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SUMMARY

Network traffic prediction is a fundamental tool to harness several management tasks, such as monitoring

and managing network traffic. Online traffic prediction is usually performed based on large sets of historical

data used in training algorithms, for example, to determine the size of static windows to bound the amount

of traffic under consideration. However, using large sets of historical data may not be suitable to highly

volatile environments, such as cloud computing, where the coupling between time series observations

decreases rapidly with time. To fill this gap, this work presents a dynamic window size algorithm for traffic

prediction, that contains a methodology to optimize a threshold parameter α that affects both the prediction

and computational cost of our scheme. The α parameter is the control mechanism that defines which is the

minimum data traffic variability needed to the dynamic window size changes. Thus, with the optimization

of this parameter, the number of operations of the dynamic window size algorithm decreases significantly.

We evaluate the α estimation methodology against several prediction models by assessing the Normalized

Mean Square Error and Mean Absolute Percent Error of predicted values over observed values from two

real cloud computing data sets, collected by monitoring the utilization of Dropbox, and a data center data set

including traffic from several common cloud computing services. Copyright c© 2016 John Wiley & Sons,

Ltd.

Received . . .
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1. INTRODUCTION

The uprise of next generation networking paradigms, such as the internet of things and cloud

computing, has entirely changed the way that networks are conceived and managed. By deploying

a cloud computing model, organizations have many advantages such as on-demand computing

services and reduced maintenance costs [1]. However, along with these benefits, cloud computing

brought a multitude of challenges into the focus of worldwide research [2].

More than ever, many services and products rely on cloud-based systems and networks.

Neglecting the management of these network assets may cause irreparable economic harm to
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businesses and their customers alike [3]. Network administrators of these cloud-supporting networks

have to monitor and analyze their networks in order to collect relevant network traffic information

that may be used to support decision-making. In this context, network managers need tools suited

to deal with the high network traffic volume common in cloud environments.

Effective monitoring of computer networks must be constantly performed to assist in the detection

and identification of network problems as they happen or even beforehand [4]. If, on one hand,

network traffic monitors are able to store statistics about the network connectivity and availability of

applications in order to build a baseline that describes its proper behavior, on the other hand, cloud

providers generate huge amounts of information, such that storing data from the entire network

infrastructure may become prohibitively expensive. Management systems thus require efficient

techniques to reduce the required service and operating resources [5].

Network traffic prediction can make use of statistics accumulated over time for making inferences

about the future behavior of network traffic, therefore enabling the detection of suspicious patterns

of network traffic. Some metrics usually considered are the throughput, response time, jitter and

lost data. For this information to be useful in planning strategies and responding to problems as they

happen [6], online traffic prediction is called upon.

However, predicting network traffic is becoming a more complex task, specially with the surge in

traffic that is due to the permanent connectivity of individuals and machines to the Internet [7]. This

challenge is even greater in cloud computing because its traffic may suffer sudden changes [8, 9], and

the elastic and scalable nature of cloud environments may be easily confused with traffic anomalies,

hampering its forecast [10]. In addition, traditional tools for predicting data traffic usually take

into account large historical data, therefore being classified as Long-range Dependence (LRD)

approaches. However, LRD-based techniques are not the most suitable for online traffic prediction

of cloud computing systems because the network baseline does not have the same periodic behavior

as in traditional networks [11]. For instance, predicting approaches on the basis of large historical

dependency are supported by features such as seasonality, and thus present similar behavior in

regular time intervals. The main disadvantage is that this type of prediction approach requires a time

window with a large number of values, and this adds an extra workload to compute the estimation.

Solving the problem of processing large amounts of data for traffic prediction represents an

important achievement in cloud computing to avoid unnecessary overhead and minimize the

operation costs. Moreover, dynamically reducing the amount of information to process is also

relevant to other applications, such as traffic shaping for improved Quality of Service (QoS) [12],

forecasting network traffic to detect anomalies and spot problems before they occur [11] or to

conceive more accurate simulation models [13].

In order to address these issues, this paper presents a dynamic sliding window algorithm that

defines the amount of traffic under consideration for traffic prediction according to traffic variability.

Furthermore, a new methodology which exploits widely the parameter α from the dynamic sliding

window algorithm, is proposed. From the optimization of this parameter, it is possible to maximize

the prediction accuracy in comparison with the older version of the algorithm that uses a static

value for defining the boundary to sliding window changes the size. In addition, in this work, we

have broadened and detailed the state of the art regarding Short-range Dependence (SRD) prediction

approaches and online traffic predictors. Moreover, to evaluate the feasibility of our proposal in more
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general terms we have used real traces from Dropbox as well as from a real data center containing

traffic from several common cloud computing services.

The remainder of the paper is organized as follows. Section 2 covers some of the most prominent

related work. Section 3 describes the proposed solution and the methodology used for this paper,

whilst Section 4 presents the evaluation and discusses the results. Section 5 concludes with some

final remarks and prospective directions for future research.

2. RELATED WORK

Network traffic prediction has received a great deal of attention from the scientific community as a

means to facilitate monitoring and managing computer networks [14]. In this field, most research

efforts are focused on classical methods strongly based on historical data such as time series and

neural networks. In this study, we consider previous works that (1) have short dependence on

historical data, and (2) may be performed online.

2.1. Short-range dependency traffic prediction

Maria Papadopouli et al. [13] evaluate a set of forecast algorithms in order to characterize the

traffic load in an IEEE802.11 infrastructure. Their work describes the Simple Moving Average

(SMA) as the unweighted mean of the previous data points in the time series. In addition, SMA is

less demanding than more complex predictors, such as Autoregressive Integrated Moving Average

(ARIMA), that require a large amount of historical data. They emphasize some advantages of SMA,

such as its simplicity, low complexity and ease of application.

Short-range dependency is also exploited in the field of the management of power systems. James

W. Taylor considers five Weighted Moving Averages for forecasting load up to one day ahead

[15]. These models include several exponential smoothing formulations, as well as methods using

discount weighted regression, cubic splines, and singular value decomposition (SVD). In this paper,

the author improves the forecasting results by changing the granularity of time period in a SVD.

Aiping Li et al. [16] study anomaly detection methods for high-speed network traffic. The purpose

of this work is to come up with a sensible mechanism for detecting significant changes in massive

data streams with a large number of flows. Through a model based on a Weighted Moving Average

(WMA), the algorithm estimates the value of the next interval, being able to detect distributed

denial-of-service (DDoS) and scan attacks. For that, all traffic that does not match the reference

model is considered an anomaly.

In [17], Frank Klinker describes mathematical tools to identify and predict market trends by the

relationship between the original and the predicted data. In particular, it shows that the Exponential

Moving Average (EMA) can be used for efficient forecast of network traffic with short historical

data. EMA is also used in the Piorno et al. [18] work. They compare several prediction algorithms

to predict Sun’s cycles and the changing weather conditions to improve solar panel for exploiting

the extra energy available.

In a previous work [19], we have presented a systematic approach to estimate network traffic

resorting to a statistical method based on a Poisson process (Poisson Moving Average - PMA)

with window of static size to weight past observations. After that, we have proposed a dynamic
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approach based on maximum variance inside window for improving accuracy among short-range

dependency approaches [20].

These prediction methods are considered SRD approaches because they resort to windows of

fixed/static but small size. The window size is, however, determined from metrics of the overall data,

such as the global average, therefore limiting their applicability to online prediction in scenarios

where too much data must be processed. In other words, the dynamic nature of cloud computing

turns this kind of operation expensive. For example, once a huge amount of data is generated, it is

not feasible to calculate the window size constantly from parameters of the whole data set.

2.2. Online traffic prediction

Yuehui Chen et al. [21] use genetic programming to build a Flexible Neural Tree (FNT) for online

network traffic prediction. This approach was used for a better understanding of the main features

of the traffic data. Moreover, the proposed method is able to forecast small-time scale traffic

measurements and can reproduce the statistical features of real traffic measurements. However, to

achieve proper results, it requires initial input that is dependent on the characteristics of data under

evaluation.

Zare Moayedi and Masnadi-Shirazi [22] propose a network traffic prediction and anomaly

detection model based on Autoregressive Integrated Moving Average (ARIMA). In this paper, they

decompose the data flow in order to isolate anomalies from normal traffic variation. The authors

then try to predict anomalies independently from normal traffic. Their work was evaluated with

synthetic data and depends on large historic data for forecasting.

Wen-Kuang Kuo and Kuo-Wei Wu [23] propose a traffic predictor designed to provide online

prediction with the goal of guaranteeing QoS in real-time live video transmission. The predictor,

based on variable step size least mean square algorithm, achieves high channel utilization and

guarantees the QoS requirements for real-time video. However, it obtains information only from the

last simple scene, restricting the ability to forecast abrupt changes, common in cloud environments.

Rajnish Yadav and Manoj Balakrishnan [24] present a comparative performance evaluation

between the Autoregressive Integrated Moving Average (ARIMA) and an Adaptive Neuro Fuzzy

Inference System (ANFIS). The goal of this work is to model the behavior of wireless network

traffic. In the scenario evaluated, ANFIS shows the best results, but with high computational costs.

Although these works allow online traffic prediction, they are unsuitable to the cloud environment

due to their dependency on large historical data for training the algorithms, and thus increases the

cost of the prediction operation. In this work we analyse a dynamic sliding window mechanism

based on SRD for traffic prediction with a new approach to estimate the minimum variance

necessary for changing the window size. This solution facilitates online traffic prediction by

reducing the amount of data necessary to process when compared to LRD-based schemes.

Moreover, windows sizes are determined dynamically, without requiring statistics of the overall

data – only local data from the current and previous window is needed.
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3. DYNAMIC WINDOW SIZE MECHANISM

The dynamic window size is a mechanism to limit the amount of information that is used for traffic

prediction, therefore making it suitable for online prediction in a cloud computing context.
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Figure 1. Elements of the proposed solution and iterations

Figure 1 illustrates the main conceptual components and their interactions. Real-time cloud traffic

data (step 1) is gathered and analyzed in the Sliding Window component in order to estimate

network traffic from short historical data. This cloud data traffic is processed according to a

particular predictor model, as illustrated in step 2. Possible candidates for the predictor model

(described in Section 2.1) include Simple Moving Average, Weighted Moving Average, Exponential

Moving Average and Poisson Moving Average. The Dynamic Window Size Algorithm component

is responsible for the definition of the window size that serves as input to the Sliding Window

component (step 3). The next value of cloud data traffic is predicted (step 4) according to the chosen

predictor model, therefore resulting in a sequence of predicted values for the cloud data traffic (step

5).

By employing a window of dynamic but limited size (SRD characteristic), we minimize the

workload by reducing the amount of data that must be processed by the predictor model. We now

describe each component in more detail.

3.1. Sliding Window

In order to reduce the complexity of predicting network traffic, we consider time-bounded past

information by means of a sliding window of size defined by the Dynamic Window Size Algorithm

(Algorithm 1 – DyWiSA). A window of the given size is used to weight past observations of data

traffic according to the distribution employed by the predictor model.

The example illustrated in Figure 1 shows a sliding window with size four. Each value of the

original data flow is weighted with a portion of the statistical distribution of the corresponding

predictor model [19]. For instance, the DyWiSA is familiar with the statistical behavior of the

predictor models. In this specific case, for each time slot, the Sliding Window considers the fourth

part of the distribution to ponder the number of network packets.

It is worth pointing out that the Simple Moving Average, Weighted Moving Average and the

Poisson Moving Average use a discrete function to weight the data. However, for the Exponential
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Moving Average, the DyWiSA divides the function into a finite number of discrete elements before

using, namely, it discretizes of the exponential function.

Algorithm 1 Dynamic window size

Input: Average of the current sliding window, newAvg

Average of the previous sliding window, oldAvg

Current sliding window, sWindow

The α level, α

Output: Next window size, wSize

1: Start

2: procedure DYWISA(newAvg, oldAvg, α, sWindow)

3: var wSize = sWindow.size()
4: var ratio = module(newAvg, oldAvg)
5: if (ratio > (1 + α)) then

6: var volume =
σ
2

max

σ2

7: if (newAvg > oldAvg) then

8: wSize = wSize+ volume

9: else

10: wSize = wSize− volume

11: end if

12: end if

13: return wSize

14: end procedure

15: End

Thus, at time t, the sliding window has a set of four values {12, 16, 26, 18}. In the next turn, at

time t+ 1, the next value to enter inside the window will be 20, and when this occurs, the oldest

value (12) leaves the sliding window. This process will be repeated as long as there is a data flow

from the network.

3.2. Dynamic Window Size Algorithm - DyWiSA

Traffic predictors usually operate over all of previous data [21] or resort to windows of finite but

fixed size. However, the network traffic in the cloud computing environment may suffer sudden

changes due to the large amount of requests and dynamic demands without prior notification [8].

This led us to consider a sliding window approach as a forgetting process that limits the amount

of data to be processed. If the sliding window is large, the predictor will be able to smooth traffic

anomalies. This situation happens when the time series are increasing (or decreasing) the data flow

quickly. If the sliding window is small, the model will be more sensitive to changes, however it will

generate lower workload due to the fewer number of data packets to process. This happens when

the data flow presents a stable behavior.

To take these traffic behavior changes into account, we consider the variance (σ2) between the

previous and current values inside of the sliding window. Algorithm 1 describes the operation of the

Dynamic Window Size Algorithm. It resorts to a sliding window of variable size, with size changes

happening only when the difference between the average of current and previous window exceeds a

threshold α.

The algorithm receives as input the average of the current sliding window, the average from the

previous sliding window and the current sliding window. It compares the average of the old sliding
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ONLINE TRAFFIC PREDICTION IN THE CLOUD 7

window with the average of the current sliding window. In order to avoid unnecessary algorithm

overhead, we consider a threshold α for changes to the sliding window. This threshold corresponds

to a boundary value for the population parameter for which the difference between the current value

and the mean of the last window is not statistically significant at the α level. Its estimation and

evaluation are reported in Section 3.3 and Section 4.3, respectively.

Let ratio be a value which measures average changes between the current window and last

window. If the difference between newAvg and oldAvg is higher than the threshold (1 + α),

i.e. statistically significant, the window size is increased (or decreased) by volume. In order to

quantify the maximum variance of a sliding window and, consequently, know the variation of the

window size, a measurement to express the largest variance possible inside of a subset of the entire

population is needed. We consider the theoretical maximum variance (σ2

max
) to be the variance of

the extreme values of a sliding window. For this, we use the ratio between the σ2

max
and the σ2 inside

a sliding window. This whole process is represented by the variable volume at line 6 of Algorithm

1.

Proposition 1. The theoretical maximum variance of a given set of data can be estimated from the

product of the difference of its extreme values, ya (lowest value), yb (highest value), and the average,

as follows:

σ2

max
= (m− ya)(yb −m) (1)

Proof

See Appendix A. �

Figure 2 illustrates the performance of different approaches with the traffic data set containing

information from Dropbox monitoring. In order to provide a better viewing of the results, we

only show forecasts for a limited period. However, the observable match between real values and

predictions held for remaining time periods.
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Figure 2. Sample of cloud network traffic prediction
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Finally, the algorithm returns the window size to be used by the Sliding Window component. This

Dynamic Window Size Algorithm is at the core of online traffic prediction by dynamically adapting

the window size resorting only to local data from current and previous sliding windows, instead of

global traffic data.

3.3. α Parameter Estimation

For this work, we propose a new approach to estimate the best α for each forecast. The goal of

this methodology is twofold: to select the α parameter that provides the highest possible accuracy

for predicting network traffic; and to minimize the computational costs as much as possible. We

consider the α parameter a control mechanism which represents the minimum variation of data

traffic needed for the window size to change. A small α will lead to frequent window size changes

and higher computationally complexity, while a higher α leads to less frequent changes with

corresponding lower computational costs. For instance, when the α is equal to 0.1 it means that

the average of the current sliding window must be, at least, 10% greater or smaller than the last

sliding window for the algorithm to require a new window size calculation.

Seeking a methodology that determines a value of α that provides good accuracy results without

compromising the need for online traffic prediction (i.e. little dependence on historical data), we

consider only an initial set of windows to determine an optimal α value. As observed in other works

[25, 26], the resemblance between the first two sliding windows and the entire dataset suggests that

the network traffic data exhibits the property of self-similarity. Taking advantage of this concept,

the algorithm will set the best α found in the first two sliding windows to predict the entire dataset.

Section 4.3 presents the evaluation of this process.

4. EVALUATION AND DISCUSSION

In this section, we present the data setup and the metrics used to assess the Dynamic Window Size

Algorithm and the best parameter α. Furthermore, we evaluate and compare the performance of the

static sliding window [19] and the DyWiSA with the α estimation methodology applied to all SRD

traffic prediction mechanisms presented in Section 2.

4.1. Metrics

The effectiveness of the prediction is measured through the Normalized Mean Square Error

(NMSE) [27] and Mean Absolute Percent Error (MAPE) [28]. NMSE is defined as:

NMSE =
1

σ2

1

N

N
∑

t=1

(

Xt − X̂t

)2

(2)

where σ2 is the variance of the time series over the prediction duration, Xt is the observed value of

the time series at time t, X̂t is the predicted value expected from Xt, and N is the total number

of predicted values. This metric is widely utilized to assess prediction accuracy. Its results are

compared with a trivial predictor, which statistically predicts the mean of the actual time series,
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ONLINE TRAFFIC PREDICTION IN THE CLOUD 9

in which case NMSE = 1. If NMSE = 0, this means that it is a perfect predictor, whereas NMSE >

1 means that the predictor performance is worse than that of a trivial predictor [27].

MAPE measures expressed errors as a percentage of the actual data over the prediction data. It is

calculated as the average of the unsigned percentage error, and it is defined by the formula:

MAPE =















(

1

N

∑

N

t=1

|Xt−X̂t|
|Xt|

)

× 100 if(Xt > 0)

(

1

N

∑

N

t=1

|Xt−X̂t|

|X|

)

× 100 otherwise

(3)

where, Xt is the observed value, X̂t is the predicted value and N represents the total number of

values in the time series. If the denominator is zero then the actual value Xt is replaced by the

average of time series, X . When having a perfect fit, MAPE is zero.

4.2. Datasets Setup

In this article, we used two scenarios to evaluate our proposal. First, we used two datasets from

Dropbox monitoring [29]. After that, we used data from a data center including traffic from several

common cloud computing services [30].

4.2.1. Dropbox Datasets: In this case study, we used two datasets from Dropbox monitoring as

described in the [29], they are: Home 1 and Campus 2. Home 1 dataset consists of ADSL and Fiber

to the Home customers of a nation-wide ISP, but they might use WiFi routers at home to share the

connection. Campus 2 was instead collected in academic environments such as wired workstations

in research and administrative offices as well as campus-wide wireless access points.

All the measurements and data presented here were collected from March 24, 2012 to May 5,

2012. The evaluated time series data is focused on Dropbox utilization, which is one of the most

widely-used cloud storage system nowadays [29]. The original Dropbox dataset encompasses more

than 100 metrics about the network traffic. However, for this study, we consider the total number

of packets observed from the client (server) to the server (client). The time series were divided in

intervals of five minutes each, and the analysis mechanism was performed by applying a sliding

window weighted with the four SRD traffic prediction mechanisms.

4.2.2. Data Center Dataset: For a better characterization of cloud computing environment, we use

other dataset that provides data from monitoring a variety of services common in cloud computing

[30]. In this work, the authors describe several services present in the dataset such as webmail

servers, web portals, instant messaging, web services and multicast video streams. In addition, the

dataset presents data from a two-layer topology and introduced server virtualization techniques in

order to reduce heating and power consumption.

The data was collected in an academic environment and the dataset consists of more than five

years of monitoring. However, the authors provide just a snippet of the total data used in the original

paper [30], of around 10 days. The granularity of the time series generated is sixty seconds each time

slot and called by Data Center throughout this study. The Data Center keeps data from around 1000
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servers located in western and midwestern U.S. The analysis mechanism was performed over the

data in the same way as described in the Dropbox Case Study.

4.3. α Parameter Evaluation

In this section we analyze the impact of α on the prediction accuracy and present a methodology

for selecting its value for two scenarios: Dropbox and Data Center datasets. Figure 3(a) depicts

accuracy results (NMSE) of the two initial windows for a range of α values between 0.01 and

1.0. This shows that the optimal α for the two initial windows is 0.23 (smaller NMSE), which

incidentally is also the optimal α value when considering the whole dataset, as shown in Figure 3(b).

The same happens when considering the MAPE accuracy metric, as shown in Figures 3(c) and 3(d),

respectively for the two initial windows and the overall dataset.

Figure 4 presents similar results for the Data Center dataset. For this case, our methodology leads

to an optimal α value of 0.15 for both metrics as well. While this may not provide an overall optimal

value, we figured out that this methodology provides, in general, a good approximation.

Table I shows the output results when we run the algorithm with different α values in a sample

time series. With an α of 0.23, the Dynamic Window Size Algorithm changes the window size

886 times (just 7.13% of the total) with no significant changes in the overall average and standard

deviation of the data predicted. As α becomes smaller, the overhead becomes higher and vice-versa.

From a computational point of view, the α estimation yields negligible complexity because this

process requires only an initial set of two sliding windows. In comparison with the first version of

the Dynamic Window Size Algorithm (with fixed α), the prediction time has been decreased by

almost half after the α optimization approach. For instance, in the previous version of the DyWiSA,

the Poisson Moving Average (the predictor model with the best prediction accuracy) spends 0.1570

seconds to compute the forecast for a data set with more than 12000 values, namely, Home 1 data set
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Figure 3. Evaluation of α parameter for the Dropbox dataset
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Figure 4. Evaluation of α parameter for the Data Center dataset

from Dropbox (see Subsection 4.4). After the α optimization, the DyWiSA computes the prediction

in 0.0830 seconds. Details about the time consumption improvement, NMSE and MAPE for the

other models are presented in Table II.

Table I. Sample of α evaluation

α value Model Average Std. Deviation Changes

0.30

SMA 29.79 16.47 759

WMA 29.80 16.49 759

EMA 29.81 17.11 759

PMA 29.80 16.64 759

0.20

SMA 29.79 16.25 916

WMA 29.80 16.28 916

EMA 29.81 17.09 916

PMA 29.81 16.51 916

0.10

SMA 29.70 16.24 2093

WMA 29.74 16.27 2093

EMA 29.81 17.09 2093

PMA 29.79 16.51 2093

0.02

SMA 29.18 15.92 8070

WMA 29.42 16.05 8070

EMA 29.79 17.12 8070

PMA 29.70 16.48 8070

Naturally, the minimum real-time measurement that can be achieved depends on the hardware

configuration (i.e., processor clock rate, memory available, etc.). For comparative purposes, all the

tests performed in this work were based on a standard personal computer with a DualCore Intel

Core 2 Duo CPU 6300 1.86GHz and 3Gb DDR2-SDRAM.
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Table II. Time consumption (seconds) and improvement

Model
α-Fixed (s) α-Optimized (s) Time

Time NMSE MAPE Time NMSE MAPE Improvement (%)

SMA 0.0287 0.4045 41.58 0.0169 0.2709 28.18 41.11

WMA 0.1024 0.3422 36.50 0.0707 0.2590 27.47 30.96

EMA 0.1174 0.2807 29.36 0.0768 0.2600 27.20 34.58

PMA 0.1570 0.2720 28.90 0.0830 0.2543 26.77 47.13

It is evident that α has an important impact on the prediction quality, while also affecting the

computational requirements of the Dynamic Window Size Algorithm. To warrant a fair comparison

between all datasets evaluated in this work, we consider the same methodology to determine the

best α from the initial sliding windows, as described above.

4.4. Dropbox Case Study

Firstly, we report the results of the static approach in which the sliding window size remains constant

during the prediction data. We then present performance results for the dynamic approach, which

calculates the sliding window size according to Algorithm 1.

4.4.1. Static Approach: As shown in [20], the evaluation of the network traffic prediction based

on sliding window with static size is determined by metrics of the overall historical data, such as

the global average. Then, the Static Approach demands an a priori analysis of the dataset. After this

process, the analysis of the data generates several statistical descriptors that are employed as the size

parameter of the static sliding windows. Table III provides results for three different values of the

sliding window: arithmetic mean, standard deviation and variance. The first line shows statistics of

the Dropbox dataset that was used as input for the predictors, while the second line exhibits results

achieved for a trivial predictor that always predicts the next value as the arithmetic mean of data.

The following lines show results for Poisson prediction model as well as three others (EMA, WMA

and SMA) presented in Section 2.

While for most metrics the results of the remaining predictors are not far from those obtained

by the Poisson approach, it is worth noting that the results achieved by this approach have the best

performance concerning NMSE and MAPE, where PMA excels when compared to the others. This

means that the difference between the estimated values and the real values is the lowest in the

evaluation’s result.

As illustrated in Table III, for the sliding window with size arithmetic mean, we note that the Mean

Square Error ranges between 143.08 to 581.04 (the lowest error range), while for sliding window

size with variance size, goes from 268.79 to 1908.38 (the highest error range). Thus, sliding window

size arithmetic mean provides results more stable than other approaches. As we can observe, NMSE

and MAPE values are the lowest for the arithmetic mean size (0.0494; 0.0887; 0.1845; 0.2856),

indicating higher levels of accuracy.

We also use this methodology to estimate the best case scenario for the Home 1 in the static

approach. It generates a table similar to Table III (omitted to avoid redundancy of information).
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Table III. Descriptive Statistics for Campus 2 dataset

Dataset
Mean

Std. Dev. Variance NMSE MAPEArithmetic Square Error Std. Error

1 Dropbox 45.994 0.000 0.486 54.123 2929.4 0.000 0.000

2 Trivial 45.994 2929.4 0.000 0.000 0.000 1.000 337.98

Approach Sliding window size arithmetic mean

3 PMA 45.990 143.076 0.482 53.634 2876.71 0.0494 37.93

4 EMA 45.989 185.282 0.476 52.988 2807.81 0.0887 39.04

5 WMA 45.995 395.621 0.466 51.838 2687.19 0.1845 54.61

6 SMA 45.993 581.035 0.463 51.546 2657.02 0.2856 66.68

Approach Sliding window size standard deviation

7 PMA 45.988 208.785 0.474 52.834 2791.46 0.0745 38.36

8 EMA 45.990 278.076 0.468 52.045 2708.71 0.1026 41.93

9 WMA 45.999 594.747 0.455 50.679 2568.38 0.2313 57.43

10 SMA 45.993 931.031 0.449 50.063 2506.40 0.3714 71.31

Approach Sliding window size variance

11 PMA 45.988 268.790 0.471 52.468 2752.61 0.0974 41.43

12 EMA 45.990 381.512 0.457 50.829 2583.66 0.1475 46.19

13 WMA 46.003 1175.951 0.420 46.837 2193.73 0.5356 94.46

14 SMA 45.984 1908.381 0.405 45.121 2035.95 0.9372 134.69
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Figure 5. NMSE results from Dropbox datasets

Among different sliding window size assessed, the best result was achieved by the sliding window

with arithmetic mean size, as illustrated in Table III.

4.4.2. Dynamic Approach: For the dynamic approach assessment we use Algorithm 1 for

calculating the sliding window size. Furthermore, in the dynamic approach, the predictor models

were evaluated from the two Dropbox traffic traces (Home 1 and Campus 2). Figure 5 illustrates the

NMSE accuracy of the predictor models. All predictor models were tested in their original version

with a static window size as well as with our dynamic window size methodology. Although our

focus is on the comparison between predictor models operating with a static window size and a

dynamic window size, we observe that SMA consistently provides the worst results, irrespectively

of the window size methodology used. On the other extreme we have PMA, which provides the best

overall results.

With respect to the comparison between the static and dynamic approach, our results show that

all the predictor models achieve better results with our dynamic window size methodology. This is

further evidenced in the NMSE results of Figure 5, which shows that all the predictors are improved

from as little as 6.96% for the best predictor model (PMA) to as much as 428% for the worst

predictor identified (SMA).
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Figure 6. MAPE results from Dropbox datasets

It is worth noticing that Figure 5a presents WMA with better result than EMA and this is not

confirmed in Figure 6a. When the predictor model is assessed by NMSE, the data normalization

process tends to improve the results of the predictor with the highest variance (see Equation 2).

In this case, the WMA presents better results than EMA because its predicted data shows higher

variance σ2. In order to avoid the problem of larger variance of data, we also evaluate the Dynamic

Window Size Algorithm by MAPE.

Figure 6 shows the performance of the predictor models in terms of error percentage. It is

illustrated that in both cases (Home 1 and Campus 2) the error rate decreases using the dynamic

window size methodology. The overall MAPE results show that the prediction results are improved

for all predictors, from 7.96% (PMA) to 88.2% (SMA).

4.5. Data Center Case Study

We divide this evaluation reports in two parts. In first step we perform the prediction over the Data

Center dataset with the static approach, i.e., the window size remains invariable during the prediction

data. In the next step, we show the dynamic approach results which calculates the sliding window

size according to Algorithm 1.

4.5.1. Static Approach: It is important to note that the datasets assessed in this section also

generate a table such as Table III for the static approach. However, in order to avoid redundancy of

information, this assessment will be summarized in a graph. In Figure 7 we present the prediction

result. In Figure 7a, we can see the bars in gray that represent the NMSE achieved for the SRD

predictors (SMA, WMA, EMA and PMA). The same way that Dropbox case study, PMA presents
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Figure 7. NMSE and MAPE results for Data Center
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the best result close to 0.91 for NMSE. Figure 7b shows the MAPE performance, where PMA again

presents better results in comparison with other predictors assessed in this work.

4.5.2. Dynamic Approach: The Data Center was also evaluated by the Algorithm 1 in order to

generate results from a dynamic window size perspective. Figure 7 illustrates several information

about accuracy of the prediction models.

We observe that all predictors improve significantly their results after using the dynamic window

size approach to forecast the time series, as confirmed by the NMSE and MAPE results of Figure 7.

The EMA predictor has shown the smallest improvement with 0.42% and the SMA shows the best

improvement with 14.3% regarding NMSE. For MAPE, Figure 7b depicts improvements from 17%

(PMA) up to 31.9% for WMA.

Throughout this work, several descriptive statistics to measure the improvement of the solution

were presented. Focusing on the level of accuracy, we found that NMSE provides optimistic

performance results when the time series present high σ2 values, whereas MAPE proved to be

better suited for measuring data with high volatility, by measuring the error in terms of percentage

of the real data over the prediction data.

Both metrics concede that the moving average approach represents a SRD solution that computes

a local average of data at the end of the time window, on the assumption that this is the best estimate

to represent the current mean value around which the data are ranging. These models are suitable if

the time series change suddenly, as happens with cloud computing traffic. In this case, an anomaly

may be easily diluted inside the time window without compromising the prediction in whole [10].

Moreover, after using DyWiSA with the α optimization, all predictor models have decreased the

time and the workload to compute the prediction of the data.

In particular, with a smaller sliding window, oldest values also have lower influence on the

predicted network traffic. This indicates that a predictor that prioritizes recent history achieves better

results for dynamic cloud computing environments. In addition, SRD solutions are able to provide

accurate predictions with relatively low levels of historical data dependency.

5. CONCLUSIONS

Network traffic prediction is a powerful tool that supports several management tasks such as keeping

track of resources in the network and how they are assigned, or monitoring the network to spot

problems as soon as possible, ideally before users are affected. In this work, we propose a Dynamic

Window Size Algorithm along with a methodology for optimization of its threshold for window size

changes. Apart from facilitating online traffic prediction due to its short dependency on historical

data, the new methodology to exploit the α parameter improved the accuracy of the four traffic

predictors considered in this work. Furthermore, all predictor models have also reduced the time

and the workload to compute the forecast.

From the observation of the results, we can see that all the Short-range Dependence (SRD)

predictors present a considerable improvement after using the α optimization in the Dynamic

Window Size Algorithm. Moreover, compared to others predictors, the Simple Moving Average
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performed considerably worse, whereas the Poisson Moving Average was more suitable for dynamic

cloud environments.

By considering a new Data Center dataset with traffic from a diverse set of common cloud

services, we were able to provide more general results on the performance of the dynamic window

size methodology. These results have shown compliance with earlier results from the Dropbox

data set, therefore strengthening the validity of the Dynamic Window Size Algorithm for traffic

prediction in highly volatile environments. Prospective directions for future work include using the

Dynamic Window Size Algorithm to perform anomaly detection of network traffic in virtualized

environments.
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APPENDICES

A. Proof for Proposition 1

If we know the minimum and maximum range, e.g. from ya to yb, we are able to represent its average

m by:

m =
qaya + qbyb

qa + qb
(A.1)

where qa and qb are the quantity of ya and yb, respectively. Then, if we consider the average and these

extreme values as referred before to estimate the maximum variance σ2

max
into a sliding window, it

may be expressed for:
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σ2

max
=

qa(m− ya)
2 + qb(yb −m)2

qa + qb

σ2

max
=

qa(m
2 − 2mya + y2

a
) + qb(m

2 − 2myb + y2
b
)

qa + qb

σ2

max
=

(qa + qb)m
2

qa + qb
−

2(qaya + qbyb)m

qa + qb
+

qay
2

a
+ qby

2

b

qa + qb
(A.2)

Simplifying the first term in Equation A.2 and substituting the second term by Equation A.1 into

it, we achieve:

σ2

max
= m2 − 2m2 +

qay
2

a
+ qby

2

b

qa + qb
(A.3)

Now, isolating the term qaya from the Equation A.1 we have:

qaya = m(qa + qb)− qbyb (A.4)

And similarly:

qbyb = m(qa + qb)− qaya (A.5)

Using these two equations (A.4 and A.5) into the Equation A.3, we have:

σ2

max
= −m2 +

ya(m(qa + qb)− qbyb) + yb(m(qa + qb)− qaya)

qa + qb

Evidencing the term qa + qb of the equation,

σ2

max
= −m2 +

m(qa + qb)(ya + yb)− (qa + qb)(yayb)

qa + qb

σ2

max
= −m2 +m(ya + yb)− yayb

Evidencing the term yb −m,

σ2

max
= m(yb −m)− ya(yb −m) (A.6)

So, we may represent the σ2

max
just acknowledging the minimum, the maximum and the average

of the data inside the sliding window. In addition, the Equation A.6 is equivalent to the Equation 1.

This finally leads to the results presented in Proposition 1.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2016)

Prepared using nemauth.cls DOI: 10.1002/nem



ONLINE TRAFFIC PREDICTION IN THE CLOUD 19

AUTHORS’ BIOGRAPHIES

Bruno L. Dalmazo has been a Ph.D. student at the University of Coimbra since 2011. He

completed his Masters degree in Computer Science in 2011 at the Federal University of Rio

Grande do Sul, Brazil. Bruno also received a Bachelors degree in Computer Science in 2008 from

the Federal University of Santa Maria, Brazil. His main research interests involve network traffic

prediction, as well as security and privacy in cloud computing environments.

João Vilela is an invited assistant professor at the Department of Informatics Engineering of the

University of Coimbra, Portugal. He received his Ph.D. in Computer Science in 2011 from the

University of Porto, Portugal. Dr. Vilela was visiting the Coding, Communications and Information

Theory Group at Georgia Tech, working on physical layer security, and the Network Coding

and Reliable Communications Group at MIT, working on security for network coding. His main

research interests are in security and privacy of computer and communication systems, with focus

on wireless networks and cloud computing.

Marilia Curado is an Assistant Professor at the Department of Informatics Engineering, University

of Coimbra, Portugal, where she received a Ph.D. in Informatics Engineering on the subject of

Quality of Service Routing. Her research interests are Quality of Service, Mobility, Routing, and

Resilience.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2016)

Prepared using nemauth.cls DOI: 10.1002/nem


