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Abstract. We propose a multi-agent approach to the problem of ex-
ploring unknown environments that relies on providing the agents with
a measure of interest for the viewpoints of the surrounding environment.
Such measure of interest takes into account the expected decrease in un-
certainty provided by acquiring the information of objects seen from a
viewpoint and the novelty of the potential class label of those objects.
This allows the agents to visit selectively the objects that populate the
environment. This single agent exploration strategy is combined with
a multi-agent exploration strategy relying on a brokering system that
allows the coordination of the agent team according to the agents’s per-
sonal interest and their distance to the viewpoints. The advantages of
these forms of selective attention, together with those of the collabo-
rative multi-agent exploration strategy, are tested in several scenarios,
comparing our approach against classical ones.
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1 Introduction

The exploration of unknown environments is a specific kind of active learning
[23, 21]. It can be defined as the process of selecting and executing actions in
such a way that a maximum of knowledge of a given domain is acquired (e.g.,
[20]). In the case of physical exploration, the result is the acquisition of a model
of the physical environment. Because exploring unknown environments requires
resources such as time and energy, there is always a trade-off between the amount
of knowledge that can be acquired and the costs of acquiring it. Therefore, explo-
ration strategies that minimize costs and maximize knowledge acquisition have
been proposed for artificial agents. These strategies have been grouped into two
main categories: undirected and directed exploration [20]. Strategies belonging
to the former group (e.g.: random walk exploration, Boltzman distributed explo-
ration) use no exploration-specific knowledge and ensure exploration by merging
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randomness into action selection. On contrary, strategies belonging to the lat-
ter group rely heavily on exploration specific-knowledge for guiding the learning
process. Several techniques have been proposed and tested either in simulated
and real, indoor and outdoor environments, using single or multiple agents (e.g.,
[1, 2, 5, 9, 10, 18, 26, 23, 22, 21, 20, 27, 28, 30, 31]). The exploration domains include
planetary exploration (e.g., Mars, Titan or lunar exploration) (e.g., [19, 3, 29]),
the search for meteorites in Antarctica (e.g., [15]), underwater mapping, volcano
exploration, map-building of interiors (e.g., [24, 26, 28]), etc. The main advan-
tage of using artificial agents in those domains instead of humans is that most
of them are extreme environments making their exploration a dangerous task
for human agents. However, there is still much to be done especially in dynamic
environments such as those mentioned above.

Real exploration environments contain objects. For example, office environ-
ments possess chairs, doors, garbage cans, etc., cities are comprised of many
different kinds of buildings (houses, offices, hospitals, churches, etc.), as well as
other objects such as cars. Many of these objects are non-stationary, that is,
their locations may change over time. This observation motivates research on a
new generation of mapping algorithms, which represent environments as collec-
tions of objects [7, 8]. At a minimum, such object models would enable a robot
to track changes in the environment. For example, a cleaning robot entering an
office at night might realize that a garbage can has moved from one location to
another. It might do so without the need to learn a model of this garbage can
from scratch, as would be necessary with existing robot mapping techniques.
Object representations offer a second, important advantage, which is due to the
fact that many environments possess large collections of objects of the same
type. For example, most office chairs are examples of the same generic chair
and therefore look alike, as do most doors, garbage cans, and so on. As these
examples suggest, attributes of objects are shared by entire classes of objects,
and understanding the nature of object classes is of significant interest to mobile
robotics. In particular, algorithms that learn properties of object classes would
be able to transfer learned parameters (e.g., appearance, motion parameters)
from one object to another in the same class. This would have a profound im-
pact on the accuracy of object models, and the speed at which such models can
be acquired. If, for example, a cleaning robot enters a room it has never visited
before, it might realize that a specific object in the room possesses the same
visual appearance of other objects seen in other rooms (e.g., chairs). The robot
would then be able to acquire a map of this object much faster. It would also
enable the robot to predict properties of this newly seen object, such as the fact
that a chair is non-stationary, without ever seeing this specific object move.

To our knowledge, the classification methods used to achieve such object
models are mostly non-memory based [11, 26, 25, 28]. However, given that most of
the environments in which exploration occurs lack a domain theory and are char-
acterized by unpredictability or uncertainty, memory-based classification meth-
ods are suitable to classify objects of those environments [6]. Previously, Macedo
and Cardoso [12, 14] addressed this issue, but they used a single agent approach.
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On contrary, [4, 18, 12, 13] provided evidence that multi-agent approaches are
better in comparison with single agent ones, reducing the time required to ex-
plore the environment.

However, the exploration strategies used by these multi-agent teams cannot
be the same as those used by a single agent. Having other agents mapping the
same environment, these agents must take into account the behavior of its fellow
“explorers” and the locations that have already been mapped by them when
deciding the next step to make, in order to reduce the redundancy in the mapping
and reduce the time taken in the process. Therefore, some sort of coordination
is needed in order achieve a truly collaborative behavior between the agents.
On this aspect, regarding the coordination of the agents, [4, 18, 12, 13] achieved
significant results by reducing the redundancy in the mapping and directing each
agent to the location most favorable to be explored by it. This is achieved by
evaluating the “frontiers” of the currently mapped environment and having each
agent bid on the next location to explore until a consensus is reached between
all agents. In addition, no location is picked by more than one agent and each
agent gets the most favorable location to explore, given the existence of the other
agents. The work of [12, 13] proposes the use of motivational agents with various
“feelings” (surprise, curiosity and hunger) in the decision-making process that
defines the exploration behavior of the agents. In all these approaches, the goal
is always to map an entire environment, with the (mostly time) costs associated
with such an exhaustive method. Also, these simulation works never take into
account the cost of fully identifying an object. In a real situation, in which object
identification must be done, usually it is costly to have a clear classification of
an object based on its characteristics as it is necessary to query large amounts
of data or to prompt for input from a human being, both of which are extremely
time-consuming [16].

In this paper we focus on the selective attention and coordination aspects
of an exploration strategy used by the agents to decide the next viewpoints.
The coordination aspects of the problem are dealt with a brokering system. Re-
garding the selective attention, our approach consists of providing the exploring
agents with reasoning capabilities that allow them to rate unknown objects in
the environment according to an interest level determined by the explorer. By
making the agents “ignore” objects with a low interest value and making a pre-
dictive identification of such an objects at distance instead of approaching them
to fully identify them, we aim to reduce mapping times of full environments,
while keeping a non significant misclassification level.

The next section presents a multi-agent approach for the exploration of un-
known environments. Section 3 describes the functionalities of each type of agent
of the multi-agent system. Section 4 presents the experimental tests. Finally, sec-
tion 5 discusses the results and presents conclusions.
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2 Overview of the Multi-Agent System for the
Collaborative Exploration of Unknown Environments

Our approach to the exploration problem relies on ensuring that locations that
are highly unlikely to possess new and useful information for the mapping, such
as empty space or locations with a known geometry, won’t be given much atten-
tion by the exploring agents, resulting in a partial mapping of the environment.

In order to efficiently map the environment, we chose a master-slave archi-
tecture. Mapping and exploration are coordinated by two separate agents with
no physical presence: the mapper and the broker. The slave agents are called
explorers. The mapper is in charge of merging everyone’s maps and sending the
global map back to each explorer. The broker assigns next moves to every ex-
plorer, based on the interesting locations they spotted. The explorers analyze
the environment they inhabit, send their local map to the mapper, pick points
of interest based on their current knowledge of the area, send them to the broker,
and finally move to the location assigned by the broker.

In our simulated environment, there are a set of properties explorers have
access to, including its position, and the list of objects it senses. Much like a
physical agent requires a set of sensors in order to gather information about the
surrounding world, our simulated explorer has access through simulated sensors
to some properties of the objects it can see. The simulated agent can see objects
in all directions within a certain distance.

The environment used is considered as a discrete, two dimensional grid, in
which each cell can be populated with one object, no objects or an object and
an exploring agent at once. This is done because in the classification of the
environment, each cell is marked as identified or not, while in the former case
the class of the object identified is placed in an auxiliary grid.

Each object that populates the environment has a set of core attributes. In
this case, size and color were chosen for the sake of simplicity and in order to
keep the experiments simple and understandable. Apart from this, each object
has a class, that identifies it as a member of a kind of object family. For example,
there could be classes for trees, deer, bushes, grass and rabbits, all these would
have a size and color that can distinguish them from other classes or not (bushes
and grass have similar colors). These two core attributes can be sensed by the
agents at distance and determine the probability distribution assigned by an
agent to an unknown object.

3 Agents’ Description

In this section, we describe the various agents implemented and their in-depth
functionalities.

3.1 Mapper Agent

The mapper agent, as stated before, has the task of collecting all the data from
the environment that the explorer agents supply and aggregating that data into a
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map of the environment. To that purpose, the agent has in its memory a Sparse
Object Grid, where it stores the objects that all the agents have seen so far
and its location (by the index in the grid) and an auxiliary array that contains
information whether a given object at a given location has been identified or
if its type is still unknown. This last array is meant to keep the explorers from
extracting interest from objects that have already been identified, allowing them
to skip through fully identified locations into more interesting areas.

The mapper also stores a list of prototypes, i.e., an abstract representation of
the different objects witnessed by the explorers so far, with information about
the average characteristics of an object (a kind of idea of an object, something
that we can compare to an actual object and obtain a high correlation). These
prototypes are to be used by the explorer agents when they wish to assign a
probability distribution to an unknown object. This is explored in depth in the
section about the explorer agent.

3.2 Broker Agent

The broker agent acts, as the name indicates, as a broker for all the explorer’s
requests for new targets to explore. As such, it must maintain a list of interesting
locations provided by the explorers, so that it can select from that list when an
explorer agent requests a new target. This approach is highly influenced by the
work of Simmons et al. [18], being an adaptation of their brokering system. To
implement this behavior, the broker has methods to receive information from the
explorers, namely the location of an interest point and its corresponding interest,
and to remove points from its memory – for example, when an explorer arrives
at the point and identifies the object there, no longer that point is interesting.

The brokering itself takes place when an explorer agent requests a new target
from the broker. Upon this request, the broker will determine the relevance of
each interest point in its memory to the given agent. This relevance is a Benefit
minus Cost function presented as follows that takes into account the interest
of the point (Interest), the distance of the agent to the point (Dist), and the
maximum distance that an agent is willing to travel before arriving at its target
(Maxdist) (Equation 1). This formula assures that an agent will pursue the most
informative viewpoints that are closer to it.

Utility = Interest− Dist× 100
Maxdist

(1)

The interesting points are sorted by decreasing relevance, and the most rel-
evant one is passed to the requesting explorer as its next target. This point is
then removed from the list, so we can prevent situations where the broker as-
signs the same target to multiple agents, effectively disrupting the entire agent
coordination.

3.3 Explorer Agent

The explorer agent is the core of this multi-agent system. It performs the heavy-
duty work of travelling around the environment, collecting information about
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the objects it detects and trying to extract knowledge from it. To do so, it has
movement and sensing capabilities, represented by a speed and a view range,
inside which the agent is capable of detecting general characteristics of an object.
In each simulation step, the agent moves towards a given target (a location on the
environment) sensing its surroundings. Whenever and object in the environment
comes inside its view range, the agent starts a process to attain its characteristics,
assign a probability distribution to that object and, based on that probability,
calculate the interest of that object to the agent, which will determine what
to do next: either the agent identifies it probabilistically, or it marks it as an
interesting spot to be visited later.

Note that these are different ways to identify an object: if the agent arrives
at its target and there is an object there, it spends some time on it, identifying
it (emulating the behavior of a real robot sending information to a central pro-
cessing unit where either a large database is queried or human input is required
to identify an object). In this case, the agent adds the object description to the
prototype of the identified class, because it has an exact knowledge that the
current object is of that class. However, the agent also possesses capabilities to
identify an object at distance: if, while analyzing it, the explorer determines that
an object is not interesting enough to be visited, it rather chooses to identify
it at distance, by picking the most likely class from the probability distribu-
tion of classes computed for the object. This approach does not add the object
attributes to the class prototype, because the agent cannot be sure that it is
making a correct classification. Thus, this prevents the agent from reinforcing a
bad classification, leading to disastrous results.

To attain the object’s characteristics, the agent simply queries the environ-
ment as to what are the basic attributes of the object (e.g., size and color). This
emulates a real-world scenario where an agent has a limited sight and is only
capable of identifying some basic attributes of objects in the environment at
distance.

Classifying objects Afterwards, the explorer agent has the task of classifying
the unknown objects, by assigning it a probability distribution based on the
knowledge of the worlds it has so far, namely the prototypes that it has devel-
oped. These are abstract representations of an object (more precisely, a class),
which contain the average characteristics of the witnessed objects of that class.
A good example is the idea of “tree”: it’s tall and it’s greenish. Not all trees are
really tall or green, but, on average, this is an accurate representation of trees.

The explorer agent browses through a list of prototypes, either its own list
or a collaboratively filled list that all the agents share in the mapper agent,
and correlates the attributes of the unknown object to each of the prototypes.
This correlation is done by doing a weighed average of the Euclidean distance
between each attribute of the prototype and the object. This gives us a good
approximation of the probability for the object to be an instance of each of the
prototypes.
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However, this cannot be the only measure we use. If it were, by witnessing
one tree, the agent would assume to possess all knowledge of trees that existed
in the world, and this is not the case. This representation must take in the fact
that only after several observations of the same object, some understanding of
it can be extrapolated. As such, a saturation factor (Equation 2) is applied to
the correlation to take into account the number of occurrences (noccurs) of that
object that have been witnessed.

Saturationcorr = tanh(
(noccurs−5)

2 + 1
2

) (2)

This formula was designed to saturate at near 1 when the number of occur-
rences of that given object approaches 10. So, we are assuming that the agent
needs to see at least 10 instances of a given object to have any real understanding
of the object as a class. This can be changed, of course, to represent different lev-
els of learning rates, by increasing or decreasing the denominator of the fraction
inside the hyperbolic tangent.

All these calculations, however, don’t account for the possibility that the
agent might not have witnessed any instance of the class of the object it is
now trying to identify as it might be a new kind of object that needs its own
prototype. This is addressed by the agent by calculating an unknown correlation
value that determines the possibility that the current object is not yet known.
This value is automatically calculated to 1 when no prototypes are present (at
the beginning of the simulation) and using the following formula (Equation 3)
when there is already n prototypes, i.e., there is already some knowledge of the
world:

sim(Onew, Ounknown) = 1−max
i

sim(Onew, Oi) (3)

where sim(Onew, Oi) represents the correlation or similarity of the object
Onew with feature vector xnew to the ith prototype Oi with feature vector xi

and class label yi and is computed as the Euclidean distance between Onew and
Oi, and more precisely between xnew and xi.

This gives us a fair measure of the chances that this new object Onew is
something new, given the knowledge the agent has. This value is maximum when
all the correlations are 0, and minimum when at least one of the correlations is
1.

Finally, the explorer agent translates these correlations into a probability
distribution, using Equation 4.

p(ynew = yj |xnew) =
sim(Onew, Oj)∑n+1

i=1 sim(Onew, Oi)
(4)

The explorer agent now has a probability distribution, which sums to 1, that
tells the agent, for each known class and for the unknown class, the probability
that the current object Onew is an instance of that class yj .
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Determining Interest Given a probability distribution, the explorer agent
assigns an interest to such a probability distribution. This is done in two steps,
that represent two different interesting situations: one where the agent sees there
is a high probability of finding a new object, and one where the agent detects
that the current object has similar characteristics to several known classes.

The first case, the interest for the unknown, is mapped using only the prob-
ability that the object is none of the known classes. The interest is given by
Equation 5.

Iunknown(Onew) = tanh(2× P (ynew = yunknown)) (5)

where Onew is an unlabeled new object with feature vector xnew, and P (ynew =
yunknown|xnew) is the probability that the new object is from a new, unknown
class.

This formula is used instead of simply mapping probability to informativeness
because we assume that a x% probability of being something new has more than
an informative value of x in a scale of [0-100]. This formula increases the rate
of climb of the informative value, saturating when approaching 1, the maximum
probability, representing the maximum informativeness, here valued at 1.

However, this is not the only situation where the agent discerns something
interesting. It also needs to identify an interest for the chaotic, i.e., an object
that matches several of the known classes well, or at least some of them. In this
case, we have a simple solution: the explorer agent calculates the entropy of the
probability distribution using Shannon’s approach [17]. Higher entropy values
represent more chaotic situations, where all the interest of the agent should
be focused. As such, we calculate the entropy (Equation 6) of the probability
distribution for that object, and map that value proportionally to an interest
value.

Iuncertainty(Onew) = −∑n+1
j=1 P (ynew = yj)× log(P (ynew = yj) (6)

After calculating these two interest values, Iuncertainty and Iunknown, the
explorer agent picks the one that represents the maximum interest and assigns
it as the interest value for the object under scrutiny. Note however that other
approaches may be considered such as the mean of those values or even their
sum (the comparison between these approaches is a future work).

Agent Reasoning After determining the interest for the current object, the
explorer agents makes a decision: either determines that the object has an high
enough interest and sends its location to the broker agent so it can be identified
as an interesting position; or it determines that the object is not interesting
enough to be visited and classifies it at distance. This last option is the result
we expect from our agent after exploring a bit of the map, becoming aware that
this option is less time consuming and it does not require the agent to be in the
same exact location of the object. In order to make this decision, each explorer
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agent has an interest threshold under which he identifies the object at distance
and over which it sends the location to the broker, along with its interest.

The experimental tests that follow allows to see whether this approach is
favorable to more classical approaches, and how much error this behavior intro-
duces in the mapping of the environment.

4 Experiments

4.1 Experimental Setup

To test our approach, we run a team of explorer agents in several different sce-
narios (maps with 400 units of width by 300 units of height) with different con-
figurations to test out several aspects of our system. The testing environments
were populated with 5 different kinds of objects: Water, Trees, Bushes, Houses,
and Walls. These objects were randomly distributed by the environment. Figure
1 presents an example of these testing environment. Objects of different classes
are represented with different colors. What needs to be known about these ob-
jects is that each of these classes has a central value for its attributes, and varies
slightly in each instance of the object. However, some of them vary a lot in one
attribute and a little in others (Water, Houses) and some vary averagely in all
attributes (Tree, Bushes). The classes Tree and Bush are very similar to one
another, with the Bushes being smaller and darker than the Trees, allowing us
to test the system in an extreme situation where closely related objects aren’t
supposed to be classified as the same. In order to test different configurations,
we varied the number of agents in the exploring team, the threshold at which an
agent finds an object informative, the mode of sharing knowledge (either sharing
their knowledge – global knowledge – or not sharing it – local knowledge), and
the starting positions of the agents.

The runs of the simulation have been limited to 5000, and we specified that
in order to classify an object in place, an agent must spend 10 steps in that
position (representing the time it takes to identify it). In addition to that, the
agents have a 40-unit view range radius, which will be constant throughout the
experimentation.

4.2 Experimental Results

We present the results of the exploratory study about the influence of the infor-
mativeness threshold and number of agents on the percentage of objects classified
or misclassified.

Figure 2 illustrates the results of varying the threshold in the set {0, 50,
75, 90}, using teams of two agents. The agents share their knowledge, so every
agent has the same knowledge of the environment. We can clearly see that our
system works as hypothesized: in a classical approach where every object must
be visited (threshold = 0), the system doesn’t have the time to classify half of
the objects, but the identification is always correct. However, by increasing the
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(a) Random environment.

 

(b) Donut environment.

Fig. 1. Two kinds of environment.

threshold, we achieve faster exploration (more objects are identified), but also
with an also climbing error rate. We can see that with a threshold of 90 over 20%
of the objects are misclassified. So, the threshold must be balanced to achieve
good temporal performances while still maintaining a good level of certainty on
the classification. It can be seen that with a threshold of 50 a good compromise
is reached between exploration time and error rate.

Figure 3 shows the results of varying the starting positions of the agents
and the strategy of sharing or not sharing their knowledge. This is done with 2
explorer agents and a threshold of 30. It also shows a comparison between using
2 and 8 agents, while keeping constant the starting positions of the agents and
the sharing knowledge mode.

As it can be seen, when both agents start in similar positions, the results are
worse, with 50% error indicating that one of the classes is misclassified every
time. This is because the classes are very similar and clearly one of them satu-
rates its prototype much faster and its correlation is rapidly high with the other
class. By separating the agents at start, we can see that the results aren’t much
brighter using local knowledge: each agent basically has knowledge of only one
of the classes and identifies each object it sees as that class. It is, however, an
improvement we cannot see in these results, if we take as a fact that the error
is distributed between the classes, with half of the instances of each class being
misclassified, as opposed to a class as a whole not being identified correctly.

Using global knowledge this is mitigated, as it can seen in the graphs: by
sharing their knowledge and starting in separate clusters, the agents gain knowl-
edge of both of the classes at the same time and are able to correctly identify
most of the objects efficiently.

As it can be seen, increasing the number of agents with global knowledge,
the results are better time and error-wise, because the necessary knowledge for a
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(a) Agents=2; Informativeness
Threshold = 0.

(b) Agents=2; Informativeness
Threshold = 50.

(c) Agents=2; Informativeness
Threshold = 75.

(d) Agents=2; Informativeness
Threshold = 90.

Fig. 2. Results for 2 agents and different informativeness threshold.

correct classification is much quickly attained by a large number of agents than
by a single one. The starting positions of the 8 agents are: 4 of the agents are in
the center cluster and the remaining 4 start in the environment corners.

The results are much better than those attained with the previous approaches,
in a rather difficult scenario for our multi-agent system. The results show evi-
dence for the importance of agent placement and number of agents, as well as
for the benefit of using global knowledge. The performance of the system in-
creases with the number of agents introduced. Also, the error of the exploration
decreases with the number of increasing explorers. This is partially because of
the global knowledge implementation we are using: with many agents starting
in various locations, a better knowledge of the world is quickly gained by the
team as a whole, as their shared experiences provide a more accurate knowledge
of their surroundings than the knowledge from a single agent.
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(a) Agents=2; pos=separated;
knowledge=global.

(b) Agents=2; pos=separated;
knowledge=local.

(c) Agents=2; pos=same;
knowledge=global.

(d) Agents=8; pos=separate;
knowledge=global.

Fig. 3. Results in the donut environment for different sharing modes of knowledge,
different starting positions for the agents, and different number of agents.

5 Discussion and Conclusions

We proposed a multi-agent system for the classification of objects that populate
unknown environments, in which each explorer agent is equipped with a classifier
that selects for labeling those unlabeled objects that are more informative. The
informativeness of an unlabeled object is measured in terms of the decrease in
uncertainty by labeling it and also in terms of the novelty of its potential class
label.

There is evidence indicating that the approach proposed in this paper is
superior to a classic approach, in which identifying an object is a time-consuming
process in the exploration paradigm. However, this does not come without a cost:
this approach, using a predictive, at distance identification, introduces some error
derived from classification mistakes. The approach is also clearly flawed in the
aspect that, in the absence of informative objects to be explored, the agents roam
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through the environment, when some approach could be taken for the agents to
visit unvisited areas.

Still, this approach has its merit and, the core of it, the application of an
informativeness threshold to know when to approach or not an object, reveals
itself as a more than capable way to explore efficiently and quickly and unknown
environment. The experimental results obtained with different sizes for the team
of agents each one with that selective classification of objects agree with the
previous results obtained in previous studies.

Note that this entire work is based on the assumption that no previous knowl-
edge of the environment is given, nor of the possible objects that the agents may
encounter. If some information is given, more suitable approaches that rely on
more robust classification systems could be used. The approach here presented
promises to be effective when used in real unknown environments where commu-
nicating with large knowledge centers is a costly process and where the agents
are resource bounded by not being able to store a large amount of information
about their surroundings. In these circumstances, we believe this approach is a
robust one, which is able to deliver interesting results.

Some extra work should be done in the future in order to enhance this ap-
proach, especially towards reducing the error obtained and enhancing the broker-
ing algorithm. For instance, some work could be developed towards a self-policing
behavior of the agents, checking periodically for classification errors and adapting
the system accordingly, for instance by resetting the knowledge base or having
its weight decrease through time, with this aging effect preventing consecutive
misclassifications.

Further experimental tests are required to study the influence of the kind of
the environment in the performance of the agents. What are the results obtained
in structured environments? What happens with environments of different com-
plexity? Moreover, more statistical techniques such as ANOVA should be carried
out to assess the significance of the results. In this case, we may find conclusions
about the influence and interaction of the independent variables (the number of
agents, informativeness threshold, starting positions of the agents, and knowl-
edge sharing mode) on the dependent variable (classification correctness). Pre-
liminary results obtained with a structured environment indicate evidence of
the same behaviour achieved in unstructured environments. Furthermore, more
information metrics may be used, and their influence on the performance of the
classifier may be studied using factorial experiments.
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