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Abstract. Mapping and understanding the spatial distribution of for-
est aboveground biomass (AGB) is an important and challenging task.
This paper describes an exercise of predicting the forest AGB of Guinea-
Bissau, West Africa, using synthetic aperture radar data and measure-
ments of tree size collected in field campaigns. Several methods were
attempted, from linear regression to different variants and techniques
of Genetic Programming (GP), including the cutting edge geometric se-
mantic GP approach. The results were compared between each other in
terms of root mean square error and correlation between predicted and
expected values of AGB. None of the methods was able to produce a
model that generalizes well to unseen data or significantly outperforms
the model obtained by the state-of-the-art methodology, and the latter
was also not better than a simple linear model. We conclude that the
AGB prediction is a difficult problem, aggravated by the small size of
the available data set.

1 Introduction

The importance of accurately estimating forest aboveground biomass (AGB)
has been recognized in the literature (e.g. [13]). Forest AGB is a key component
when assessing the carbon stocks of a given ecosystem, and mapping its distribu-
tion is paramount to monitor forests and capture deforestation processes, forest
degradation, and the effects of conservation actions, sustainable management
and enhancement of carbon stocks. Furthermore, it is a requirement of inter-
national conventions (e.g., United Nations Framework Convention on Climate
Change, UNFCCC), especially on the basis of reporting mechanisms developed
under the UNFCCC post-Kyoto Protocol and particularly the initiative focusing
on Reducing Emissions from Deforestation and forest Degradation in developing
countries (e.g. [1]). Remote sensing data acquired by sensors onboard orbital
platforms provide the only means to assess and monitor the status and change
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of biophysical characteristics of tropical forests in a global and systematic way.
Numerous studies have demonstrated that a relationship exists between forest
AGB and low frequency (L- and P-band) Synthetic Aperture Radar (SAR) data
(e.g. [10]), though a high level of uncertainty still remains.

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [15].
It is now a mature technique that routinely produces human-competitive results.
However, a few open issues remain, overfitting being one of them. For a review
of the state-of-the-art in avoiding overfitting in GP the reader is referred to [5].
The problem of AGB prediction has recently been used as a test case to assess
the performance of an overfitting control technique, the RST [5]. The results
showed a clear improvement when compared to the results of standard GP, but
their quality was not assessed from the point of view of the application.

In this paper we tackle the AGB prediction problem using a much larger variety
of methods. From classical regressionmethods, including recent improvements, to
different variants and techniques of GP, including bagging and boosting, two GP
techniques aimed at avoiding overfitting, and the cutting edge geometric seman-
tic GP approach, they were all used in the context of a private “contest” that was
launched with the goal of obtaining goodmodels that can generalize well to unseen
data. The next section describes the data and the terms of the contest. Section 3
describes the long list of methods used, while Section 4 reports and discusses the
results. Finally, Section 5 draws some conclusions from this study.

2 Data

The dataset is composed of a combination of 112 forest AGB estimates and cor-
responding Advanced Land Observing Satellite (ALOS) Phased Array L-band
Synthetic Aperture Radar (PALSAR) data covering the forested areas of Guinea-
Bissau (West Africa). Forest AGB was estimated in two field campaigns that took
place in 2007 (43 observations) and 2008 (69 observations). It was based on a
stratified sampling methodology using an available land cover map of 2007. In-
dividual trees were measured following a three-nest sampling plot methodology
(4, 14, and 20m concentric sub-plots) and used in combination with allometric
equations to obtain forest AGB estimates. ALOS PALSAR data was acquired
in 2008 in fine beam dual (FBD) mode (i.e., HH and HV polarizations). After
image processing, several metrics were extracted for the same locations (112
plots) that were measured in the two field campaigns. Those metrics were the
minimum, maximum, mean, and standard deviation of the HH and HV polar-
izations, expressed in decibel (dB) units. Therefore we have eight features, that
we designate as x1, ..., x8, where some are highly correlated, such as x2−x3−x4

and x6 − x7 − x8. More information about the data set can be found in [2].
For the contest, only 75 of the 112 samples were given to the participants,

and the remaining 37 samples were held as the unseen data where to measure
the quality of each proposed model. With the 75 samples the participants were
free to do as they wished.
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The extended data used in method 8 below (EXT-REAL) was obtained by
randomly selecting 65536 samples from the study area (pixels from the image),
with the only constraint that the distance between any two points cannot be
lower than 200 meters. The synthetic extended data used in method 9 below
(EXT-SYNT) was obtained by attributing to each of the eight features four
different values (48 = 65536), equidistant from each other and inside the ranges
given by the minimum and maximum values of each feature in the 75 samples.

3 Methods

A large part of the methods used and described next are based on GP, namely
methods 5–13. All of these used 30 random partitions of the data (the 75 samples)
as training (50 samples) and validation data1 (25 samples). These partitions
were the same for methods 5–11. The partitions were used as cross-validation to
calculate the expected error, and in some cases to tune the parameters of the
method.

Method 1 (LIN). The first method to be tested is multiple linear regression,
using a stepwise selection algorithm, iterating forward selection and backward
elimination steps based on the statistical significance of the regression coeffi-
cients. This procedure aims at having the simplest model. The model obtained
uses only one feature: y = 154.0373+8.7676x6. From now on it will be designated
as LIN (linear).

Method 2 (LIN-NO). The second method is basically the same as LIN, but
the model is fitted without the three detected severe outliers which have high
Cook’s distances. The model obtained is y = 174.6253+ 9.8750x6 and it will be
designated as LIN-NO (linear with no outliers).

Method 3 (EXP). Due to the asymmetry of variable V9, which has an expo-
nential distribution with parameter 64.8839, and the non-normality of the errors
obtained with the LIN and LIN-NO models, the logarithm transformation is
tested. This resulted in the model y = exp(8.1390 + 0.2680x8), designated as
EXP (exponential).

Method 4 (REG). The fourth method is standard linear regression with elastic
net regularization [20]. The elastic net penalty is a linear combination of L1
and L2 regularization terms that aims at obtaining sparse weight parameters
and assign similar weights to correlated predictors. The model obtained was
y = 191.6389−1.8963x1+0.5056x2−1.0050x3+0.2156x4+3.6368x6+3.9242x7+
3.4831x8 and it will be designated as REG (regularization).

Method 5 (STD-GP). The fifth method is a common implementation of tree-
based GP, using Dynamic Limits [17] for bloat control and a fixed maximum
depth of 10. A population of 500 individuals, initialized with the Ramped Half-
and-Half procedure [8], was allowed to evolve for 50 generations with standard

1 In GP the validation data is often called test data. We call “unseen data” to the 37
samples that were not given to the participants, to avoid name confusion.
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crossover and mutation (probabilities 0.9 and 0.1, respectively) and a replication
rate of 0.1. The function set was composed of the four binary operators +, -, ×,
and /, protected as in [8] and the terminal set included ephemeral random con-
stants. Selection for reproduction was made with lexicographic tournament [11]
of size 5. Elitism guaranteed the survival of the best individual into the next
generation.

The resulting model (not shown) is, after simplification, a 67-node tree where
features x2, x4 and x7 do not appear, and it will be designated as STD-GP
(standard GP).

Method 6 (WTD). The sixth method is similar to STD-GP, but it uses a
weighted fitness function. The weighted fitness function is defined in terms of
the Root Mean Square Error (RMSE):

f∗ =

√
√
√
√

1

N

N∑

i=1

(Wi · (Ei − Pi))2 (1)

where N is the number training samples, W is the weight vector, E is the ex-
pected values for the training data, and P is the predicted values for the training
data. The weights are updated on every generation G with Algorithm 1. Fitness
is given by f = f∗.

In the above algorithm, when η = 1, the values for P1 are already available.
That is, the prediction values for generation η = 1 have already been calculated
with W = 1, so that we can update the weights for the next generation fitness
function.

We update the weights depending on whether there has been any improve-
ment in the prediction values over the generations. The magnitude of increase or
decrease in the prediction values is reflected in the error value ε. The choice of
error function ε is so that the updated weights do not reach saturation values for

a small error differences. In other words, the error function ε = 1− (εη + 1)−1/2

is a slowly growing function in terms of differences between the expected and
predicted values. If it were not the case (e.g., using exponential functions), then,
even for a small deviation of predicted values from the expected values, we would
have ε ≈ 1, which should be avoided.

This approach of weighing is different form the usual weighing procedures
(e.g. [14]), where each sample is re-weighed with respect to other samples in the

Algorithm 1. Update Weights

1 Define: εη = |Pη − E| and εη−1 = |Pη−1 − E| for any η ∈ 1 . . .G
2 ε = 1 − (εη + 1)−1/2

3 Initialization: P0 = ∞ and W0 = 1
4 for η ∈ 1 . . .G do

5 Wη
i = Wη−1

i ∗ εi ; if εηi < εη−1
i , for all i ∈ 1 . . . N

6 Wη
i = Wη−1

i + (1 − Wη−1
i ) ∗ εi ; if εηi > εη−1

i , for all i ∈ 1 . . . N

7 Wη
i = Wη−1

i ; otherwise, for all i ∈ 1 . . . N Return:
W = Wη;
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training data. In this approach, re-weighing of a sample solely depends on the
magnitude of change in error values and is not reflected upon by the magnitude
of change of values of other samples.

The model that resulted from this method is, after simplification, a 17-node
tree, which is very short for GP standards. We represent it with the expression
y = 2x2 − x3 + 3x5 + x6 + 73.078x5/x6 and designate it as WTD (weighted).

Method 7 (WTD-17). The seventh method is basically the same as WTD,
but uses the Dynamic Limits [17] with a fixed maximum depth of 17. The model
that resulted from this method (not shown) is, after simplification, a 54-node
tree where all features except x2 appear, and it will be designated as WTD-17
(weighted with maximum depth 17).

Method 8 (EXT-REAL). This method is inspired by the work of Robilliard
and Fonlupt [16]. Since their validation set was very small, they gathered thou-
sands of additional samples from which the expected output was unknown, only
knowing what reasonable bounds they should have. With this extended data set
a new validation criterion was used: the lowest number of samples out of bounds,
the better the model.

In this method we use real extended data as described in Section 2. When
using the extended data Dext of size Next, we make slight modifications to Equa-
tion (1). Let UB = max(E) be the maximum expected value in the training data,
LB = min(E) the minimum expected value in the training data, and Pext the
prediction values for the extended data. We now define a “confidence” parameter

as c = Pbnd ∗ 100/Next, where Pbnd = {P i
ext ∈ [LB,UB]}Next

i=1 . The confidence
parameter c quantifies the proportion of our predictions that are in the range of
expected values. We modify the fitness function as f = f∗/c.

The model that resulted from this method (not shown) is, after simplification,
a 83-node tree where features x2 and x8 do not appear, and it will be designated
as EXT-REAL (extended real data).

Method 9 (EXT-SYNT). This method is similar to EXT-REAL, but the
extended data Dext is synthetic data as described in Section 2. The model that
resulted from this method (not shown) is, after simplification, a 93-node tree
where all the features appear, and it will be designated as EXT-SYNT (extended
synthetic data).

Method 10 (BAG). This method is a bagging of GP models. Instead of taking
the training data and obtaining one model from it, we perform τ trials to obtain
τ models. Each trial uses a training set that is formed by randomly drawing, with
replacement, the same number of samples as the original training set (n=75).
Then the output of the model is the median of the τ outputs for each instance.
We used the median instead of the mean because of frequent surges observed in
the prediction values. τ was set to 10.

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BAG (bagging).
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Method 11 (BOOST). In the normal weighted approach (WTD) we update
the weights on every generation for a given instance of training data. In this
method we perform τ trials for the training data and update a weighted distri-
bution D for each trial. Under this method, each trial τ uses the same set of
training samples, which are drawn at random without replacement at the be-
ginning of trial 1. We adopt the commonly used Ada − Boost (e.g. [7,14]) to
update our distribution. Let us define Pt−1 to be the best prediction values for
the previous trial. Since D is updated at the end of each trial, we have Wη

updates available from Algorithm 1. For each trial we use fitness f = f∗.
The boosting approach usually employs evaluating a final hypothesis / func-

tion based on τ functions, evaluated for each trial [14]. We follow a naive ap-
proach of selecting a function whose RMSE is the best among the τ evaluated
functions. It has also been observed that such a best hypothesis is obtained
from the tth trial, where t > τ/2. This confirms that there is a good chance
of improvement by re-weighing over the trials, than just re-weighing over the
generations, as followed in WTD and WTD-17 approaches. τ was set to 10.

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BOOST (boosting).

Method 12 (RST). This method is the Random Sampling Technique (RST).
The RST was originally used to improve the speed of a GP run [4], however in [9]
it was used to reduce overfitting in a classification task in the context of software
quality assessment. With the RST the training set is never used as a whole in
the search process. Instead, at each generation, a random subset of the training
data is chosen and evolution is performed taking into account the fitness of the
solutions in this subset. This implies that only individuals that perform well on
various different subsets will remain in the population. Recently, Gonçalves et
al. [5] have proposed a more flexible approach to the RST, where the size of the
random subset and how often it is changed are parameters of the algorithm. The
authors tested their technique on real-life datasets and found the best results by
using only one random sample in each generation. They also showed that the
RST with these settings produces parsimonious models.

Algorithm 2. Boosting

1 Initialization: D1 = 1/N
2 for t ∈ 2 . . . τ do

3 Dt
i = (Dt−1

i )1−Li , for all i ∈ 1 . . . N
4 where

Li =
P t−1

i − Ei

max Pt−1 − E

5 Update: Wη from Algorithm 1

6 Normalize: Dt

7 Return: W = Dt ∗ Wη;
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We used RST with these settings. As for the regular GP parameters, the
settings were similar to STD-GP except for these differences: the population
was allowed to run for 100 generations, the tournament size was 2% of the
population size, no random constants were in the function set, elitism guaranteed
the survival of the best individual into the next generation, and no bloat control
was used except for the fixed depth limit of 17. The model that resulted from
this method is, after simplification, a 29-node tree represented by the expression
x2−3x1+x4−4x5+8x6+x7−3x8−x4/(x2−x1+x7), from now on designated
as RST (Random Sampling Technique).

Method 13 (GS-GP). This method is a GP system that uses the geometric
semantic genetic operators recently created by Moraglio et al. [12]. By semantics
it is meant the behavior of a program once it is executed on a set of data or,
more specifically, the set of outputs a program produces on the training data.
The geometric semantic operators directly search the semantic space, and they
have a number of theoretical advantages compared to the ones of standard GP
systems. In particular, as proven in [12], they induce a unimodal fitness landscape
on any problem consisting in finding the match between a set of input data and
a set of known outputs (like for instance classification or regression). This should
facilitate evolvability [6], making these problems potentially easier to solve for
GP. The geometric semantic operators also have a major drawback: they always
create offspring that are larger than their parents, causing an exponential growth
of the individuals. However, with the development of a novel implementation [19]
we were able to use them efficiently. This new GP system evolves the semantics of
the individuals without explicitly building their syntax, freeing us from dealing
with exponentially growing trees during the evolution. Only the best individual
found must be explicitly built. For more details see [19].

A population of 200 individuals was allowed to evolve until 10000 fitness
evaluations were completed, using similar settings to the RST method with a
few differences: the tournament was regular (not lexicographic) and absolutely
no bloat control was used. Both semantic operators were used, with a higher than
normal mutation rate (0.5) since it was recognized that the geometric semantic
mutation requires a higher rate for good exploration of the search space [19].
The mutation step of the geometric semantic mutation was 0.001 as in [12]. The
model that results from this method (not shown) is a very large individual that
we have not attempted to simplify. We will designate it as GS-GP (geometric
semantic GP).

Method14(BAG-SGB). StochasticGradientBoosting (SGB) [3] typically uses
a base learner (in our case, decision trees) and constructs additive regressionmod-
els by sequentially fitting the chosen base learner to current “pseudo”-residuals
by least squares at each iteration [3]. At these iterations, a simple base learner is
built using a randomsub-sample of the training data (without replacement), which
has been shown to substantially improve the prediction accuracy and execution
speed, andmakes the approach resilient to overfitting [3]. The finalmodel is a linear
combination of each simple base learner, which can be seen as a regression model
whereby each term is a tree. Furthermore, Suen et al. [18] have demonstrated that
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building and combining (by averaging in the case of regression) several SGB mod-
els on bootstrap samples of the training data set performs significantly better than
an unique SGBmodel, and concluded that it was accomplished by variance reduc-
tion. Therefore, instead of building a single SGBmodel, several SGBmodels fitted
to bootstrap samples (with replacement) of the original training set (n=75) were
built (BagSGB). In this study 25 bootstrap replicateswere used to build aBagSGB
model. For more details see [2].

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BAG-SGB (bagging of stochastic gradient boosting).

4 Results and Discussion

Table 1 shows the results obtained by each method. We report the results in
terms of root mean square error (RMSE) and correlation (CORR) between pre-
dicted and expected outputs. For the methods that used some kind of cross-
validation, e.g. all the GP methods (that did 30 runs, each one with a different
data partition - see Section 3), the expected error was calculated as the mean
or median RMSE and CORR obtained in the 30 runs. We have decided to re-
port both mean and median because the variability between runs was very high,
and hence the median becomes a better estimate of the error. We report the
error obtained on the unseen data, and when available we also report the error
obtained in the training data.

None of the methods was able to produce a model that generalizes well on
the unseen data. All RMSEs are high and accompanied by low (negative for all
GP models) CORRs. The model with lowest RMSE and highest CORR is the
one produced by the best state-of-the-art method, BAG-SGB, matched by the
first two linear models, LIN and LIN-NO, and followed by REG. The non-linear
models behaved much worse. Among the GP models, STD-GP and WTD-17
were the ones with higher RMSE on the unseen data, surprisingly followed by
RST. None of the GP models was able to accurately estimate the error, with
exceedingly high values in the mean expected RMSE, median expected RMSE
always too optimistic, and expected CORR showing similar values between mean
and median but completely failing to guess the negative values obtained on the
unseen data. The only models providing similar values for the mean and median
expected RMSE were BOOST and GS-GP, GS-GP being the less optimistic one.
GS-GP is also the one achieving, by far, lower RMSE and higher CORR on the
training data. With such results on the training data we could expect GS-GP
to generalize worse, but in fact it is also the best GP model on the unseen data.
This is explained by the geometric properties of its operators [19]. However, if
we take into consideration also the simplicity and interpretability of the models,
GS-GP cannot be considered the best of the GP models; among all the models
BAG-SGB also cannot be considered the best. That award goes to the most
simple linear model, LIN. It is noteworthy that BAG-SGB is reported to achieve
RMSE 26.62 and CORR 0.95 when using the entire original data set of 112
samples [2], and with the 75 samples it is not better than a linear model.
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Table 1. Results of the different models. Best of each column is marked in bold.

Expected RMSE Expected CORR Training Data Unseen Data

Mean Median Mean Median (Median Values) RMSE CORR
Techniques RMSE CORR

LIN n/a n/a n/a n/a 54.27 0.47 74.50 0.11
LIN-NO n/a n/a n/a n/a 55.00 0.47 75.88 0.11
EXP n/a n/a n/a n/a 58.07 0.46 87.03 0.03
REG n/a n/a n/a n/a 53.62 0.49 76.17 0.05

STD-GP 225.04 74.14 0.16 0.15 52.69 0.53 1253 -0.20
WTD 313.28 68.81 0.09 0.06 54.94 0.51 81.42 -0.02
WTD-17 8853 68.57 0.14 0.15 50.36 0.53 115.02 -0.10
EXT-REAL 505.03 68.97 0.00 0.08 56.57 0.45 82.30 -0.02
EXT-SYNT 86537 64.64 0.08 0.10 57.16 0.47 82.02 -0.28
BAG 94.46 62.09 0.24 0.25 52.51 0.61 81.24 -0.21
BOOST 59.41 57.98 0.22 0.22 61.92 0.33 80.91 -0.14
RST 86.25 66.23 0.03 0.07 51.55 0.58 88.55 -0.30
GS-GP 67.09 64.48 0.15 0.15 44.12 0.74 79.56 -0.03

BAG-SGB n/a n/a n/a n/a n/a n/a 75.07 0.14

5 Conclusions

We have performed an exercise on predicting the forest AGB of Guinea-Bissau,
West Africa. In the context of a privately launched “contest”, 14 methods were
used but none was able to produce a model that generalizes well to unseen data.
Even the best state-of-the-art method was not better than a simple linear model,
despite the literature reporting much better results when using a larger data set.
We conclude that the AGB prediction is a difficult problem, aggravated by the
small size of our data set.
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