and studied each group of features. We run two sub-experiments where in the first

we only used the RBF kernel with the configuration given in table 5.2. The second

sub-experiment we used the feature combination DCT + MDF and tested all the

supported kernel functions by our GPU implementation, with the configuration

given in table 5.3. We only tested the given feature combination because the time

taken by the grid-search algorithm for all the kernels was expensive. For this first

experiment we used 5 fold K-Fold cross-validation.

For the second experiment, instead of using all the 300 groups of signatures

as the first we studied groups or combinations of features for each individual.

Therefore, this experiment consisted of identifying, for each person, if a signature

either original or forged. We only used the RBF kernel and as a validation method

we used the custom 4 original plus 5 forged signatures composing the test set, as

specified above.

The third experiment consisted on identifying a signature according to the

related individual, using both the original and forged signatures. As we described

before, since our classifier is currently binary we simulated a One-Against-One

multi-class classifier, that is, we train and test each individual class against one

of the others. Thus, for a dataset with c classes, (c × (c − 1)) training tasks are

required. In this third experiment we performed 300 × 299 = 89700 trainings,

excluding the validation procedure for each sub-experiment. As the amount of

time involved in the training process is high, we only used the RBF kernel and a

5 K-Fold cross-validation.

5.3. Experimental setup 79

Features C γ
polar 0.08 0.04

cartesian 0.64 0.08
mdf 10.24 0.04

wavelet 0.01 64.00
bestfit 0.01 8.19

dct 0.08 2.56
gravitycenter 0.01 0.00

hist 0.01 8.19
kmeans 0.04 0.00
maxint 0.01 0.01
sixfold 0.02 3.78

tri-fold-surface 1.28 0.02
dct+mdf 11.71 0.02

dct+mdf+cart 8.00 0.01

Table 5.2: RBF kernel configuration used in the first experiment, the generic
identification of original and forged signatures.

Kernel C γ L σ α b q
RBF 11.71 0.02
UKF 10.24 1.00 2.56 0.25

Linear 0.001
Polynomial 0.10 0.99 13.40 0.04

Sigmoid 0.10 0.08 10.24

Table 5.3: The configuration of all kernel functions used in the first experiment,
when using the combination of features DCT + MDF.

80 Chapter 5. Signature recognition using the GPU

x
1

x
2

x
1

x
2

(a) Initial feature space.

x
1

x
2

x
1

x
2

(b) Projected feature space.

Figure 5.9: Two-dimensional LDA reducing an initial feature space (left) to a new
feature space (right) where the separation of the classes is improved. Images
taken from [18].

5.4 Results

In this section we present the results for the three experiments explained above.

Tables 5.4, 5.5, 5.6 and 5.7 contain the results for the first experiment where the

single objective was to identify if a given signature is original or forged. Tables

5.4 and 5.5 show the results we obtained using only the RBF kernel while tables

5.6 and 5.7 show the performance using all the available kernels in our SVM

implementation. For this last sub-experiment we only used both features DCT

and MDF.

LDA is a supervised feature reduction algorithm which aims to reduce input

space dimensionality while maximizing the classe’s separation [18]. This is done

by projecting the initial feature space using a linear combination of the input fea-

tures. Figure 5.9 presents a hypothetical two-dimensional LDA feature projection

from an original feature space (left) to a new feature space (right) where the class

separation is higher. In figure 5.10 we show a LDA projection of this experiment

using features DCT and MDF, in order to visualize the level of the task’s com-

plexity at hand. Regarding the second experiment, the same performance metrics

described above and for a given set of features can be seen in tables 5.8 5.9. Figures

5.13 and 5.14 show the grid-search contour map for the individual number 23,

using either DCT or MDF features. In figures 5.11 5.12 we present a graphical

statistical summary for both FPR and F-Score obtained using the features DCT +

Cartesian + MDF + Polar.

The third experiment’s results are shown in tables 5.10, 5.11 and figure 5.15.

5.4. Results 81

The two tables show the same performance metrics as shown in the other experi-

ments while figure 5.15 has a graphical summary for the F-Score obtained using

the MDF + DCT features.

Features Accuracy Precision Recall FPR

mdf 77.46 ±0.72 78.35 ±1.23 68.14 ±1.67 15.08 ±1.08

dct 67.18 ±0.92 59.20 ±0.98 84.24 ±1.54 46.48 ±1.91

cart 66.71 ±0.65 58.82 ±0.99 83.66 ±1.22 46.85 ±1.19

polar 57.77 ±1.21 51.65 ±1.42 79.94 ±2.50 59.93 ±3.70

six-fold-surface 52.80 ±1.16 48.26 ±0.68 85.02 ±2.35 72.98 ±3.75

tri-fold-surface 44.50 ±0.07 44.47 ±0.03 99.92 ±0.11 99.83 ±0.16

gravity 44.44 ±0.68 44.44 ±0.68 100.00 ±0.00 100.00 ±0.00

kmeans 44.45 ±0.89 44.45 ±0.89 100.00 ±0.00 100.00 ±0.00

maxint 44.54 ±0.81 44.47 ±0.68 99.50 ±2.63 99.44 ±2.97

wavelet 45.08 ±0.87 44.58 ±0.85 97.08 ±0.52 96.52 ±0.63

bestfit 53.95 ±0.86 48.84 ±0.88 75.14 ±1.97 63.01 ±3.02

hist 55.97 ±0.89 50.40 ±1.16 59.78 ±1.60 47.08 ±1.69

dct+mdf 79.42 ±1.13 72.31 ±1.85 87.23 ±2.12 26.83 ±2.89

dct+mdf+cart 80.53 ±0.73 78.99 ±2.86 76.99 ±4.30 16.63 ±3.90

Table 5.4: Accuracy, Precision, Recall and False Positive Rate for the first identifi-
cation experiment, using the RBF kernel.

82 Chapter 5. Signature recognition using the GPU

Features FDR F-Score Specificity

mdf 21.65 ±1.23 72.87 ±1.04 84.92 ±1.08

dct 40.80 ±0.98 69.52 ±0.87 53.52 ±1.91

cart 41.18 ±0.99 69.07 ±0.77 53.15 ±1.19

polar 48.35 ±1.42 62.71 ±0.81 40.07 ±3.70

six-fold-surface 51.74 ±0.68 61.55 ±0.42 27.02 ±3.75

tri-fold-surface 55.53 ±0.03 61.54 ±0.04 0.17 ±0.16

gravity 55.56 ±0.68 61.54 ±0.65 0.00 ±0.00

kmeans 55.55 ±0.89 61.53 ±0.86 0.00 ±0.00

maxint 55.53 ±0.68 61.45 ±0.83 0.56 ±2.97

wavelet 55.42 ±0.85 61.10 ±0.82 3.48 ±0.63

bestfit 51.16 ±0.88 59.18 ±0.62 36.99 ±3.02

hist 49.60 ±1.16 54.68 ±1.04 52.92 ±1.69

dct + mdf 27.69 ±1.85 79.03 ±0.92 73.17 ±2.89

dct + mdf + cart 21.01 ±2.86 77.82 ±1.07 83.37 ±3.90

Table 5.5: False Discovery Rate, F-Score and Specificity for the first identification
experiment using the RBF kernel.

Kernel Accuracy Precision Recall FPR

Linear 60.33±7.21 51.60±16.07 62.55±28.85 41.45±25.65

Polynomial 54.33±9.22 50.55±6.14 84.81±12.71 70.06±25.19

RBF 79.42±1.13 72.31± 1.85 87.23± 2.12 26.83± 2.89

Sigmoid 44.41±0.14 44.40± 0.05 99.49± 0.93 99.65± 0.91

UKF 79.97±1.63 73.75± 3.76 86.25± 4.87 25.05± 6.04

Table 5.6: Accuracy, Precision, Recall and False Positive Rate for the first experi-
ment using the all kernels and the combination features MDF + DCT.

Kernel FDR F-Score Specificity nSVs

Linear 40.40±12.98 53.34±22.30 58.55±25.65 6696.70±4721.16

Polynomial 49.45± 6.14 62.45± 3.42 29.94±25.19 4605.20±4491.62

RBF 27.69± 1.85 79.03± 0.92 73.17± 2.89 8159.68± 563.64

Sigmoid 55.60± 0.05 61.40± 0.20 0.35± 0.91 1424.80± 298.35

UKF 26.25± 3.76 79.29± 1.16 74.95± 6.04 10731.16± 377.94

Table 5.7: False Discovery Rate, F-Score and Specificity for the first experiment
using the all kernels and the combination features MDF + DCT.

5.4. Results 83

Figure 5.10: Two dimensional projection of LDA for the first experiment using
features MDF and DCT.

84 Chapter 5. Signature recognition using the GPU

Features Accuracy F-Score FDR FPR

cartesian 77.23±11.39 67.54±16.92 15.98±18.38 10.64±12.24

mdf 76.74±11.56 66.77±18.05 15.82±17.96 10.62±12.20

polar 71.13±12.84 59.45±18.78 21.44±21.88 13.84±14.39

wavelet 61.63±13.09 42.06±19.90 28.96±27.52 16.36±16.66

kmeans 54.00±13.19 31.32±19.58 38.84±30.81 22.71±20.11

six-fold-surface 67.19±12.58 50.33±18.91 22.83±23.70 13.10±14.32

dct 79.16±10.55 69.06±16.00 13.06±15.54 7.97±9.50

histogram 64.33±12.68 45.16±19.64 26.92±25.40 14.44±14.57

bestfit 66.18±12.43 48.54±19.08 25.30±24.72 14.08±14.60

tri-fold-surface 65.73±11.96 57.87±16.45 35.76±21.37 29.02±18.19

gravity center 59.34±12.17 52.23±16.19 42.92±21.96 35.92±19.97

max intensity angle 55.93±12.30 46.86±16.99 46.93±22.38 37.66±20.30

mdf + dct 78.76±11.01 69.74±16.67 12.87±15.59 8.60±10.47

polar + cartesian 73.71±12.65 61.02±18.95 15.55±18.57 10.36±12.59

mdf + cartesian 78.33±11.07 69.28±16.58 13.45±16.30 9.29±11.08

dct + cartesian 78.70±11.55 69.81±17.46 14.00±16.44 9.45±10.98

dct + polar + mdf 75.75±12.02 64.87±18.35 15.02±17.58 10.24±12.12

dct + cart + mdf 79.45±11.50 71.16±16.71 12.96±15.74 8.78±10.80

dct + cart + mdf + polar 79.92±11.07 71.62±16.59 12.33±14.93 8.18±9.78

Table 5.8: Forged/original signature identification per individual (second experi-
ment). Shown performance metrics are Accuracy, F-Score, False Discovery Rate
and False Positive Rate.

5.4. Results 85

Features Precision Recall Specificity

cartesian 79.68±20.62 65.62±21.40 89.36±12.24

mdf 79.64±21.19 63.86±22.22 89.38±12.20

polar 73.30±24.25 57.46±23.63 86.16±14.39

wavelet 60.38±29.20 39.21±23.48 83.64±16.66

kmeans 45.02±30.18 31.71±24.98 77.29±20.11

six-fold-surface 68.17±27.00 47.07±22.34 86.90±14.32

dct 82.74±18.40 65.85±19.23 92.03± 9.50

histogram 61.88±28.84 42.36±23.18 85.56±14.57

bestfit 65.70±27.64 45.10±22.08 85.92±14.60

trisurface 61.90±21.83 61.27±20.79 70.98±18.19

gravity center 54.88±21.49 57.15±21.76 64.08±19.97

max intensity angle 51.00±22.40 50.66±22.46 62.34±20.30

mdf + dct 83.00±18.94 66.32±20.88 91.40±10.47

polar + cartesian 74.52±22.46 58.87±24.31 89.64±12.59

mdf + cartesian 82.35±18.68 66.80±21.73 90.71±11.08

dct + cartesian 81.80±19.10 67.27±21.89 90.55±10.98

dct + polar mdf 78.58±22.20 62.35±23.43 89.76±12.12

dct + cart + mdf 83.91±18.25 68.44±21.50 91.22±10.80

dct + cart + mdf + polar 84.47±17.32 68.35±21.42 91.82± 9.78

Table 5.9: Forged/original signature identification per individual (second experi-
ment). Shown performance metrics are Precision, Recall and Specificity.

86 Chapter 5. Signature recognition using the GPU

0.360.300.240.180.120.060.00

Median

Mean

0.0900.0850.0800.0750.0700.0650.060

1st Quartile 0.028571
Median 0.066667
3rd Quartile 0.115179
Maximum 0.403333

0.073397 0.090186

0.057803 0.073157

0.068403 0.080317

A-Squared 8.77
P-Value < 0.005

Mean 0.081792
StDev 0.073880
Variance 0.005458
Skewness 1.49085
Kurtosis 2.87144
N 300

Minimum 0.000000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev
95% Confidence Intervals

Summary for FPR

Figure 5.11: False Positive Rate statistical summary for the forged/original signa-
ture identification per individual (second experiment). The features used were
DCT + MDF + Cartesian and Polar coordinates.

0.900.750.600.450.300.15

Median

Mean

0.760.750.740.730.720.710.70

1st Quartile 0.60544
Median 0.73127
3rd Quartile 0.84933
Maximum 1.00000

0.69665 0.73582

0.70612 0.76002

0.15960 0.18740

A-Squared 2.11
P-Value < 0.005

Mean 0.71623
StDev 0.17238
Variance 0.02972
Skewness -0.627401
Kurtosis 0.085192
N 300

Minimum 0.13939

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev
95% Confidence Intervals

Summary for F-Score

Figure 5.12: F-Score statistical summary for the forged/original signature identi-
fication per individual (second experiment). The features used were DCT + MDF
+ Cartesian and Polar coordinates.

5.4. Results 87

gamma

C

0.750.650.550.450.350.250.150.05

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

>
–
–
–
–
–
–
–
–
–
–
<

0.80 0.88
0.88 0.96

0.96

0.16
0.16 0.24
0.24 0.32
0.32 0.40
0.40 0.48
0.48 0.56
0.56 0.64
0.64 0.72
0.72 0.80

F-Score

Figure 5.13: F-Score RBF grid search using the DCT features for the detection of
forged/original signature identification, author number 23 (second experiment).

gamma

C

0.750.650.550.450.350.250.150.05

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

>
–
–
–
–
–
–
–
–
–
–
<

0.80 0.88
0.88 0.96

0.96

0.16
0.16 0.24
0.24 0.32
0.32 0.40
0.40 0.48
0.48 0.56
0.56 0.64
0.64 0.72
0.72 0.80

F-Score

Figure 5.14: F-Score RBF grid search using the MDF features for the detection of
forged/original signature identification, author number 23 (second experiment).

88 Chapter 5. Signature recognition using the GPU

Features Accuracy F-Score FDR FPR

cartesian 97.62±phantom02.12 97.58±phantom02.16 2.43± 2.91 2.62± 3.05

mdf 97.94± 1.90 97.80± 2.17 2.11± 2.67 2.28± 2.77

polar 91.97± 5.25 91.56± 5.99 7.73± 7.79 8.71± 8.62

wavelet 82.87± 6.26 82.06± 8.53 14.05±10.40 17.79±13.72

kmeans 69.50± 8.92 68.47±12.51 25.72±15.48 31.87±21.25

six-fold-surface 89.60± 4.63 89.31± 5.53 8.69± 7.31 10.62± 8.91

dct 81.54± 6.62 80.65± 7.64 14.55±10.41 15.69±12.38

histogram 74.55± 7.59 73.12±10.23 20.82±13.69 24.25±17.48

bestfit 90.42± 4.22 89.88± 4.82 8.09± 6.33 8.83± 7.18

tri-fold-surface 85.51± 5.20 85.08± 5.97 14.30± 7.69 14.47± 8.05

gravity center 74.92± 7.07 73.92± 8.38 23.43±10.55 23.29±10.87

max intensity angle 66.99± 7.99 66.16± 9.50 32.28±11.93 33.12±12.44

mdf + dct 98.13± 1.75 98.14± 1.83 2.05± 2.48 2.36± 2.70

polar + cartesian 90.46± 6.27 90.08± 7.29 9.81± 8.46 11.81± 9.57

mdf + cartesian 96.53± 2.65 96.28± 3.05 3.76± 4.03 4.35± 4.52

dct + cartesian 97.50± 2.29 97.30± 2.60 2.56± 3.15 2.81± 3.43

dct + polar + mdf 91.72± 5.97 91.68± 6.43 8.81± 8.03 10.78± 9.67

Table 5.10: Results related to the One-Against-One (binary) signature author
identification (third experiment) using the given features. Shown performance
metrics are Accuracy, F-Score, False Discovery Rate and False Positive Rate.

5.4. Results 89

Features Precision Recall Specificity

cartesian 97.57± 2.91 98.08± 2.35 97.38± 3.05

mdf 97.76± 2.74 98.41± 2.11 97.72± 2.77

polar 91.67± 8.03 93.69± 7.01 91.29± 8.62

wavelet 84.62±10.76 86.64±13.44 82.21±13.72

kmeans 71.55±15.86 76.28±20.59 68.13±21.25

six-fold-surface 91.05± 7.50 91.62± 8.31 89.38± 8.91

dct 85.45±10.41 81.86±12.75 84.31±12.38

histogram 78.32±13.92 77.55±17.09 75.75±17.48

bestfit 91.91± 6.33 90.79± 7.45 91.17± 7.18

tri-fold-surface 85.70± 7.69 85.70± 7.93 85.53± 8.05

gravity center 76.57±10.55 73.74±11.29 76.71±10.87

max intensity angle 67.72±11.93 67.89±13.06 66.88±12.44

mdf + dct 97.88± 2.49 98.83± 1.64 97.64± 2.70

polar + cartesian 88.99± 9.08 94.06± 6.68 88.19± 9.57

mdf + cartesian 95.84± 4.33 97.70± 2.54 95.65± 4.52

dct + cartesian 97.04± 3.45 98.02± 2.54 97.19± 3.43

dct + polar + mdf 90.32± 8.41 95.44± 5.54 89.22± 9.67

Table 5.11: Results related to the One-Against-One (binary) signature author
identification (third experiment) using the given features. Shown performance
metrics are Precision, Recall and Specificity.

90 Chapter 5. Signature recognition using the GPU

0.9920.9760.9600.9440.9280.912

Median

Mean

1.00000.99750.99500.99250.99000.98750.9850

1st Quartile 0.98333
Median 0.99310
3rd Quartile 1.00000
Maximum 1.00000

0.98574 0.99106

0.99200 1.00000

0.01594 0.01973

A-Squared 17.90
P-Value < 0.005

Mean 0.98840
StDev 0.01763
Variance 0.00031
Skewness -2.21037
Kurtosis 5.01680
N 171

Minimum 0.90571

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev
95% Confidence Intervals

Summary for F-Score

Figure 5.15: F-Score histogram for the One-Against-One (binary) signature author
identification (third experiment) using both the MDF and DCT features.

5.5 Discussion

As can be seen in tables 5.4 and 5.5 the global original/forged signature iden-

tification task is somewhat complex. Most features are confusing and have a

high (≥ 70%) False Positive Rate. This can be intuitively understood as identify-

ing forged signatures, regardless of the individual they represent is problematic.

Thus the performance of the resulting classifier is disappointing (as shown in the

results).

To help understand the first experiment’s complexity, the help of the LDA tool

allowed us to confirm the complexity of the task, shown in figure 5.10. However,

the feature MDF alone gave promising results and when combined with either the

DCT or the Cartesian coordinates resulted in higher F-Scores (approximately 80%)

and lower False Positive Rate (FPR). Using the features MDF + DCT we improved

the results by a minimal percentage, by making use of the UKF kernel. However,

this kernel used more SVs than the RBF kernel, reflecting the complexity of the

problem at hand. The remaining kernels gave worst results (F-Score < 63%).

Similar conclusions taken for the first experiment can be applied to the second,

the identification of original vs forged signatures for each person. Again, we

5.6. Conclusion 91

found confusing features as the K-Means, Histogram, Best-Fit, among others.

Although these gave smaller False Positives (FPR), the remaining performance

metrics, mostly Recall demonstrate that we obtained False Negatives. Both MDF

and DCT features gave good results and combining them with Cartesian and

Polar coordinates resulted in the best original/forged identification. According to

figures 5.11 and 5.12 there are individuals whose original/forged signatures were

almost perfectly identified which makes us believe that with further research, the

results can be improved. We were expecting better results when compared to the

first experiment, thus we conclude that the identification of original and forged

signatures with current features requires further research. However, excluding

the confusing features described in the beginning of this paragraph, we did obtain

a lower FPR when compared with the first experiment.

Another observation is that figures 5.13 and 5.14 clearly demonstrate a problem

when combining both features MDF and DCT. When using the DCT feature, the

best results are obtained with increased γ and penalization constant C. On the

other hand, using the MDF feature requires a smaller γ and a higher C in order

to achieve better performance. Thus, it is hard to conciliate both features unless

some transformation is applied to one of the features, in order to make both

compatible with the same parameters. Another and simpler solution could be the

use of a specialized SVM to separate the kernel parameters for each feature.

Regarding the last experiment, the One-Against-One person identification

task, we obtained in general excellent results. Excluding some confusing features

of which K-Means and Max-Intensity-Angle are an example, most features re-

sulted in Accuracy and F-Score above 80%. Some features like MDF, Cartesian

and Polar Coordinates gave F-Scores above 90%, especially the MDF with a F-

Score of 97.80%. Combining both MDF and DCT features allowed an Accuracy

of 98.13%, a F-Score of 98.14% and the highest Precision and Recall, 97.88% and

98.83%, respectively. The statistical summary of this combination can be seen in

figure 5.15.

5.6 Conclusion

From the results we obtained in both the first and second experiments, the identi-

fication of original and forged signatures, we can conclude that although these are

promising, for a better identification system further research is required. We ob-

tained similar results to the ones acquired by Ribeiro et al. in [43] despite the fact

that in their article they used a different classifier, Deep Belief Networks. These

92 Chapter 5. Signature recognition using the GPU

networks employ deep learning techniques which allow them a higher level of

abstraction, specially in visual recognition tasks [43], possibly more oriented for

the problem of off-line signature recognition. In accordance with their article, we

confirm that both DCT and MDF features gave the best results.

When faced with the problem of identifying a person’s signature, our study

demonstrated that this task is accessible and provides excellent results, even with

a single feature (MDF). Therefore, the construction of a multi-class signature iden-

tification system for identifying the author is possible and should give promising

results.

Chapter 6

Conclusions and future work

As the amount of data produced by humans and machines grows at an unparal-

leled rate, fast machine learning algorithms that can extract relevant and useful

information from large repositories of data become extremely important. To cope

with the increasingly computational performance demands, the challenge consists

of building multi-core implementations of machine learning algorithms. Recently

the Graphics Processing Unit (GPU) has become a major player in this context.

The rapid evolution of the GPU from a fixed-function device into a fully pro-

grammable one and its inherent parallelism made this very attractive architecture

capable of accelerating applications by one or more orders of magnitude.

In particular, the realization of Support Vector Machines (SVMs) in the GPU

is specially attractive. SVMs are perhaps the most widely used algorithm, pos-

sessing state-of-the-art generalization characteristics. Moreover, SVMs have been

successfully in many scientific domains proving their usefulness.

In this Dissertation we aimed at developing a GPU implementation of the

SVMs algorithm as part of the effort to develop an open-source GPU Machine

Learning library (GPUMLib). To this end, the NVIDIA CUDA (Compute United

Device Architecture) was used. This architecture provides a programming model

for its GPUs with an adequate API for non-graphics applications using standard

ANSI C, extended with keywords that designate data-parallel functions.

The results we obtained with both our CPU and GPU classifiers are promising

and bring faster execution times to either desktop or mobile computers while of-

fering similar results to the well known LIBSVM classifier. With training speedups

up to 13.61× and classification speedups up to 265.85× using our GPU SVM, not

only more complex tasks can be solved in less time as fine tuning of the SVM

parameters using grid-search can be done. Even if there may be no GPU avail-

able, our Multi-Threaded CPU SVM achieves faster times than LIBSVM up to

94 Chapter 6. Conclusions and future work

6.90× in training and 3.58× in classification (excluding smaller datasets). Thus,

our Multi-Threaded CPU allows complicated problems to be solved on modern

multi-core CPUs.

However, in the course of this thesis we did not implement advanced features

present in another SVM classifiers, as kernel caching and advanced heuristics,

which can drastically reduce the kernel dot-products calculus and fasten the con-

vergence. Another important factor is the support for double precision floating

point arithmetic in the GPU, if supported by the device. The increased mathe-

matical precision should, in theory, improve the SVM’s training and classification

performance. The technical improvements we referred can be added to our clas-

sifiers as future work, including vectorization support for our CPU classifier.

The inclusion of the UKF kernel gives additional value to both our CPU and

GPU SVMs as it offers good generalization properties when compared to the

well known RBF kernel. The use of this generic kernel can make the use of the

other kernels superfluous, however, with the increased cost of fine-tuning the

additional kernel parameters.

The GPU SVM was used to study the problem of handwritten off-line signature

recognition. By using our GPU SVM we were able to study a complicated dataset,

composed of 16200 signatures and draw conclusions for further investigation.

Our study allowed us to identify the best features and their combination in order

to identify if a given signature is original or forged and the person affiliated with

a given signature.

We obtained interesting results in the identification of forged signatures but

we give attention to the fact that better feature extraction is needed to improve

the current detection performance. This fact is emphasised by the F-Scores of

71.62% and FPR of 7.97% we achieved. Additionally, better performance can

also be achieved by future work in the form of specialized classifiers, supporting

fine-tune of kernel parameters for each feature.

Finally, we highlight the excellent results obtained in the identification of the

signature’s author. In our opinion, the achievement of 98.14% F-Score clearly

demonstrate that this task, excluding the computation time, is simple and acces-

sible. Intuitively, this is natural as the signature of each individual is practically

unique and distinguishable for another person. Thus, current classifiers, from

which the SVMs are a good example of, can easily cope with the task and give

excellent results.

Bibliography

[1] Rie Kubota Ando and Tong Zhang. A framework for learning predictive

structures from multiple tasks and unlabeled data. Journal of Machine Learning

Research, 6:1817–1853, 2005.

[2] S. Armand, M. Blumenstein, and V. Muthukkumarasamy. Off-line signature

verification using an enhanced modified direction feature with single and

multi-classifier approaches. Computational Intelligence Magazine, IEEE, 2(2):18

–25, may 2007.

[3] A. Asuncion and D.J. Newman. UCI machine learning repository, 2010.

Available at http://archive.ics.uci.edu/ml/index.html.

[4] N.E. Ayat, M. Cheriet, C.Y. Suen, and M. Cheriet C. Y. Suen. Kmod - a two-

parameter svm kernel for pattern recognition. In In ICPR, pages 30331–30334,

2002.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, New York, Inc. Secaucus, NJ, USA,

2006.

[6] M. Blumenstein, X.Y. Liu, and B. Verma. A modified direction feature for

cursive character recognition. In Neural Networks, 2004. Proceedings. 2004

IEEE International Joint Conference on, volume 4, pages 2983 – 2987 vol.4, july

2004.

[7] David Blythe. Rise of the graphics processor. Vol. 96, No. 5, May 2008 —

Proceedings of the IEEE, 96:761–778, 2008.

[8] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast support

vector machine training and classification on graphics processors. In Pro-

ceedings of the 25th international conference on Machine learning, ICML ’08,

pages 104–111, New York, NY, USA, 2008. ACM.

96 Bibliography

[9] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector

Machines. Department of Computer Science National Taiwan University,

Taipei, Taiwan, May 2011.

[10] Badong Chen, Songlin Zhao, Pingping Zhu, and José Carlos Prı́ncipe. Quan-

tized kernel least mean square algorithm. IEEE Trans. Neural Netw. Learning

Syst., 23(1):22–32, 2012.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine

Learning, pages 273–297, 1995.

[12] K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De Moor. Opti-

mized fixed-size kernel models for large data sets. Comput. Stat. Data Anal.,

54(6):1484–1504, June 2010.

[13] Joaquim Marques de Sá. Pattern recognition: concepts, methods, and applications.

Springer, 2001.

[14] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using

second order information for training support vector machines. Journal of

Machine Learning Research, 6:1889–1918, December 2005.

[15] M. Ferrer, J. Alonso, and C. Travieso. Offline geometric parameters for au-

tomatic signature verification using fixed-point arithmetic. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 27(6):993–997, 2005.

[16] J. Gonçalves, Noel Lopes, and B. Ribeiro. Multi-thread support vector ma-

chines for pattern recognition. In International Conference on Neural Information

Processing. Springer, November 2012.

[17] Ricardo Gutierrez. Intelligent sensor systems - lecture 13: Validation, March

2001.

[18] Ricardo Gutierrez-Osuna. Pattern analysis - lesson 10: Linear discriminants

analysis, November 2011.

[19] Mark Harris. Optimizing parallel reduction in cuda. Internet, 2007.

[20] Sergio Herrero-Lopez, John R. Williams, and Abel Sanchez. Parallel multi-

class classification using SVMs on GPUs. In GPGPU 10, pages 2–11, 2010.

[21] L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and B. De Moor. Subset based

least squares subspace regression in rkhs. Neurocomput., 63:293–323, January

2005.

Bibliography 97

[22] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improve-

ments to platt’s smo algorithm for svm classifier design. Neural Comput.,

13:637–649, March 2001.

[23] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estima-

tion and model selection. pages 1137–1143. Morgan Kaufmann, 1995.

[24] Chong-Jin Ong J. Q. Zhang Uvaraj Periyathamby Xiu Ju Fu H. P. Lee L. J. Cao,

S. S. Keerthi. Parallel sequential minimal optimization for the training of

support vector machines. In IEEE Transactions on neural networks, volume 17,

pages 1039–1049, 2006.

[25] Tsung-Kai Lin and Shao-Yi Chien. Support vector machines on gpu with

sparse matrix format. In Proceedings Ninth International Conference on Machine

Learning and Applications (ICMLA 2010), pages 313–318. IEEE Computer So-

ciety, 2010.

[26] N. Lopes, B. Ribeiro, and R. Quintas. GPUMLib: A new library to combine

machine learning algorithms with graphics processing units. In Hybrid In-

telligent Systems (HIS), 2010 10th International Conference on, pages 229–232,

August 2010.

[27] Noel Lopes, Daniel Correia, Carlos Pereira, Bernardete Ribeiro, and Ant’onio

Dourado. An incremental hypersphere learning framework for protein mem-

bership prediction. In Int. Conf. on Hybrid Artificial Intelligence Systems, LNCS

7208, pages 429–439, 2012.

[28] Noel Lopes, B. Ribeiro, and João Gonçalves. Restricted boltzmann machines

and deep belief networks on multi-core processors. In IEEE World Congress

on Computational Intelligence (WCCI 2012), pages 1 – 7, Brisbane, Australia,

June 2012.

[29] Noel Lopes and Bernardete Ribeiro. GPUMLib: An efficient open-source

GPU machine learning library. International Journal of Computer Information

Systems and Industrial Management Applications, 3:355–362, 2011.

[30] Tom Mitchell. Machine Learning. McGraw-Hill, Columbus, OH, 1997.

[31] W.J.; Nickolls, J.; Dally. The gpu computing era. IEEE Micro, 30:56 – 69, 2010.

[32] NVIDIA. Geforce 256 - the world’s first gpu. Internet, August 1999.

[33] NVIDIA. Pixel shaders - a facet of the nfinitefx engine. Internet, March 2001.

98 Bibliography

[34] NVIDIA. Vertex shaders - a facet of the nfinitefx engine. Internet, March

2001.

[35] NVIDIA. Nvidia geforce 8800 gpu architecture overview. Internet, Novem-

ber 2006.

[36] NVIDIA. CUDA Programming Guide Version 4.0, August 2011.

[37] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for sup-

port vector machines. In Proceedings IEEE Neural Networks in Signal Processing

NNSP’97, pages 276–285. IEEE Computer Society, 1997.

[38] John D. Owens, Mike Houston, David Luebke, Simon Green, John Stone,

and James Phillips. GPU computing. Vol. 96, No. 5, May 2008 — Proceedings

of the IEEE, 96:879 – 899, 2008.

[39] John C Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Advances in Kernel Methods - Support Vector Learning,

208(MSR-TR-98-14):1–21, 1998.

[40] Mengyu Qiao, Andrew H. Sung, and Qingzhong Liu. Feature mining and

intelligent computing for mp3 steganalysis. In Proceedings of the 2009 Interna-

tional Joint Conference on Bioinformatics, Systems Biology and Intelligent Comput-

ing, IJCBS ’09, pages 627–630, Washington, DC, USA, 2009. IEEE Computer

Society.

[41] Ashu Rege. An introduction to modern gpu architecture, 2008.

[42] Bernardete Ribeiro. Master in Informatics Engineering - Pattern Recognition

Techniques. September 2009.

[43] Bernardete Ribeiro, Ivo Gonçalves, Sérgio Santos, and Alexander Kovacec.

Deep learning networks for off-line handwritten signature recognition. In

Proceedings of the 16th Iberoamerican Congress conference on Progress in Pat-

tern Recognition, Image Analysis, Computer Vision, and Applications, CIARP’11,

pages 523–532, Berlin, Heidelberg, 2011. Springer-Verlag.

[44] Jeff Schneider. Cross validation, February 1997.

[45] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch,

and A. Smola. Input space vs. feature space in kernel-based methods. IEEE

Transactions on Neural Networks, 10:1000–1017, 1999. IEEE Transactions on

Neural Networks.

Bibliography 99

[46] Alexander J. Smola, Peter Bartlett, Bernhard Schölkopf, and Dale Schuur-

mans (Eds.). Advances in Large Margin Classifiers. The MIT Press, first edition,

October 2000.

[47] Ivor Spital. Sinclair ZX Spectrum +2A 128K Manual. AMSTRAD Plc, 1987.

[48] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition.

Academic Press, 2009.

[49] Vladimir Vapnik. The nature of statistical learning theory. Springer-Verlag,

1995.

[50] Vladimir Vapnik. Statistical Learning Theory. Wiley New York, Inc., 1998.

[51] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6):80–83, 1945.

[52] Wei Wen Wu. Beyond business failure prediction. Expert Systems with Appli-

cations, 37:2371–2376, 2010.

[53] Rui Zhang and Wenjian Wang. Facilitating the applications of support vector

machine by using a new kernel. Expert Systems with Applications, 38:14225–

14230, 2011.

[54] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engi-

neering support vector machine kernels that recognize translation initiation

sites. BioInformatics, 16(9):799–807, 2000.

	Chapter 1: Introduction
	Motivation
	Objectives
	Organization

	Chapter 2: GPU Computing
	Introduction
	The fixed-function GPU
	The programmable GPU
	General-Purpose computing on Graphics Processor Units (GPGPU)
	Compute United Device Architecture (CUDA)
	Conclusion

	Chapter 3: Support Vector Machines (SVMs)
	Background in Machine learning
	The linear classifier
	The Support Vector Machine
	Soft margin SVM
	The kernel SVM
	The SMO algorithm
	Multi-Threaded CPU implementation
	GPU implementation
	Existing GPU SVM implementations
	Conclusions

	Chapter 4: Experimental results
	Evaluation metrics
	Datasets
	Experimental setup
	Results
	Discussion
	Conclusions

	Chapter 5: Signature recognition using the GPU
	Introduction
	Dataset
	Experimental setup
	Results
	Discussion
	Conclusion

	Chapter 6: Conclusions and future work
	Bibliography

