
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/298307920

An	Interaction	Design	Model	for	a	Petri	Net	based	Behavior	Editor

Conference	Paper	·	September	2013

CITATIONS

0

READS

6

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Slinki	View	project

Nuno	Barreto

University	of	Coimbra

7	PUBLICATIONS			2	CITATIONS			

SEE	PROFILE

Licinio	Gomes	Roque

University	of	Coimbra

74	PUBLICATIONS			202	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Nuno	Barreto	on	15	March	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/298307920_An_Interaction_Design_Model_for_a_Petri_Net_based_Behavior_Editor?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/298307920_An_Interaction_Design_Model_for_a_Petri_Net_based_Behavior_Editor?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Slinki?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nuno_Barreto?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nuno_Barreto?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Coimbra?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nuno_Barreto?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Licinio_Roque?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Licinio_Roque?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Coimbra?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Licinio_Roque?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nuno_Barreto?enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Interaction Design Model for a Petri
Net based Behavior Editor

Abstract

In the context of Game Design, to define behaviors and

choreographies of actors in a game or simulation

context can be a challenging and complex programing

task. This paper proposes an interaction model for a

Petri Net behavior editor to be used as a visual

language for game behavior modeling. A proof of

concept prototype implementation of the proposed

interaction model was created and validated with

formal usability lab tests. In spite of some usability

issues, most users were able to complete the proposed

game behavior definition tasks using the editor

interface. We think this provides evidence to reinforce

the case that Petri Nets can be used to advantage in

the game modeling process and, when coupled with a

runtime simulation, can provide an interesting

immediate feedback loop for faster design and

experimentation.

Author Keywords

Complex Systems; Behavior Modeling; Game Design;

Simulation; Petri Nets; Visual Language

ACM Classification Keywords

D.2.2. Software Engineering: Design Tools and

Techniques.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Nuno Barreto,

Licínio Roque

Informatics Eng. Dep.

University of Coimbra

3030-290 Coimbra,

Portugal

nbarreto@student.dei.uc.pt,

lir@dei.uc.pt

General Terms

Design Languages; Digital Games; Experimentation

Introduction

Video-Game development is a multidisciplinary area

which can encompass diverse skillsets. One of such

skillsets is programming which has an important role in

the development as it translates the game concept into

an interactive artifact known as a video-game.

Since game programming is what contributes to the

creation of aspects such as how game objects (referred

from now on as actors) are modeled in an environment

and how they interact with each other and with their

environment, it becomes necessary to translate every

possible course of action as code into actors which can

be an error-prone task.

This paper presents an interaction model for an editor

that is integrated in a solution proposal used to simplify

game programming that is centered around the

creation of a visual language, based on Petri Nets. More

specifically, a language that is intended to model

concurrent actors’ behaviors and choreographies (i.e.

how the behavior translates into visual and sonic

feedback) in the game world as stage.

Petri Nets have been proven accessible and easy to

learn by non-programmers and provide an economical

way of specifying behaviors in complex systems. As a

design tool, they give the advantage of a simple visual

language that promotes agile modeling and testing of

complex interactive systems.

This paper is structured as follows: the Background

section contains state of the art research regarding

video game development and the usage of Petri Nets as

well as their editors and data structures, the

Methodology section illustrates the development

approach used for the creation of the solution proposal,

the Interaction Model section states the model used

and its specification, Evaluation demonstrates the

evaluation’s results and analysis and finally Conclusions

will sum up the results and state some further work.

Background

Developing Video Games

Developing video-games has been made easier with the

increasing existence of game engines - a system whose

purpose is to abstract common, and sometimes

platform dependent, computational game related tasks

[28] - and other development tools, leaving developers

with the choice of creating their game by either building

their own engine using tools such as SDL [20] or XNA

[26] or using pre-existing engines including UDK [24]

Unity [25] or even CryEngine [7]. Most, if not all, of

these tools require some knowledge in programming

which imposes a learning barrier to more novice

developers and are difficult to maintain, as coding is

heavily dependent on a good architectural design to be

readable and extensible.

Nevertheless, to counter programming’s inherent steep

learning curve and maintenance issues, some tools

provide visual languages such as Scratch [19], Stencyl

[22], ToonTalk [23] and Agent Sheets [2] and some

game engines grant their users graphical modeling

mechanisms (an example of this is UDK’s Kismet,

Unity’s Mecanim and Cry Engine’s Decision Tree Editor)

that are utilized to build some aspects of a games

(making them somewhat limited because coding is still

required when developing aspects not covered by these

mechanisms).

These visual approaches rely on either system block

building or classical Artificial Intelligence algorithms

and data structures, usually present in behavior

modeling, such as Cellular Automata, State Machines,

Behavior Trees, Flow Charts and Rule-Based Systems

[13]. These visual data structures usually present a

readability problem and their maintainability quickly

decreases with increased model complexity.

Not as widely used as the aforementioned graphical

tools, Petri Nets [15] have already been used to

describe some game aspects including their plot as

depicted in [6], level sequences as shown in [14] and

even entire game models as demonstrated in [8] and

[3]. It was showcased in the latter work that Petri Nets

appear to be easy to use and learn and support models’

validation through simulation. Petri Nets are also

extensible and, consequently, have a wide variety of

augmentations that add functionalities which, in turn,

reduces potential model complexity. Because of their

apparent smooth learning curve, validation

functionality, extension capability and the

demonstrated ability to model several aspects of a

video-game, this tool was considered as a candidate for

the base of the language described in this paper.

Petri Net Editors

There are several Petri Net editors available that can be

used to model interactive systems. These include PIPE

[16] Woped [29], Yasper [23] and many others. Since

these tools are used to illustrate a wide variety of

systems, they are deprived of semantics and their main

application is to develop concept diagrams that

demonstrate how systems function. As such, simulation

functionalities present in these tools are mainly for

debugging purposes. However, there are some editors

that allow users to add semantics to their Petri Net

models. Examples are JFern [9] and JPetriNet [10].

As an attempt to make Petri Net models interoperable

and standard, a description language, called Petri Net

Markup Language (or PNML) [5], was created. This

language is built upon XML and besides describing how

Petri Nets are distributed in a specific model, it also

allows to add graphical attributes, which provides visual

editors the means to render the models, and to append

tool-specific attributes that can only be parsed by

designated editors.

The editor developed borrows some interface aspects

from the tools mentioned above while maintaining

simplicity. It also uses PNML to store models

persistently in an interoperable way, so that these

models can be read on other authoring tools.

Research Methodology

Design Science Research [11] is a methodology that

aims to produce a statement of learning as a

consequence of research made through design or, in

other words, this methodology’s objective is to solve

problems with the purpose of producing a statement of

learning. The Design Science Research, as illustrated in

Figure 1, encompasses 5 steps: Awareness of Problem,

Solution Proposal, Prototyping, Evaluation and

Statement of Learning, each producing its own

artifacts. Since this methodology can be used in any

area where design is possible, the following clarification

of the methodology’s steps states example artifacts

best suited in this project’s context.

Figure 1. Steps in Design

Science Research

https://www.researchgate.net/publication/259969760_Design_Research_in_Information_Systems_Theory_and_Practice?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/228686529_A_new_methodology_for_spatiotemporal_game_design?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==

The first step, or Awareness of Problem, comprises the

definition and identification of a problem. In order to

help clarify this definition and identification, State of

the Art research was made.

In the following step, Solution Proposal, a suggestion

for the problem’s solution is created through abduction

drawn from the state of the art research made

previously. This step outputs interaction models and

software architecture.

Prototyping comprehends the actual development. In

this stage, software is produced, using the conceptual

models created previously. The artifact produced acts

as a proof of concept, proving that the proposed

solution is possible.

The next step, or Evaluation, attempts to validate the

prototype created in the previous stage using an

evaluation model. When such model is nonexistent, one

is devised alongside other Solution Proposal’s artifacts.

This step also provides feedback, or circumscription, to

the other previous steps which permits an iterative and

incremental development (the agile development

process is used during the iterations Prototype-

Evaluation).

Finally, in the Statement of Learning step, the project is

concluded so that knowledge can be produced. Artifacts

produced in this stage include concepts, models,

methods and prototypes. In our process a Proof of

Concept implementation was produced to study the

proposed Interaction Model and associated Concepts.

Proposed Interaction Model

As written, the main purpose behind this solution

proposal was to develop an easy to use modeling tool,

based on the Petri Nets (PN), that could be used, by

non-programmers, to define actor behaviors and

choreographies in a game/simulation environment,

whether running on one machine or on a distributed

architecture. Intrinsically, this tool was designed to

provide the ensuing quality attributes: portability so

that it would not be tied to a particular OS,

interoperability which would allow to use the tool with

different game/simulation engines, usability to

complement Petri Net’s accessibility, error recovery due

to the fact that designers will be working with a

language with a defined syntax and, therefore, they

must be warned of syntax errors and how to solve

them and scalability relative to the number of actors

and/or players.

Given the solution’s objectives and non-functional

requirements, the proposal was devised to contain the

visual language’s specification (syntax and semantics),

an easy to use visual behavior editor and a language

execution engine used to translate the Petri Net models

into in-game/simulation actions.

Language

The language used in this solution proposal contains a

similar syntax to that of Hierarchical Petri Nets [1] with

weighted arcs. By utilizing the capability of grouping

sub-nets, this language is able to reduce graphical

complexity and thus, improve readability. Another

important advantage is that it promotes component

reutilization, i.e. the same sub-net can be used in

different contexts.

MODEL

A game/simulation model is represented by a root Petri

Net that contains a set of Petri Net models, each

symbolizing a different actor archetype. It is worth

noting that instances of an actor archetype share the

same Petri Net model. Every child of the “root” model is

an independent net that is associated to an Actor and

follows the language syntax detailed earlier. These PNs

cannot communicate directly with one another by

means of arcs, but only through explicit messages -

tokens moving from an output place of a PN into an

input place of another PN.

Places can be of four types: Input Places, Output

Places, Fused Places or Regular Places (this designation

must not be confused with the naming given to places

linked to/from a transition on the original Petri Net

language). Regular Places share the same meaning as

places in the Petri Net language. Input Places act as

actor sensors. This means that when a token arrives at

these special places, something was perceived by the

actor. Output Places, on the other hand, assume the

role of announcers, i.e. when they receive a token, it is

announced to the game world that something has

happened. Furthermore, an Input Place can be used to

observe an Output Place. Finally, Fused Places are

places inside sub-nets that are linked with outer-net

places, acting as proxies for their outer-net

counterparts. Whenever an outer-net place

receives/loses a token, its Fused Place receives/loses

the same one as well. Unlike places, which have four

different types, Tokens, just like in the Petri Net

language, stand for a condition that was met.

Transitions, however, have associated programming

scripts that govern actions. When a transition fires, its

script is executed, meaning that an action is taking

place.

Interface

The interface’s design originated from an iterative

process. Initially, a paper prototype was constructed.

This prototype was then evaluated through user testing

so that it could be refined. After several iterations, the

prototype was converted into a mockup representation

using Balsamiq [4], as illustrated in Figure 2. This

proposal is adequate because the interface’s viewport

provides the necessary information for the simulation

and manipulation of the language’s constructs in a

segmented way. Because of this, users can easily

interact with the editor without having to navigate

through menus in order to look for actions.

Furthermore, the spatial distribution helps organize the

information so that users don’t feel overwhelmed.

Figure 2. Mockup of the petri net editor's GUI

Editor’s supported actions:

 Add/Remove Language
objects (places,
transitions and tokens)

 Link places and
transitions through arcs

 Create sub-nets

 Edit objects’ properties

 Filter sub-nets according
to keywords

 Export/Import sub-nets

 Save/Load Petri Nets
to/from disk

 Undo/Redo actions

As can be seen in Figure 2, the editor is divided into 7

panels or menus:

1. Input Panel. Here, designers are allowed to put
places that represent the actor’s inputs. These
inputs can range from sensors (vision, hearing,
etc…) to messages containing information.

2. Function Panel. In this panel, designers can model
the actors’ logic. As depicted in the figure, this
logic can contain both places and transitions.

3. Output Panel. Similar to the Input Panel, places
set in this panel represent the actor’s outputs, or
information he transmits to the game world.

4. Group Panel. A panel that lists grouped Petri
Nets.

5. Search Panel. A panel used to filter the Group
Panel, through the means of a keyword search.

6. Button Sidebar. A sidebar containing the most
important action buttons. From top to bottom,
these buttons are: Play, to simulate the given
petri net; Add Place, as the name indicates,
inserts a place onto one of the panels 1 to 3, as
given by the cursor; Add Transition, functioning as
Add Place but adding a transition instead; Group,
used to gather selected sub Petri Nets into one
transition; and Validate to check whether the
petri net is valid or not.

7. Menu Bar. A menu bar where designers can
save/load petri nets to/from disk and
import/export groups, if implemented.

Proof of concept implementation

The editor’s backend was built using Java due to its

portability and the interface was made with Java’s GUI

API: Swing. Initially, the editor was meant to be based

on the JFern Editor because it provided JFern’s Petri

Net threaded simulation mechanism, data structure and

PNML exporting/importing API as well as views and

controllers for their visual representation. This idea was

discarded because the GUI’s code was poorly

documented, confusing and some of its classes were

not made available as source code. Consequently, only

the simulator, data structure and PNML parser were

used. The reason behind using JFern is that besides

offering the previously mentioned set of tools, it was

the only tool from the ones researched that allowed to

introduce code to be executed when a transition fires,

thus reducing some programming effort when

developing the editor’s execution mechanism. This tool

was modified to provide some additional attributes to

the Petri Net’s objects.

Figure 3. Initial version of the editor

Evaluation

Evaluations were concentrated on the interface as it

was a crucial part of the application and encompassed

most of the required attributes and objectives devised

for the project. The type of tests chosen to evaluate the

interface were usability tests [21]. The main goal of

these tests was to verify how users experienced the

creation of video game definitions using the editor.

Test Setup

As previously written, the application’s interface was

evaluated by means of formal usability lab tests. These

tests had an expected time of completion of

approximately 1h30m, however subjects were free to

surpass this schedule. They consisted in individual

sessions where each voluntary tester was prompted to

setup and define the behaviors in a video-game using

the thesis’ application in conjunction with the Unity

game engine and pre-existing graphical assets (level

and character 3D models). During those sessions,

testers were accompanied by an evaluator, whose job

was to clarify any rising questions and to take notes of

events that could happen during the test. In order to

help document any event that might escape note

taking, audio was recorded.

Each session followed a predefined script. Primarily,

test subjects were introduced to the project’s context

and test objectives. Secondly, they were asked

demographic questions for later analysis of the

population performing the test; the actual test started

afterwards, when testers were given a document with

information regarding Petri Nets and were encouraged

to explore the interface for 5 minutes, after which they

were given the game’s design document and a list of

tasks that contributed for the creation of said game.

After each task, test subjects estimated its difficulty in

a scale of 1 to 5. Subsequently they were interviewed

to detail their overall user experience and performance

and were requested to list the top 5 best and worst

aspects of the interface, according to their opinion.

The game that test subjects were supposed to create

was, as stated, described in a pre-made design

document and detailed in a task-list. This document

defined the context of the game, its rules, actors and

sensors and scripts that were available to them. The

task-list helped guide the users in the completion of the

game by dividing it into tasks. The first half of the list

contained a step-by-step guide while the second half

was only comprised of objectives. This way, testers,

during the first half, could learn the basics of the

application as well as its quirks. Overall, the game

consisted in a competitive first person shooter where

players and AI-controlled bots had to toss balls at each

other in order to increase their team’s score. The

following screenshot illustrates the game, as made by

one of the test subjects.

Figure 4. Screenshot of the test game “Spheres of Steel” as

created by one of the subjects

Tests were performed using 11 subjects [17] and the

data collected from the recorded audio, demographic

questionnaire, interviews and notes, was categorized

into three classes: demographic information, user

performance and usability issues. Although 11 testers

participated, only 10 completed the development of the

Description of the test’s task-

list:

1. Read crash course and
explore the editor for 5
minutes.

2. Read the game’s design
doc and start a new
project.

3. Build a chronometer
mechanism.

4. Create a score update
mechanic.

5. Build the player’s
navigation system.

6. Create the player’s
shooting mechanism.

7. Make a bot spawning
mechanic.

8. Devise the enemies’ AI.
9. Integrate the score

update with a local
scoring system.

10. Make a winner
announcement system.

11. Save the project.
12. Open a project and

answer some questions
regarding the language.

https://www.researchgate.net/publication/273947524_Interaction_Design_Beyond_Human-Computer_Interaction?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==

game and, therefore, the information aggregated from

the subject who had to abandon the test midway, due

to personal reasons, was only used in the demographic

information and usability issues as there was not

enough information necessary to compile in the user

performance category.

Demographic questionnaires required subjects to state

their age, sex and highest academic degree. They also

inquired users to rate their experience, in a scale of 0

to 2 – 0 meaning never heard of the term and 2

denoting highly proficient - in textual programming

(TP), visual programming (VP) and game development

(GD). The reason for this is that textual programming

introduces people to algorithms; Experience in visual

programming would make the subjects used to the

mannerism required to manipulate a visual language;

and experience in game development would make

users accustomed to the steps involved in creating a

game.

The population sample is composed of 2 females and 9

males, with an average age of 26. Their qualifications

range from Bsc student to Phd student. From this

information, it can be deducted that the highest

degree achieved by the test subjects range from High

School to a Msc coinciding with the academic education

that game designers often have. The average

experience in textual and visual programming and

game development is, as self-stated, 1.18/2, 0.45/2

and 0.72/2 respectively. This means that subjects are

familiar but not proficient in textual programming,

barely know about visual programming but have a little

knowledge of game development. Overall, the subjects

constituting the population sample were selected in a

manner that allowed for a heterogeneous sample, in

means of qualifications and experience levels. This way,

in theory, it would increase the amount of issues found

by subjects.

Results and Analysis

USER EXPERIENCE

In this context, user performance consists in the overall

time subjects took to complete the game’s definition

and each individual task and their relative perception of

the difficulty of every task. This was extrapolated from

the audio recordings and ratings that testers gave after

finishing their tasks.

From the data presented Figure 5, it was concluded

that on average, testers completed the test in 1h33m,

only 3m above the expected time, and their perception

of the test’s difficulty was, on average, 2/5 – this was

derived from the values available in Figure 6. This

means that users thought the test they made, while

using the application, was easy. Nevertheless, only 1

out of 10 subjects did not require the evaluator’s

assistance.

USABILITY ISSUES

The notes and interviews originated a list of usability

issues. These issues, after compiled and normalized,

were categorized according to their importance [17],

occurrence frequency, type and occurrence by task and

by user. From the usability tests, 406 occurrences,

distributed across 88 different event classes, were

found. There were only three importance levels given

to issues: High, Medium and Low. These levels were

attributed according to the issue’s degree of prevention

in completing a certain task. Each level corresponded to

a number: High corresponded to 1, Medium to 0.66 and

Low to 0.33.

Figure 5. Total Time per User for

the complete exercise.

Figure 6. Average Perceived

Difficulty per Task (scale 1-5)

In total, there were 9 types used to classify the issues

[12]. These types were Functional Error (FE),

Affordance (A), Feedback (FB), Perception of System

State (PSS), Naming Interpretation (NI), Instruction

Interpretation (II), Representation Interpretation (RI),

Mappings (M) and Domain Knowledge (DK). It was

assessed that most events lie on the category of

Mappings. This means that during the tests, most

recorded events were comprised of discrepancies

between their users’ intentions and the interface’s

available actions.

Figure 7. Priority Level per Issue

USABILITY CORRECTIONS

We used a metric to help identify the most critical

problems sorted accordingly to their potential impact,

to elaborate a correction plan. This metric consisted in

a two part algorithm. In the first part, a value, referred

to as priority level, was attributed to each issue by

calculating the arithmetic product between the its

frequency per user (IFU) and per task (IFT), its relative

frequency (RF) and its importance (I). The formula is

given by the expression .

This results in a value ranging from 0 to 1 because all

variables were normalized beforehand. By multiplying

these factors, it is assured that, for instance, issues

that appeared frequently during tasks, were

encountered by most users and tasks, and hindered the

completion of said tasks are given more priority than

issues that, for example, were not as frequent or

important. A chart detailing the priority levels per

problem, sorted by value, is presented in Figure 7.

The revised interface is illustrated in the screenshot in

Figure 8.

Figure 8. Screenshot of the editor interface (post usability

corrections)

The most notorious differences between Figure 3 and

Figure 8 rely on the tool bar. In it, some toggle buttons

were introduce to provide a better indication of the

system’s state. Another difference is that the buttons

were sorted and grouped with separators to avoid

button pressing mistakes and to decrease the time it

took an user to look for a specific button. Finally, some

label names were changed to avoid confusion

Conclusions

In sum, this paper introduced an interaction design

model for a behavior editor used to edit constructs of a

language, based on Petri Nets, intended to define actor

behaviors and choreographies. This design was

instantiated as a proof of concept and validated

through formal usability lab tests.

We concluded that in spite of pending usability issues

most users were able to complete the proposed game

behavior definition tasks using the PN editor interface.

We think this provides a good evidence to reinforce the

case that PNs can be used to advantage in the game

modeling process and, when coupled with a runtime

simulation, can provide an interesting immediate

feedback loop for fast design experimentation.

For future work, it would be interesting to develop a

look and feel more appealing to the editor’s target

audience, as this attribute was not considered during

the development of the editor, since the main focus

was to create a prototype to illustrate the interaction

design model.

Acknowledgements

We would like to thank all the support from lab

colleagues for the help they provided through the

development of this editor, and the test volunteers for

their availability to help validate this work.

References
[1] Aalst, W. Hierarchical Petri-Nets. Eindhoven
University of Technology, 2011.
http://cpntools.org/_media/book/hcpn.pdf .

[2] AgentSheets. http://www.agentsheets.com/ .

[3] Araújo, M., & Licinio, R. Modeling Games with
Petri Nets. In Proc. Digital Games Research Association
(DiGRA) on Innovation in Games, Play, Practice and
Theory (2009).

[4] Balsamiq. http://www.balsamiq.com/ .

[5] Billington, J., Christensen, S., van Hee, K.,
Kindler, E., Kummer, O., Petrucci, L., . . . Weber, M.
The Petri Net Markup Language: Concepts Technology
and Tools. Applications and Theory of Petri Nets
(2003), 483-505.

[6] Brom, C., & Abonyi, A. Petri Nets for Game Plot.
In Proc. AISB on Narrative AI and Games workshop
(2006).

[7] CryEngine. http://mycryengine.com/ .

[8] Dormans, J. Machinations Framework.
http://www.jorisdormans.nl/machinations/wiki/index.p
hp?title=Machinations_Framework .

[9] JFern. http://sourceforge.net/projects/jfern/ .

[10] JPetriNet. http://jpetrinet.sourceforge.net/ .

[11] Hevner, A., & Chatterjee, S. The General Design
Cycle. Design Research in Information Systems: Theory
and Practice (2010), 26-27.

[12] Hourcade, J. Usability Principles. University of
Iowa, 2006.
https://www.cs.uiowa.edu/~hourcade/classes/fa06hci/l
ecture2.pdf .

[13] Milligton, I., & Funge, J. Artificial Intelligence for
games. Morgan Kaufmann, Burlington, USA, 2009.

[14] Natkin, S., Vega, L., & Grünvogal, S. A new
methodology for Spatiotemporal Game Design. In Proc.
CGAIDE'2004, Fifth Game-On International Conference
on Computer Games: Artificial Intelligence (2004).

[15] Petri, C., & Reisig, W. (2008). Petri Net.
http://www.scholarpedia.org/article/Petri_net .

[16] PIPE2. http://pipe2.sourceforge.net/ .

http://cpntools.org/_media/book/hcpn.pdf
http://www.agentsheets.com/
http://www.balsamiq.com/
http://mycryengine.com/
http://www.jorisdormans.nl/machinations/wiki/index.php?title=Machinations_Framework
http://www.jorisdormans.nl/machinations/wiki/index.php?title=Machinations_Framework
http://sourceforge.net/projects/jfern/
http://jpetrinet.sourceforge.net/
https://www.cs.uiowa.edu/~hourcade/classes/fa06hci/lecture2.pdf
https://www.cs.uiowa.edu/~hourcade/classes/fa06hci/lecture2.pdf
http://www.scholarpedia.org/article/Petri_net
http://pipe2.sourceforge.net/
https://www.researchgate.net/publication/259969760_Design_Research_in_Information_Systems_Theory_and_Practice?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/259969760_Design_Research_in_Information_Systems_Theory_and_Practice?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/259969760_Design_Research_in_Information_Systems_Theory_and_Practice?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/228686529_A_new_methodology_for_spatiotemporal_game_design?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/228686529_A_new_methodology_for_spatiotemporal_game_design?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/228686529_A_new_methodology_for_spatiotemporal_game_design?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/228686529_A_new_methodology_for_spatiotemporal_game_design?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==

[17] Sauro, J. 10 Things to Know about Usability
Problems.
http://www.measuringusability.com/blog/usability-
problems.php .

[18] Sauro, J. Applying the Pareto Principle to the
User Experience.
http://www.measuringusability.com/blog/pareto-
ux.php .

[19] Scratch. http://scratch.mit.edu/ .

[20] SDL. http://www.libsdl.org/ .

[21] Sharp, H., Rogers, Y., & Preece, J. Interaction
Design: beyond human-computer interaction. Wiley,
USA, 2002.

[22] Stencyl. http://www.stencyl.com/ .

[23] ToonTalk. http://www.toontalk.com/ .

[24] UDK. http://www.unrealengine.com/udk/ .

[25] Unity 3D. http://unity3d.com/ .

[26] XNA Game Studio.
http://msdn.microsoft.com/en-
us/library/bb200104.aspx .

[27] Yasper. http://www.yasper.org/ .

[28] Ward, J. What is a Game Engine?
http://www.gamecareerguide.com/features/529/what_i
s_a_game_.php .

[29] WoPeD. http://woped.ba-karlsruhe.de/ .

View publication statsView publication stats

http://www.measuringusability.com/blog/usability-problems.php
http://www.measuringusability.com/blog/usability-problems.php
http://www.measuringusability.com/blog/pareto-ux.php
http://www.measuringusability.com/blog/pareto-ux.php
http://scratch.mit.edu/
http://www.libsdl.org/
http://www.stencyl.com/
http://www.toontalk.com/
http://www.unrealengine.com/udk/
http://unity3d.com/
http://msdn.microsoft.com/en-us/library/bb200104.aspx
http://msdn.microsoft.com/en-us/library/bb200104.aspx
http://www.yasper.org/
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://woped.ba-karlsruhe.de/
https://www.researchgate.net/publication/273947524_Interaction_Design_Beyond_Human-Computer_Interaction?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/273947524_Interaction_Design_Beyond_Human-Computer_Interaction?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/273947524_Interaction_Design_Beyond_Human-Computer_Interaction?el=1_x_8&enrichId=rgreq-20cb9e5422c6da2bbc604123db0df7f6-XXX&enrichSource=Y292ZXJQYWdlOzI5ODMwNzkyMDtBUzozMzk4NDEzNzcxNjEyMTlAMTQ1ODAzNTkwNjU1OA==
https://www.researchgate.net/publication/298307920

