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Abstract. Support Vector Machines (SVM) have become indispensable
tools in the area of pattern recognition. They show powerful classifica-
tion and regression performance in highly non-linear problems by map-
ping the input vectors nonlinearly into a high-dimensional feature space
through a kernel function. However, the optimization task is numeri-
cally expensive since single-threaded implementations are hardly able
to cope up with the complex learning task. In this paper, we present
a multi-threaded implementation of the Sequential Minimal Optimiza-
tion (SMO) which reduces the numerical complexity by parallelizing the
KKT conditions update, the calculation of the hyperplane offset and the
classification task. Our preliminary results both in benchmark datasets
and real-world problems show competitive performance to the state-of-
the-art tools while the execution running times are considerably faster.
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1 Introduction

The increasing complexity and performance demands in pattern recognition ap-
plications require innovative and fast approaches to cope with the system non-
linearities. In particular, the design of efficient and scalable systems depends on
powerful tools to extract relevant (and meaningful) information. Additionally,
the learning algorithms often require high-processing capabilities making cur-
rent single-threaded algorithms unable to scale with the demanding processing
power needed. Among the supervised learning algorithms, Support Vector Ma-
chines (SVMs) are the most widely used algorithm due to their generalization
properties and regularization capability. SVMs are binary large margin classi-
fiers which have found successful applications in many scientific fields such as
bio-informatics [18], information management [1], finance and business [16]. The
SVM aims to find the optimal decision hyperplane which is equivalent to reach
the best trade-off between generalization and empirical errors. An important and
crucial point in the SVM formulation is that it can provide a good generaliza-
tion independent of the training set distribution by making use of the principle
of structural risk minimization [15,8]. However, they usually require significant
memory and computational burden for calculating the large Gram matrix [7].



To circumvent this limitation fast learning methods have successfully been pro-
posed [9,10]. However, most implementations do no take advantage the multi-
core architecture of today CPU baseline computers. In this paper we focus on a
multi-threaded parallel CPU standalone SVM version (MT-SVM) which builds
up from the scratch an implementation of the Sequential Minimal Optimization
(SMO) algorithm. Although previous approaches have been developed [5], our
implementation includes a new kernel function, the Universal Kernel Function
(UKF) [17] which leads to a broad spectrum of the generalization capabilities of
the learning machine. Experiments performed on UCI datasets benchmarks [2]
and real world problems such as MP3 Steganalysis [14] and the Peptidases detec-
tion [12] yield performance competitive results as compared to state-of-the-art
LIBSVM tools while delivering better speedups on large datasets.

The paper is organized as follows: Section 2 describes the SVM training
and classification tasks. Section 3 addresses the Sequential Minimal Optimiza-
tion (SMO) algorithm. Section 4 describes the parallel implementation of both
the training and classification tasks. We present our results in section 5. The
conclusions as well as future work are addressed in section 6.

2 Support Vector Machines (SVM)

Given a set of n training points in a d dimensional feature space x ∈ IRd each
associated with a label yi ∈ {−1, 1} the binary soft-margin kernel SVM solves
the linearly convex quadratic problem:

maximize

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj) (1)

subject to

n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C, i = 1, 2, . . . n (2)

For each training point xi there is an associated Lagrange multiplier αi, bounded
between 0 and the penalization constant C. The careful selection of this con-
stant allows the SVM to balance the generalization and empirical error. The
data points with αi > 0 are the Support Vectors (SVs) and define the decision
boundary. Considering that nSV is the number of SVs, after convergence the
offset b is calculated as a weighted arithmetic average as follows:

b =
1

nSV

nSV∑
j=1

(
n∑
i=1

αiyiK(xi,xj)

)
− yj (3)

To improve performance on non-linearly separable classes, the above optimiza-
tion task (see (1)) makes use of the kernel trick which allows the SVM to work on
a higher dimension feature space by means of a dot-product between two vectors
xi and xj . This result is calculated using the kernel projection K(xi,xj). There-
fore with a non-linear kernel the margin corresponds to a linear boundary in this



Algorithm 1 Sequential Minimal Optimization (SMO) algorithm

Require: xi ∈ χ, yi ∈ Ω, i ∈ {1 · · ·n}
1: Initialize: αi=0, fi=−yi, ∀i ∈ {1 · · ·n}
2: Initialize: bhigh = −1, blow = 1, ihigh = min{i : yi = 1}, ilow = min{i : yi = −1},
∀i ∈ {1 · · ·n}

3: Update: αilow, αihigh

4: repeat
5: Update optimality conditions fi (see (9))
6: Compute: bhigh, blow, ihigh, ilow
7: Update αilow , αihigh , ∀i ∈ {1 · · ·n}
8: until blow ≤ bhigh + 2τ

new feature space. The standard kernel functions (linear, polynomial, Gaussian
and sigmoid) have been considered as well as a recent kernel function, Univer-
sal Kernel Function (UKF) which has been proved to satisfy Mercer kernel [17]
conditions. In the sequel is described as follows:

K(u,v) = L(‖u− v‖2 + σ2)−α (4)

where L is a normalization constant, σ > 0 is the kernel width and α > 0 controls
the decreasing speed around zero. This kernel aims to gather points near to each
other, in a higher dimension space, since they are strongly correlated. Hence, it
can provide a small number of SVs and thus speeds up both the training and
classification tasks. Additionally, it can yield better generalization [3]. Finally,
the classification of a given sample z is done using a subset of the training set
upholding the support vectors. The SVM classification task is:

y(z) = sign

(
b+

nSV∑
i=1

αiyiK(xi, z)

)
(5)

3 Sequential Minimal Optimization (SMO) Algorithm

The Sequential Minimal Optimization (SMO) algorithm was developed by Platt
in 1998 [13]. At each step, only two Lagrange multipliers, αi and αj are required
to be solved. Both multipliers must satisfy the constraints defined in (2) [13,5].
Algorithm 1 details the main steps of the soft-margin SMO algorithm using the
kernel trick [5,4]. Initially the αi are set to 0 as they satisfy the constraints
defined in (2). At each step, after choosing ihigh and ilow, the new values for the
two Lagrange multipliers αnew

i are computed as follows:

αnew
ilow

= αilow + yilow
bhigh − blow

η
(6)

αnew
ihigh

= αihigh
+ yilowyihigh

(αilow − αnew
ilow

) (7)

where η is defined as:

η = K(xihigh
, xihigh

) +K(xilow , xilow)− 2 ·K(xihigh
, xilow) (8)



Naturally, αilow and αihigh
must satisfy (2). Thus, if αilow changes by δ then

αihigh
changes by the same amount on the opposite direction (−δ). Next, the

Karush-Kuhn-Tucker (KKT) conditions must be updated for each sample xi:

fi = foldi + (αnewihigh
− αihigh

)yihigh
K(xihigh

, xi) + (αnewilow
− αilow)yilowK(xilow , xi)

(9)
The indices of the next Lagrange multipliers ilow and ihigh are chosen from two
corresponding sets:

Ilow = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C} ∪ {i : yi < 0, αi = 0} (10)

Ihigh = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0} ∪ {i : yi < 0, αi = C} (11)

The optimality coefficients blow and bhigh are calculated as:

blow = max{fi : i ∈ Ilow} (12)

bhigh = min{fi : i ∈ Ihigh} (13)

For simplicity, to choose ilow and ihigh we use the first order heuristic [11]. For
the next iteration, these indices are calculated as:

ilow = arg max{fi : i ∈ Ilow} (14)

ihigh = arg min{fi : i ∈ Ihigh} (15)

The algorithm is executed until the following inequality holds:

blow ≤ bhigh + 2τ ⇔ blow − bhigh ≤ 2τ (16)

where τ : 0 < τ < 1 is the tolerance of the solution optimality and in fact the
stopping criteria. After converging, the parameter b can be calculated using (3).

4 Parallel SMO implementation

Our implementation was developed in C++ using OpenMP. This API allows
to write multi-threaded shared memory (also named Uniform Memory Access
(UMA)) applications in either C/C++ or Fortran. Programs written using this
approach are in the Flynn’s taxonomy classified as Single Process Multiple
Data (SPMD) because the same program is executed by different threads, each
processing a different subset of the data.

Our approach consists of identifying the SMO steps that are simultaneously
responsible for large portions of the overall computation and that could be safely
parallelized. One of such steps, as noted by Cao et al. [4], is the KKT conditions
update (using fi and the kernel Gram matrix). Since each fi can be computed
independently, this step can fully take advantage of CPU multi-core architec-
tures. Another phase which can be accelerated is the computation of the next
blow, bhigh, αlow and αhigh. Since this is done by performing a first order heuris-
tic search, it can be executed in parallel using reduction operations. Each thread



works on a subset of both Ihigh and Ilow while the master thread waits for the
results and then applies the reduction operators. The offset b is also computed in
parallel for each SV. Thus, the only sequential steps are the Lagrange multipliers
(αilow and αihigh

) update and the convergence verification.
The above parallel tasks are divided into equal parts, each one assigned to

a corresponding thread. In theory, if the original single-threaded SMO training
process takes Ts time, using a processor with P cores, the multi-threaded SMO
would execute in Tp = Ts

P and would offer a speedup of P×. However, this
theoretical speedup is rarely achieved in practice because part of the code is
not parallelized. Even though the algorithm can be fully parallel, the sequential
sections always exist (Amdahl’s law) due to: (i) synchronization, where some
threads must wait for the completion of others, (ii) memory bandwidth, which is
shared by all CPU cores, and (iii) mutual exclusion areas, among other reasons.

5 Experimental Setup, Results and Discussion

In order to evaluate our MT-SVM implementation w.r.t. the performance and
speedup we compared the results obtained for several benchmarks with the cor-
responding results of the state-of-the-art LIBSVM (version 3.11) [6]. Both tools
use the SMO algorithm. For fairness we set LIBSVM cache to one Megabyte
since currently our implementation does not make use of a kernel cache. For
our implementation we set the number of threads to 4. The system used for
testing has an Intel Quad Core i5-750 processor with the clock set to 3.33 GHz.
Moreover, the machine used had 12 GB RAM.

Currently our implementation is designed exclusively for binary tasks, thus
we have specifically chosen binary class datasets for the experimental setup. With
the exception of the Two-Spiral, the MP3 Steganalysis [14] and the Peptidases
detection [12], the remainder datasets where obtained from the UCI Machine
Learning repository [2]. The Two-Spiral dataset consists of learning to discrimi-
nate between data distributed on two distinct spirals that coil around each other
in the x-y plane. This dataset was used in order to assess the Universal Kernel
Function (UKF) kernel efficiency. The MP3 Steganalysis dataset was extracted
from a real problem using the four methods described in Qiao et al. [14]. The
dataset is composed of two classes: the first corresponds to normal MP3 audio
files (cover) and the second are the same MP3 files with hidden information
(stego). The Peptidases detection problem is described in Lopes et al. [12]. Pep-
tidases are a class of enzymes that catalyze chemical reactions, allowing the
decomposition of protein substances into smaller molecules. The task consists
of discriminating between peptidases and non-peptidases. Table 1 lists the main
characteristics of the datasets as well as the best RBF kernel parameters deter-
mined by grid search. The optimality gap τ was set to 0.01. The datasets were
normalized before being processed using a standard score procedure. We ran
the experiments 10 times for each dataset with 5-fold cross validation. Table 2
shows the speedups obtained by MT-SVM as compared to LIBSVM, both for
training and classification tasks. For the smaller datasets (Breast Cancer, Haber-



Table 1. Datasets and RBF kernel parameters used in the experiments.

Dataset #Samples #Features C γ

Adult 32561 14 1.0 0.100
Breast Cancer 569 30 3.0 0.050

German 1000 59 1.0 0.050
Haberman 306 3 1.0 1.000

Heart 270 20 0.1 0.050
Ionosphere 351 34 1.0 0.500

Sonar 208 30 3.0 0.050
Tic-tac-toe 958 9 1.0 0.001
Two-Spiral 2097152 2 3.0 0.250

MP3 Steganalysis 1994 742 0.1 0.250
Peptidases 20778 24 0.56 11.30

Table 2. Training and classification times (in seconds) and speedups obtained for the
MT-SVM implementations as compared to LIBSVM.

MT-SVM LIBSVM MT-SVM LIBSVM Training Classification
Dataset Training Classification MT-SVM Speedup

adult 17.733±0.063 32.492±0.071 1.033±0.717 2.240±0.586 1.83× 2.17×
Breast Cancer 0.028±0.001 0.004±0.003 0.008±0.001 0.008±0.003 0.14× 1.10×
German 0.088±0.002 0.126±0.001 0.009±0.005 0.024±0.004 1.42× 2.61×
Haberman 0.028±0.001 0.004±0.000 0.006±0.002 0.001±0.004 0.15× 0.14×
Heart 0.012±0.002 0.005±0.001 0.007±0.002 0.002±0.003 0.44× 0.23×
Ionosphere 0.029±0.002 0.009±0.001 0.007±0.001 0.003±0.003 0.32× 0.41×
Sonar 0.021±0.001 0.007±0.001 0.007±0.004 0.003±0.003 0.32× 0.38×
Tic-tac-toe 0.147±0.001 0.079±0.001 0.007±0.008 0.006±0.010 0.53× 0.78×
Two-Spiral 21.259±0.116 146.723±0.664 3.018±13.569 11.720±2.025 6.90× 3.88×
MP3 Steganalysis 0.344±0.003 2.367±0.016 0.019±0.053 0.573±0.017 6.87× 29.53×
Peptidases 3.973±0.033 12.079±0.008 0.418±0.124 1.690±0.204 3.04× 4.04×

man, Heart, Ionosphere, Sonar and Tic-tac-toe) the speedup is actually negative
(< 1). In this case, the amount of data simply does not justify the overhead
of launching additional threads and synchronizing their execution. However, for
bigger datasets, with a sufficient large number of samples and/or features (Adult,
German, Two-Spiral, MP3 Steganalysis and Peptidases detection), the MT-SVM
implementation can boost significantly both the training and the classification
tasks. This takes particular relevance for the training task as it can considerably
reduce the time required to perform a grid search (a fundamental process to
obtain good generalization models). As illustrated in Table 3, MT-SVM yields
competitive performance as compared to LIBSVM. In terms of classification
(accuracy and F-Score), the Wilcoxon signed ranked test found no statistical
evidence of any of the implementations performing worse than the other. How-
ever, the null hypothesis that MT-SVM generates a model with a number of
SVs greater or equal than the number generated by LIBSVM is rejected at 0.05
significance level. Table 4 presents the UKF results. The additional number of
parameters greatly increases the complexity of performing a grid search. Having
said that, it is possible that the results could be improved by narrowing the
search. Nevertheless, the results show the usefulness of the UKF kernel. UKF
yield better or equal F-Score results than the RBF kernel, in almost a half of the



Table 3. MT-SVM and LIBSVM classification performance and number of SVs.

MT-SVM LIBSVM MT-SVM LIBSVM MT-SVM LIBSVM
Dataset Accuracy (%) F-Score (%) #SVs

Adult 84.65±0.39 84.72±0.38 90.13±0.28 90.38±0.24 9781.8±56.4 9788.4±48.9
Breast Cancer 97.48±2.26 97.76±1.49 96.59±1.90 96.96±2.02 113.3±05.2 114.4±04.9
German 73.61±1.65 73.03±1.32 83.44±1.08 83.46±0.82 713.7±05.5 718.7±05.1
Haberman 71.85±4.42 72.92±3.50 82.14±3.13 83.49±2.31 149.1±04.8 151.2±04.4
Heart 83.18±4.64 82.37±4.96 85.44±4.09 85.30±4.00 175.7±03.1 177.2±03.1
Ionosphere 89.66±3.38 89.06±3.58 91.16±3.13 90.72±3.29 215.1±03.1 217.7±03.2
Sonar 85.77±4.90 84.65±4.78 87.30±4.39 86.83±4.00 151.1±02.6 153.7±02.4
Tic-tac-toe 97.70±1.22 97.72±1.26 98.28±0.90 98.29±0.93 548.4±10.1 551.8±10.9
Two-Spiral 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 939.9±58.2 1053.1±67.5
MP3 Steganalysis 97.05±0.87 96.92±1.00 97.06±0.88 96.94±0.99 346.2±07.1 348.1±07.2
Peptidases 96.25±0.24 96.04±0.23 97.85±0.14 97.75±0.13 6849.4±23.7 3829.6±17.3

Table 4. UKF kernel results with MT-SVM.

Time (seconds) Classification
Dataset Training Classification Accuracy (%) F-Score (%) #SVs

Adult 15.518±0.160 2.210±0.029 83.36±0.37 89.47±0.26 12543.6±56.6
Breast Cancer 0.026±0.010 0.001±0.000 98.11±1.00 97.39±1.46 63.1±03.0
German 0.139±0.018 0.005±0.001 71.79±3.15 83.04±2.08 795.6±13.9
Haberman 0.027±0.008 0.001±0.000 72.45±4.91 82.85±3.58 231.1±04.0
Heart 0.014±0.001 0.001±0.000 82.93±3.59 84.85±3.41 181.5±05.5
Ionosphere 0.014±0.002 0.001±0.000 94.28±3.04 95.61±2.30 101.4±04.0
Sonar 0.014±0.003 0.000±0.000 85.10±4.81 86.19±4.69 129.8±03.8
Tic-tac-toe 0.208±0.021 0.002±0.001 98.17±0.94 98.59±0.76 475.6±11.0
Two-Spiral 13.210±0.004 2.940±0.010 100.00±0.00 100.00±0.00 324.0±05.0
MP3 Steganalysis 0.915±0.045 0.052±0.007 93.02±0.78 93.12±0.83 1019.4±08.5
Peptidases 7.803±0.827 0.638±0.056 96.73±0.25 98.14±0.14 5097.6±57.5

datasets. Using the Wilcoxon signed ranked test we found no statistical evidence
of the UKF kernel performing worse than the RBF kernel and vice-versa. It is
interesting to note that, with the exception of the Sonar dataset, UKF yields
better F-Score results in the datasets that present a smaller number of SVs than
the corresponding number for the RBF kernel. This seems to indicate that UKF
presents better classification performance when it is able to gather points near
to each other, in a higher dimension space, as intended.

6 Conclusions and Future Work

As the amount of data produced grows at an unprecedented rate fast machine
learning algorithms that are able to extract relevant information from large
repositories have become extremely important. To partly answer to this challenge
in this paper we proposed a multi-threaded parallel MT-SVM which parallelizes
the SMO algorithm. Our implementation uses the power available on multi-core
Central Processing Units (CPUs) and efficiently learns (and classifies) within
several domains, exposing good properties in scaling data. Speedups up to 7×



on training and up to 30× on classification tasks were achieved. Additionally,
the UKF kernel which has good generalization properties in the high-dimensional
feature space has been included, although more parameters are needed to fine
tune the results. In future work we will account for vectorization (SSE or AVX)
as well as support for kernel caching which may drastically decrease the amount
of computation.
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