
An Experimental Evaluation of Performance Problems in HTTP Server Infrastructures

Using Online Clients

Ricardo Filipe, Serhiy Boychenko, and Filipe Araujo

CISUC, Dept. of Informatics Engineering
University of Coimbra

Coimbra, Portugal
rafilipe@dei.uc.pt, serhiy@dei.uc.pt, filipius@uc.pt

Abstract—Ensuring short response times is a major concern
for all web site administrators. To keep these times under
control, they usually resort to monitoring tools that collect a
large spectrum of system metrics, such as CPU and memory
occupation, network traffic, number of processes, etc. Despite
providing a reasonably accurate picture of the server, the times
that really matter are those experienced by the user. However, not
surprisingly, system administrators will usually not have access
to these end-to-end figures, due to their lack of control over
web browsers. To overcome this problem, we follow the opposite
approach of monitoring a site based on times collected from
browsers. We use two browser-side metrics for this: i) the time it
takes for the first byte of the response to reach the user (request
time) and ii) the time it takes for the entire response to arrive
(response time). We conjecture that an appropriate choice of
the resources to control, more precisely, one or two web pages,
suffices to detect CPU, network and disk input/output bottlenecks.
In support of this conjecture, we run periodical evaluations of
request and response times on some very popular web sites to
detect bottlenecks. In this paper, we present a new experiment
using pairs of synchronized clients, to extend the results we
achieved with single-client requests in our previous work. Results
suggest that collecting timing data from the browsers can indeed
contribute to detect server performance problems and raise
interesting questions regarding unfair delays that seem to exist
in some specific requests.

Keywords–Web monitoring; Client-side monitoring; Bottleneck.

I. INTRODUCTION

In the operation of a Hypertext Transfer Protocol (HTTP)
server, bottlenecks may emerge at different points of the
system often with negative consequences for the quality of
the interaction with users. To control this problem, system
administrators must keep a watchful eye on a large range of
system parameters, like CPU, disk and memory occupation,
network interface utilization, among an endless number of
other metrics, some of them specifically related to HTTP, such
as response times or queue sizes. Despite being very powerful,
these mechanisms cannot provide a completely accurate pic-
ture of the HTTP protocol performance. Indeed, the network
latency and transfer times can only be seen from the client,
not to mention that some server metrics might not translate
easily to the quality of the interaction with users. Moreover,
increasing the number of metrics involved in monitoring adds
complexity to the system and makes monitoring more intrusive.
In Section II, we overview different techniques to monitor
servers and to detect different sorts of bottlenecks.

We hypothesize that a simpler mechanism, based on client-
side monitoring, can fulfill the task of detecting and identifying
an HTTP server bottleneck from a list of three: CPU, network,
or disk input/output (simply I/O hereafter). The arguments in
favor of this idea are quite powerful: client-side monitoring
provides the most relevant performance numbers, while, at the
same time, requiring no modifications to the server, which,
additionally, can run on any technology. This approach can
provide a very effective option to complement available mon-
itoring tools.

To achieve this goal, we require two metrics taken from the
web browser: i) the time it takes from requesting an object
to receiving the first byte (request time), and ii) the time it
takes from the first byte of the response, to the last byte of
data (response time). We need to collect time series of these
metrics for, at least, one or two carefully chosen URLs. These
URLs should be selected according to the resources they use,
either I/O or CPU. As we describe in Section III, the main idea
is that each kind of bottleneck exposes itself with a different
signature in the request and response time series.

To try our conjecture, and create such time series, in
Section IV, we resorted to experiments on real web sites,
by automatically requesting one or two URLs with a browser
every minute, and collecting the correspondent request and re-
sponse times. With these experiments, we managed to discover
a case of network bottleneck and another one of I/O bottleneck.
We believe that this simple mechanism can improve the web
browsing experience, by providing web site developers with
qualitative results that add to the purely quantitative metrics
they already own.

We now extend these results, which we presented before
in [1], with an additional experiment. In Section V, we
fetch pages from the same server using two synchronized
clients. This enables separation between client-side network
and server-side problems. However, the main goal of this
experiment was to verify whether observations from one of
the clients takes us into a set of conclusions that fits the
observations of the second one. Furthermore, to avoid any bias,
in Section VI, we introduce a simple algorithm that evaluates
request and response times from both clients, before outputting
the cause of the problem.

Surprisingly, we noted that, occasionally, the two clients
disagree about the quality of the interaction with the server.
One of them suffers from an isolated server-side problem,
which does not occur again, while the other client does not



suffer from any problem at all. This suggests that some
requests get a very unfair treatment along their way. Even a
network and server that seem to be lightly loaded can exhibit
this sort of delay at times. Determining exactly where and
how frequently does this happen is, we believe, an interesting
practical concern.

To summarize, this paper makes the following major con-
tributions:

• it proposes a mechanism to detect bottlenecks on
HTTP server infrastructures, based on taking periodic
client-side metrics;

• it shows evidence of particularly long delays in spe-
cific isolated requests.

The rest of the paper is organized as follows. Section II
presents the related work in this field and provides a compar-
ison of different methods. Section III describes our conjecture
of client-side detection and identification of HTTP server
bottlenecks. In Section IV, we show monitoring results from
popular web sites, thus exposing different types of bottlenecks.
In Section V, we extend our previous work, now using two
clients in different networks. In Section VI, we present an
automated mechanism to detect bottlenecks. Finally, in Sec-
tion VII we discuss the results and conclude the paper.

II. RELATED WORK

In the literature, we can find a large body of work focused
on timely scaling resources up or down, usually in N-tier HTTP
server systems, [2–8]. We divide these efforts into three main
categories: (i) analytic models that collect multiple metrics to
ensure detection or prediction of bottlenecks; (ii) rule-based
approaches, which change resources depending on utilization
thresholds, like network or CPU; (iii) system configuration
analysis, to ensure correct functionality against bottlenecks and
peak period operations.

First, regarding analytic models, authors usually resort
to queues and respective theories to represent N-tier sys-
tems [9][10]. Malkowski et al. [11] try to satisfy service level
objectives (SLOs), by keeping low service response times.
They collect a large number of system metrics, like CPU and
memory utilization, cache, pool sizes and so on, to correlate
these metrics with system performance. This should expose
the metrics responsible for bottlenecks. However, the analytic
model uses more than two hundred application and system
level metrics. In [12], Malkowski et al. studied bottlenecks
in N-tier systems even further, to expose the phenomenon of
multi-bottlenecks, which are not due to a single resource that
reaches saturation. Furthermore, they managed to show that
lightly loaded resources may be responsible for such multi-
bottlenecks. As in their previous work, the framework resorts
to system metrics that require full access to the infrastructure.
The number of system metrics to collect is not clear. Wang et
al. continued this line of reasoning in [8], to detect transient
bottlenecks with durations as low as 50 milliseconds. The
transient anomalies are detected recurring to depth analysis of
metrics in each component of the system. Although functional,
this approach is so fine-grained that it is closely tied to a
specific hardware and software architecture.

In [3], authors try to discover bottlenecks in data flow
programs running in the cloud. In [7], Bodı́k et al. try to
predict bottlenecks to provide automatic elasticity. The work

TABLE I. BOTTLENECK DETECTION IN RELATED WORK.

Article CPU/Threads/VM I/O Network

[3] X X
[4] X
[11] X X
[5] X
[8] X X Internal
[12] X X Internal
[17] X X
[15] External

in [6] presents a dynamic allocation of Virtual Machines (VMs)
based on Service Level Agreement (SLA) restrictions. The
framework consists of a continuous “loop” that monitors the
cloud system, to detect and predict component saturation.
The paper does not address questions related to resource
consumption of the monitoring approach or scalability to large
cloud providers. Unlike other approaches that try to detect
bottlenecks, [13] uses heuristic models to achieve optimal
resource management. Authors use a database rule set that,
for a given workload, returns the optimal configuration of
the system. The work in [14] presents a technique to analyze
workloads using k-means clustering. This approach also uses
a queuing model to predict the server capacity for a given
workload for each tier of the system.

In [15], authors propose a collaborative approach. They
use a web browser plug-in on each client, to monitor all
Internet activity, gather several network metrics, and send the
information to a central point, for processing. The focus of
the plug-in is the main web (HTML) page. The impact of this
approach on network bandwidth and client data security is
unclear, as authors only handle external network connectivity
issues.

Other researchers have focused on rule-based schemes to
control resource utilization. Iqbal et al. [4][16] propose an
algorithm that processes proxy logs and, at a second layer,
all CPU metrics of web servers. The goal is to increase or
decrease the number of instances of the saturated component.
Reference [17] also scales up or down servers based on
CPU and network metrics of the server components. If a
component resource saturation is observed, then, the user will
be migrated to a new virtual machine through IP dynamic
configuration. This approach uses simpler criteria to scale up
or down compared to bottleneck-based approaches, because it
uses static performance-based rules.

Table I illustrates the kind of resource problem detected by
the mentioned papers. The second column concerns the need
to increase CPU resources or VM instances. The third column
is associated to I/O, normally an access to a database. The
network column represents delays inside the server network
or in the connection to the client. It is relevant to mention
that several articles [3][12][18] only consider CPU (or instan-
tiated VM) and I/O bottlenecks, thus not considering internal
(between the different components) or external (client-server)
bandwidth.

Some techniques scan the system looking for misconfigu-
rations that may cause inconsistencies or performance issues.
Attariyan et al. [20] elaborated a tool that scans the system in
real time, to discover root cause errors in the configuration. In
[21], authors use previous correct configurations to eliminate
unwanted or mistaken operator configuration.



It is also worth mentioning client-side tools like
HTTPerf [22] or JMeter [23], which serve to test HTTP
servers, frequently under stress, by running a large number of
simultaneous invocations of a service. However, these tools
work better for benchmarking a site before it goes online.
Nevertheless, in [19], we demonstrated that it is possible to
detect bottlenecks with limited access to the server using
JMeter. However, the bursts of requests of JMeter could hardly
work on the real internet, and could potentially be considered
as a denial-of-service attack.

Our current work is different from the previously men-
tioned literature in at least two aspects: we are not tied to any
specific architecture and we try to evaluate the bottlenecks
from the client’s perspective. This point of view provides a
better insight on the quality of the response, offering a much
more accurate picture regarding the quality of the service.
While our method could replace some server-side mechanisms,
we believe that it serves better as a complementary mechanism.

III. A CONJECTURE ON CLIENT-SIDE MONITORING OF
HTTP SERVERS

This section presents our conjecture concerning network,
CPU and I/O bottleneck identification. The first subsection
shows how to identify network bottlenecks and the second sub-
section shows how to distinguish CPU from I/O bottlenecks.

A. Identification of Network Bottlenecks
We now evaluate the possibility of detecting bottlenecks,

based on the download times of web pages, as seen by a client.
We conjecture that we can, not only, detect the presence of a
bottleneck, something that would be relatively simple to do, but
actually determine the kind of resource causing the bottleneck,
CPU, I/O or network. CPU limitations may be due to thread
pool constraints of the HTTP Server (specially the front-end
machines), or CPU machine exhaustion, e.g., due to bad code
design that causes unnecessary processing. I/O bottlenecks will
probably be related to the database (DB) operation, which
clearly depend on query complexity, DB configuration and DB
access patterns. Network bottlenecks are related to network
congestion.

To illustrate this possibility, we propose to systematically
collect timing information of one or two web pages from a
given server, using the browser side JavaScript Navigation
Timing API [24]. Figure 1 depicts the different metrics that
are available to this JavaScript library, as defined by the World
Wide Web (W3) Consortium. Of these, we will use the most
relevant ones for network and server performance: the request
time (computed as the time that goes from the request start to
the response start) and the response time (which is the time that
goes from the response start to the response end). We chose
these, because the request and response times are directly
related to the request and involve server actions, which is not
the case of browser processing times, occurring afterwards, or
TCP connection times, happening before.

Consider now the following decomposition of the times of
interest for us:

• Request Time: client-to-server network transfer time
+ server processing time + server-to-client network
latency.

• Response Time: server-to-client network transfer time.
To make use of these times, we must assume that the server

actions, once the server has the first byte of the response ready,
do not delay the network transfer of the response. In practice,
our analysis depends on the server not causing any delays due
to CPU or (disk) I/O, once it starts responding. Note that this
is compatible with chunked transfer encoding: the server might
compress or sign the next chunk, while delivering the previous
one.

We argue that identifying network bottlenecks, and their
cause, with time series of these two metrics is actually possible,
whenever congestion occurs in both directions of traffic. In this
case, the request and response times will correlate strongly. If
no network congestion exists, but the response is still slow,
the correlation of request and response times will be small,
as processing time on the server dominates. Small correlation
points to a bottleneck in the server, whereas high correlation
points toward the network. Hence, repeated requests to a single
resource of the system, such as the entry page can help to
identify network congestion, although we cannot tell exactly
where in the network does this congestion occur. Henceforth,
we will call “single-page request” analysis to this correlation-
based evaluation of the request and response time series from
a single URL. In this paper, we improve from our previous
work [1], by providing evidence in Section V supporting that,
when the service is slow, a high (low) correlation between
the request and response times results from network (server)
congestion.

B. Identification of CPU bottlenecks
Separating CPU from I/O bottlenecks is a much more

difficult problem. We resort to a further assumption here: the
CPU tasks share a single pool of resources, possibly with
several (virtual) machines, while I/O is often partitioned. This,
we believe, reflects the conditions of many large systems,
as load balancers forward requests to a single pool of ma-
chines, whereas data requests may end up in separate DB
tables, served by different machines, depending on the items
requested. Since scarce CPU resources affect all requests, this
type of bottleneck synchronizes all the delays (i.e., different
parallel requests tend to be simultaneously slow or fast). Thus,
logically, unsynchronized delays must point to I/O bottlenecks.
On the other hand, one cannot immediately conclude anything,
with respect to the type of bottleneck, if the delays are
synchronized (requests might be suffering either from CPU
or similar I/O limitations).

The challenge is, therefore, to identify pairs of URLs
showing unsynchronized delays, to pinpoint I/O bottlenecks.
Ensuring that a request for an URL has I/O is usually simple,
as most have. In a news site, fetching a specific news item will
most likely access I/O. To have a request using only CPU or, at
least, using some different I/O resource, one might fetch non-
existing resources, preferably using a path outside the logic of
the site. We call “independent requests” to this mechanism of
using two URLs requesting different types of resources.

One should notice that responses must occupy more than a
single TCP [25] segment. Otherwise, one cannot compute any
meaningful correlation between request and response times, as
this would always be very small.

In our experiments, we will start by evaluating the correla-
tion between request and response times. Then, we will exper-
imentally try the “single-page request” and the “independent



Figure 1. Navigation Timing metrics (figure from [24])

TABLE II. SOFTWARE USED AND DISTRIBUTION.

Component Observations Version

Selenium selenium-server-standalone jar 2.43.0
Firefox browser 23.0
Xvfb xorg-server 1.13.3

requests” mechanisms, to observe whether they can actually
spot bottlenecks in real web sites.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental
evaluation. First, we present the setup and afterwards the most
important results obtained with the experiments.

A. Experimental Setup
For the sake of doing an online analysis, we used a software

testing framework for web applications, called Selenium [26].
The Selenium framework emulates clients accessing web
pages using the Firefox browser, thus retaining access to the
Javascript Navigation Timing API [24]. We use this API to
read the request and response times necessary for the “single-
page request” and “independent requests” mechanisms. We
used a UNIX client machine, with a crontab process, to request
a page each minute [27], using Selenium and the Firefox
browser. We emulated a virtual display for the client machine
using Xvfb [28]. Table II lists the software and versions used.

One of the criteria we used to choose the pages to monitor
was their popularity. However, to conserve space, we only
show results of pages that provided interesting results, thus
omitting sites that displayed excellent performance during
the entire course of the days we tested (e.g., CNN [29] or
Amazon [30]) — these latter experiments would have little to
show regarding bottlenecks. On the other hand, we could find
some bottlenecks in a number of other real web sites:

• Photo repository — We kept downloading the same
46 KiloBytes (KiB) Facebook photo, which was ac-
tually delivered by a third-party provider Content

Delivery Network (CDN). During the time of this test,
the CDN was retrieving the photo from Ireland. This
experiment displays network performance problems.

• Portuguese News Site — this web page is the 5th most
used portal in Portugal (only behind Google – domain
.pt and .com, Facebook and Youtube) and the 1st page
of Portuguese language in Portugal [31]. This web
page shows considerable performance perturbations on
the server side, especially during the wake up hours.

• Portuguese Sports News — This is an online sports
newspaper. We downloaded an old 129 KiB news item
and an inexistent one for several days. The old news
item certainly involves I/O, to retrieve the item from
a DB, whereas the inexistent may or may not use I/O,
we cannot tell for sure. We ensured a separation of 10
seconds between both requests. One should notice that
having a resource URL involving only CPU would be
a better choice to separate bottlenecks. However, since
we could not find such resource, a non-existing one
actually helped us to identify an I/O bottleneck.

• Social Network Site — We used the 1st popular social
network and the largest social network worldwide. The
technology demands are enormous to ensure quality-
of-experience to their users and, therefore, preventing
bottleneck occurrences. However, recent blackouts in
the system have shown the potential of our tool to
detect system anomalies and predict web page disrup-
tions.

B. Results
We start by analyzing the results from the Content Delivery

Network and from Portuguese News site, in Figures 2, 3, and
4. These figures show the normal behavior of the systems and
enable us to identify periods where the response times fall out
of the ordinary.

Figure 2 shows the response of the CDN site for a lapse
of several days. We can clearly observe a pattern in the



 0

 100

 200

 300

 400

 500

09/20
00:00

09/20
12:00

09/21
00:00

09/21
12:00

09/22
00:00

09/22
12:00

09/23
00:00

Ti
m

e 
(m

se
c)

Date Time

Content Delivery Network Bottleneck

Response Time
Request Time

Figure 2. CDN bottleneck.

 0

 50

 100

 150

 200

 250

 300

 350

 400

09/25
12:00

09/26
00:00

09/26
12:00

09/27
00:00

09/27
12:00

09/28
00:00

09/28
12:00

09/29
00:00

09/29
12:00

09/30
00:00

09/30
12:00

Ti
m

e 
(m

se
c)

Date Time

Akamai WebPage - end of the bottleneck

Response Time
Request Time

Figure 3. CDN - end of the bottleneck.

response that is directly associated to the hour of the day.
During working hours and evening in Europe, we observed
a degradation in the request and response times (see, for
example, the left area of the blue line on September 19,
2014, a Friday). The green and the red lines (respectively,
the response and the request times), clearly follow similar
patterns, a sign that they are strongly correlated. Computing the
correlation coefficient of these variables, r(Req,Res), for the
left side of the blue line we have r(Req,Res) = 0.89881, this
showing that the correlation exists indeed. However, for the
period where the platform is more “stable” (between the first
peak periods) we have r(Req,Res) = −0.06728. In normal
conditions the correlation between these two parameters is low.
This allows us to conclude that in the former (peak) period
we found a network bottleneck that does not exist in the latter.
However, our method cannot determine where in the network is
the bottleneck. Interestingly, in Figure 3, we can observe that
the bottleneck disappeared after a few days. On September
29th, we can no longer see any sign of it.

Regarding Figure 4, which shows request and response
times of the main page of a news site, we can make the
same analysis for two distinct periods: before and after 9 AM
(consider the blue vertical line) of December 13, 2013 (also
a Friday). Visually, we can easily see the different profiles of
the two areas. Their correlations are:

• r(Req,Res)before9AM = 0.36621

• r(Req,Res)after9AM = 0.08887

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

12/13
00:00

12/13
02:00

12/13
04:00

12/13
06:00

12/13
08:00

12/13
10:00

12/13
12:00

12/13
14:00

12/13
16:00

12/13
18:00

12/13
20:00

12/13
22:00

12/14
00:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese News WebPage

Response Time
Request Time

Figure 4. Portuguese News Site bottleneck.

The correlation is low, especially during the peak period,
where the response time is more irregular. This case is there-
fore quite different from the previous one, and suggests that
no network bottleneck exists in the system, during periods of
intense usage. With the “single-page request” method only,
and without having any further data of the site, it is difficult
to precisely determine the source of the bottleneck (CPU or
I/O).

To separate the CPU from the I/O bottleneck, we need
to resort to the “independent requests” approach, which we
followed in the Portuguese Sports News case. Figures 5, 6,
7, and 8 show time series starting on February 18th, up to
February 21st 2015. We do not show the response times of
the inexistent page as these are always 0 or 1, thus having
very little information of interest for us. In all these figures,
we add a plot of the moving average with a period of 100, as
the moving average is extremely helpful to identify tendencies.

Figures 5 and 6 show the request time of the old 129
KiB page request. The former figure shows the actual times
we got, whereas in the latter we deleted the highest peaks
(those above average), to get a clearer picture of the request
times. A daily pattern emerges in these figures, as daytime
hours have longer delays in the response than night hours.
To exclude the network as a bottleneck, we can visually
see that the response times of Figure 7 do not exhibit this
pattern, which suggests a low correlation between request and
response times (which is indeed low). Next, we observe that
the request times of the existent and inexistent pages (refer
to Figure 8) are out of sync. The latter seems to have much
smaller cycles along the day, although (different) daily patterns
seem to exist as well. For the reasons we mentioned before, in
Section III, under the assumption that processing bottlenecks
would simultaneously affect both plots, we conclude that the
main source of bottlenecks in the existent page is I/O. This
also suggests the impossibility of having the request time
dominated by access to a cache on the server, as this would
impact processing, thus causing synchronized delays. A final
word for the peaks that affect the request time: they weakly
correlate with response times. Hence, their source is also likely
to be I/O.

Figures 9 and 10 show a period when the social network
web page was down in the entire world, due to a system
misconfiguration. Figure 9 shows how the page behaved,
regarding request and response times — before, during and



 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

02/18
00:00

02/18
12:00

02/19
00:00

02/19
12:00

02/20
00:00

02/20
12:00

02/21
00:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News old WebPage

Request Time Moving Average (period 100)

Figure 5. Portuguese Sports News old page — request times.

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

02/18
00:00

02/18
12:00

02/19
00:00

02/19
12:00

02/20
00:00

02/20
12:00

02/21
00:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News old WebPage - cut

Request Time Moving Average (period 100)

Figure 6. Portuguese Sports News old page — request times with peaks cut.

 9

 10

 11

 12

 13

 14

 15

 16

02/18
00:00

02/18
12:00

02/19
00:00

02/19
12:00

02/20
00:00

02/20
12:00

02/21
00:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News old WebPage

Response Time Moving Average (period 100)

Figure 7. Portuguese Sports News old page — response times.

 7

 8

 9

 10

 11

 12

 13

02/18
00:00

02/18
12:00

02/19
00:00

02/19
12:00

02/20
00:00

02/20
12:00

02/21
00:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News Inexistent WebPage

Request Time Moving Average (period 100)

Figure 8. Portuguese Sports News inexistent page — request times.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

09-28
18:30

09-28
19:00

09-28
19:30

09-28
20:00

09-28
20:30

09-28
21:00

09-28
21:30

09-28
22:00

09-28
22:30

09-28
23:00

Ti
m

e 
(m

se
c)

Date Time

Social Network Crash- WebPage

Response Time
Request Time

Figure 9. Social Network Web Page crash.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

09-28
18:30

09-28
18:40

09-28
18:50

09-28
19:00

09-28
19:10

09-28
19:20

09-28
19:30

09-28
19:40

09-28
19:50

09-28
20:00

09-28
20:10

Ti
m

e 
(m

se
c)

Date Time

Social Network Crash Detail- WebPage

Response Time Request Time

Figure 10. Social Network Web Page crash detail.

after the system resumed responding correctly. Figure 10 gives
a closer look of the period before the web page failure. Time
periods without request or response times, occurred when the
client reached the configured timeout and aborted the web
page request. Currently, the timeout is configured to be 60
seconds. Analyzing Figure 9, we can identify the period of
time when the web page was down or responding incorrectly.
This might be important, if the web page is hosted in a third-
party provider that might be held responsible for the failure and
the user wants to complain for a refund [32–34]. Figure 10
gives a closer look of the minutes before the failure. The
request time increased significantly, while the response time
remained unchanged — a weak correlation that points to a
server-side bottleneck. This agrees with what was mentioned
by the media [35]. Additionally, prior to the complete failure,
we can observe a 5-minute window, were the problem was
starting to become apparent, and that could be used to fix the
problem or alert system administrators.

V. CLIENT-SIDE MONITORING USING TWO DISTINCT
NETWORKS

In Section III, we focused on the problem of detecting
bottlenecks using only client metrics. We used a time series
approach based on the assumption that we can distinguish
server from network congestions, by looking at the correlation
between the request and response times. Unfortunately, since
we have no access to the internal server-side data of the
web servers we monitored, we cannot directly confirm this



RMI

Connection

HTTP 

Connection

Amazon

Client
Coimbra

Client

Figure 11. Experimental Setup - 2 clients

correlation hypothesis. To confirm this hypothesis and thus
verify the feasibility of this method, we now resort to two
distinct clients. The idea is straightforward: the observation
from two different clients should be coherent; clients should
agree on whether a bottleneck exists, and where does it come
from. As we shall see, the results we got slightly deviated from
what we expected, thus raising a very interesting question.

A. Experimental Settings
We used the same technologies mentioned in Table II

for each client. This means that each client was running a
Selenium instance to invoke a specific web page, through
Firefox. However, having two unsynchronized clients would
invalidate the results, because we would not know if the
requests were made at the same time. To eliminate this
limitation we created a communication protocol between the
clients in Java RMI [36]. Before fetching a page, the two
clients communicate with each other, to determine which
page to get and to ensure some degree of synchronicity. The
process consists in 3 steps — first, client A notifies client
B to invoke a determined URL; second, both clients invoke
the URL and save the request and response time; and finally,
client A receives the data from the web page invocation from
client B. One of the clients (client A in this description) has
the role of “master”, triggering the web page invocation and
the collection data from both requests. Clients should be in
different locations to have different network connectives. We
picked our own department facilities in Coimbra, and a virtual
machine in the Amazon Web Service cloud in the Northern
Virginia Region [37]. Figure 11 illustrates this interaction —
the RMI connection is identified in green, whereas the HTTP
connections to the web page are depicted in orange.

One of the criteria we used to choose the pages to monitor
was their popularity. Additionally, the web page should have
the same location regardless of the origin of the client (Ama-
zon in America or Coimbra in Europe). To ensure this, we
compared the IP given by the DNS to each client, to ensure
that they were, indeed, monitoring the same server. A second
criterion was to monitor web pages from different geographic
locations. However, to conserve space, we only show results
of pages that provided interesting results. Among these, we
could find some bottlenecks in the following real web sites:

• American electronic commerce and cloud com-
puting company — We kept downloading the main
page from this popular web page hosted in the United
States from our two clients. This experiment displays a
significant performance improvement, at some point in
time. This improvement was observed in both clients.

• Chinese Search Engine — this web page is the front-
end for one of the most popular search engines in the
world [31]. It is hosted in China. This web page shows
some network perturbations during a specific time in
both clients.

• Portuguese Sports News — This is an online sports
newspaper already used in Section III. The web page
is located in Portugal (Europe). We downloaded the
main page during several days. We verified several
pattern changes associated with system bottlenecks in
both clients.

B. Results
Since we now have two clients invoking the same URL,

at the same time, we expect similar server response patterns
at both clients. One would assume that whenever the response
time pattern in only one of the clients changes, the difference
should result from some bottleneck in the client-server net-
work path that is specific to the client observing the change.
However, if both clients observe a modification in the response
patterns (in terms of request and response time series), we can
conclude that this is the result of a component that is common
to both clients. Hence, this is the result of a system bottleneck
or a common network path.

We will now experimentally try the two clients “syn-
chronous request” mechanism, to observe whether they can
actually spot bottlenecks in real web sites and achieve consis-
tent observation of response patterns.

We start by analyzing the results of the American electronic
commerce web page in Figure 12, which shows the response
of the main page for a lapse of several days. The pair of
figures mostly shows normal behavior seen in Coimbra and
in the AWS, thus allowing us to identify periods when the
response times fell out of the ordinary for one or both clients.
We can clearly observe a pattern in the response that is directly
associated to the hour of the day. Additionally, the pattern ex-
ists for both clients, this meaning that both were experiencing
the same constraints (system or network) from the web page.
To have a better understanding of the trends, we also show a
moving average of the last 100 samples of response time, in
black. Computing the correlation coefficient for the response
and request times for both clients, r(Req,Res), for the interval
between September 12th 13:00 and September 13th 13:00
2015, we get a correlation of r(Req,Res)Coimbra = 0.13896
and r(Req,Res)AWS = −0.07370. Since none of the clients
observed significant congestion conditions, these low correla-
tions provide us very little information and suggest a normal
behavior of the system. Near the end of the experiment, still
in Figure 12, we can see an improvement in the response
times of both clients. Calculating the correlation coefficient
for this period, we have r(Req,Res)Coimbra = 0.07974 and
r(Req,Res)AWS = 0.14808. Hence, having in consideration
the low correlations and what was mentioned in Section III,
we can infer that the improvement experienced by both clients
seems to be a consequence of a change in the American
electronic commerce web page. An improvement in the sys-
tem network is less likely, because the request time rested
unchanged for this period.

Figure 13 shows the request and response times of the
Chinese Search Engine web page. The web page presents
a relatively stable pattern during most of the days. During



 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

09-17
12:00

Ti
m

e 
(m

se
c)

Date Time

Electronic Commerce WebPage - Amazon Client

Response Time Request Time Moving Average

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

09-17
12:00

Ti
m

e 
(m

se
c)

Date Time

Electronic Commerce WebPage - Coimbra Client

Response Time Request Time Moving Average

Figure 12. American electronic commerce web page

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

Ti
m

e 
(m

se
c)

Date Time

Search Engine WebPage - Amazon Client

Response Time Request Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

Ti
m

e 
(m

se
c)

Date Time

Search Engine WebPage - Coimbra Client

Response Time Request Time

Figure 13. Chinese search engine web page

 0

 200

 400

 600

 800

 1000

 1200

 1400

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

09-17
12:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News WebPage - Amazon Client

Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

09-12
12:00

09-13
00:00

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

09-17
12:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News WebPage - Coimbra Client

Response Time

Figure 14. Portuguese sports news web page

this period (before September 16th), the correlation coefficient
was r(Req,Res)Coimbra = 0.04532 and r(Req,Res)AWS =
0.16566, this meaning that in normal conditions there was no
correlation between request and response times. However, for
the period after September 16th, there was a significant change
observed by the AWS client, and although less significant, also
by the Coimbra client. This is even clearer when we calculate
the correlation coefficient of both clients for this period. The
correlation in Coimbra was r(Req,Res)Coimbra = 0.69707

and in AWS r(Req,Res)Aws = 0.57794. This means that
the correlation for request and response times in both clients
increased significantly, when compared to the normal pattern.
Hence, taking in consideration what was mentioned in Sec-
tion III, we are, most likely, observing a network bottleneck
in a common path between the server and the clients.

Figure 14 shows a degradation of the response time in
3 distinct moments. This degradation was observed in both
clients at the same time. When we calculate the correlation



TABLE III. CORRELATION FOR THE 3 PEAKS OF PORTUGUESE SPORTS
NEWS SITE

Correlation Coimbra AWS

r(Req,Res)1stpeak −0.32036 0.35263

r(Req,Res)2ndpeak 0.33789 0.35815

r(Req,Res)3rdpeak 0.28955 0.15749

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

09-13
12:00

09-14
00:00

09-14
12:00

09-15
00:00

09-15
12:00

09-16
00:00

09-16
12:00

09-17
00:00

09-17
12:00

Ti
m

e 
(m

se
c)

Date Time

Portuguese Sports News WebPage detail - Coimbra Client

Response Time Request Time

Figure 15. Portuguese Sports News Web Page - Detail

for a stable period of good performance (e.g., between the first
and second peak), we get r(Req,Res)Coimbra = −0.02381 in
Coimbra and r(Req,Res)AWS = 0.17699 in the AWS. Then,
for the three observed peaks, we have the correlation values
of Table III.

This correlation coefficient for both clients in the three
peaks differs considerably, especially in Coimbra. We show
with finer detail the request and response times of this client
in Figure 15. The correlation is never very high, thus pointing
to a server problem, especially in the first and third peaks.
However, it is also never low, thus suggesting that the network,
more specifically a common path of the network might have
been affected as well, at least in the second peak.

VI. AUTOMATIC DETECTION OF BOTTLENECKS USING
TWO DISTINCT NETWORKS

Our next step was to do a simple automated mechanism
to detect bottlenecks, using information coming from the pair
of clients. This is beneficial, not only because automation
may eventually lead to a quicker detection of performance
problems, but mainly because a visual inspection as we did in
the previous sections is error-prone and is subject to all sort of
biases. Indeed, with this new scheme we were able to achieve
new conclusions and get a deeper insight of performance
bottleneck problems.

A. Overview
The pair of clients provides four different variables that we

can feed into an algorithm: a boolean value per client telling
whether or not the client sees a congestion; and the correlation
between the request and the response times, for both clients.
Determining if the client is observing a congestion in the
service is not trivial, in the sense that different algorithms may
respond differently. In our experiments, we used an algorithm
based on a moving average. Unlike congestion, the correlation
is easier to determine. As before, we use the last 100 metrics

TABLE IV. All possible combinations of congestion and correlation

Client 1 Client 2 CauseCongestion? Correlation Congestion? Correlation

No Irrelevant No Irrelevant No Bottleneck
No Irrelevant Yes Low Impossible
No Irrelevant Yes High Client 2’s Network
Yes Low Yes Low Server
Yes Low Yes High Server & C. 2 Net.
Yes High Yes High Common Network

of request and response times. Note that for the correlation to
tell us something, we must be careful enough to request pages
that are relatively large, but still go in a single non-chunked
HTTP message. Considering high and low correlations, we get
16 possible combinations of the four variables, of which we
arrange the cases of interest in Table IV. We omit the redundant
cases, where client 1 and client 2 would simply swap their
variables. For example, since we already have “Yes, Low, Yes,
High”, in the line before last, it would be pointless to include
a “Yes, High, Yes, Low”.

Line 1 of the table is pretty much trivial: none of the clients
observes a bottleneck, therefore, looking for correlation is not
relevant. In line 2, one of the nodes observes a congestion that
does not come from the network (low correlation). Hence, the
other node should also observe a congestion. Hence, this line
is seemingly impossible. However, as we shall discuss, it may,
in fact, happen. In line 3, the client observing the congestion
can tell from the correlation that the network is congested.
Since client 1 observes no congestion, the network of client
2 is the culprit. The following case is equally straightforward:
when both clients observe a congestion and a low correlation,
the server is the culprit. In the following case, more than
one bottleneck exists: client 1 can tell that the server is the
most likely cause for the low correlation between request and
response times, because responses are taking quite a long time.
On the other hand, client 2 is also observing congestion, but it
can see a high correlation in the request and response times,
thus concluding that the problem lies in the network. Despite
seeming contradictory, this is possible, if both the server and
client 2 network are sources for delays. In the final line, the
problem lies in the network that is common to clients 1 and 2.
We will now try to confirm to what extent do real observations
actually fit into this model.

B. Algorithm to detect bottlenecks
In this section, we present an algorithm that evaluates the

variables of Table IV and outputs the cause of the problem.
The algorithm combines the request and response time series
retrieved at the same time, by two distinct clients for the same
web page, collected in our “synchronous request” experiments.
We wrote the algorithm in Python and we describe its high-
level details in pseudo-code in Algorithm 1. The expression
CongestionClient (1 or 2) ≥ CongestionThreshold becomes
true when the moving average of the request plus receive time
of the last 100 values grows above 15% of the average of all
samples, for that client. We consider the threshold that splits
low from high correlation to be 0.2. The correlation also takes
into account the last 100 measurements.

C. Results
In this section, we present some of the results that we

obtained with Algorithm 1 and compare them to the data pre-
viously analyzed in Section V. Although we ran our algorithm



Algorithm 1 Identify Bottleneck

if CongestionClient1 ≥CongestionThreshold then
if CongestionClient2 ≥CongestionThreshold then

if CorrelClient1 ≥HighCorrelationThreshold then
if CorrelClient2 ≥HighCorrelationThreshold then

Common Network
else

Client 1’s Network and Server
end if

else if CorrelClient2 ≥ HighCorrelationThreshold
then

Client 2’s Network and Server
else

Server
end if

else
if CorrelClient1 ≥ HighCorrelationThreshold then

Client 1’s Network
else

Impossible
end if

end if
else if CongestionClient2 ≥ CongestionThreshold then

if CorrelClient2 ≥HighCorrelationThreshold then
Client 2’s Network

else
Impossible

end if
else

No Bottleneck
end if

under varied conditions, we will focus on its responses for the
inputs depicted in Figures 12, 13, and 14. We can say that
all the bottlenecks we identified by visual inspection in these
figures were also identified by the algorithm, which pointed
out the same sources for problems. Although this might result
from the specific thresholds we selected and from the size
of the sliding window in the moving average and network
correlation, the effort of tuning the algorithm and making it
run under real data allowed us to reach two results:

• The algorithm cannot cope with request or response
times that are too low. For instance, if the request
or response times fall to values near the millisecond
range, as in one case where the client and server were
very close to each other, any small increase in the
response time, no matter how small it is, will look as
a congestion.

• The algorithm tags some congestion cases as being
impossible (line 2 in Table IV). This happens because
some requests take so long to get an answer that
they are able to push the moving average above the
congestion threshold. The interesting thing is that this
sort of delay, which happens rarely, is usually not seen
by the peer client, which is fetching pages from the
same server; and it is not seen neither before, nor after,
by the same client. This suggests that some requests
get an unfair amount of wait. If this is really the case,
what is the source of the problem (network, CPU, or
I/O) and how often does this happen remains as an

open question.

VII. DISCUSSION AND CONCLUSION

We proposed to detect bottlenecks on HTTP servers us-
ing client-side observations of request and response times.
A comparison of these signals, either over the same, or a
small number of resources, enables the identification of CPU,
network and I/O bottlenecks. We did this work having no
access to internal server data and mostly resorting to visual
inspection of the request and response times. If run by the
owners of the site, we see a number of additional options:

• Simply follow our approach of periodically, invoking
URLs in one or more clients, as a means to comple-
ment current server-side monitoring tools. This may
help to reply to questions such as “what is the impact
of a CPU occupation of 80% for interactivity?”.

• A hybrid approach, with client-side and server-side
data is also possible. I.e., the server may add some
internal data to each request, like the time the request
takes on the CPU or waiting for the database. Al-
though much more elaborate and dependent on the
architecture, instrumenting the client and the server
sides is, indeed, the only way to achieve a full de-
composition of request timings.

• To improve the quality of the analysis we did in
Section IV, site owners could also add a number of
very specific resources, like a page that has known
access time to the DB, or known computation time.

• It is also possible to automatically collect timing
information from real user browsers, as in Google
Analytics [38], to do subsequent analysis of the system
performance. In other words, instead of setting up
clients for monitoring, site owners might use their real
clients, with the help of some JavaScript.

In summary, we collected evidence in support of the idea
of identifying bottlenecks from the client side. In our previous
work [1], we recognized that to unambiguously demonstrate
these results we needed further evidence from a larger number
of sites, and from supplementary server data. We now managed
to run several experiments with a second client. Although
mostly concurring with our initial observations, the second
client opened an entirely new perspective: sometimes one of
the clients observes a delay in a single very concrete request,
which is neither observed by the other client, nor by the client
itself, either before or after. I.e., even when the server seems to
be delivering a normal service, clients may occasionally fail to
receive a response in reasonable time. We are certain that the
problem does not come from the network, because we classify
network problems in a different category. This result agrees
with [1]. We thus know that the server itself is the culprit for
such delays.

Let us think for a moment on the unique route taken by
each request: the TCP connection takes the request up to the
server, where some thread reads it, processes it, and (most
likely) forwards it to another layer of the system, where some
thread will eventually fetch several items from the database,
before enqueuing or sending the response back to the client.
Each request might follow slightly different routes, depending
on the threads that get it. This suggests a simple, but significant
conclusion: a few unlucky requests get blocked at some point



inside the server. To be fair, there was never any guarantee that
all requests would get their fair chance, or that they would all
get a quick response. But observing such cases in a moderate
number of samples is, we think, a rather interesting result.
This observation raises the question of determining the exact
mechanism behind starvation of some specific requests, and
how likely is such mechanism to come into play.

REFERENCES
[1] R. Filipe, S. Boychenko, and F. Araujo, “Online client-side bottleneck

identification on HTTP server infrastructures,” in The Tenth Interna-
tional Conference on Internet and Web Applications and Services (ICIW
2015), Brussels, Belgium, June 2015, pp. 22–27.

[2] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1, Internet
Engineering Task Force (IETF), Internet Engineering Task Force
(IETF) Std., June 1999. [Online]. Available: http://www.faqs.org/rfcs/
rfc2616.html

[3] D. Battre, M. Hovestadt, B. Lohrmann, A. Stanik, and D. Warneke,
“Detecting bottlenecks in parallel dag-based data flow programs,” in
Many-Task Computing on Grids and Supercomputers (MTAGS), 2010
IEEE Workshop on, 2010, pp. 1–10.

[4] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[5] Y. Shoaib and O. Das, “Using layered bottlenecks for virtual machine
provisioning in the clouds,” in Utility and Cloud Computing (UCC),
2012 IEEE Fifth International Conference on, 2012, pp. 109–116.

[6] N. Huber, F. Brosig, and S. Kounev, “Model-based self-adaptive
resource allocation in virtualized environments,” in Proceedings
of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’11. New
York, NY, USA: ACM, 2011, pp. 90–99. [Online]. Available:
http://doi.acm.org/10.1145/1988008.1988021

[7] P. Bodı́k, R. Griffith, C. Sutton, A. Fox, M. Jordan, and
D. Patterson, “Statistical machine learning makes automatic control
practical for Internet datacenters,” in Proceedings of the 2009
conference on Hot topics in cloud computing, ser. HotCloud’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855545

[8] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,
M. Kawaba, and C. Pu, “Detecting transient bottlenecks in n-tier
applications through fine-grained analysis,” in Distributed Computing
Systems (ICDCS), 2013 IEEE 33rd International Conference on, July
2013, pp. 31–40.

[9] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,” in
Autonomic Computing, 2007. ICAC ’07. Fourth International Confer-
ence on, June 2007, pp. 27–27.

[10] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, “Layered
bottlenecks and their mitigation,” in Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on, Sept 2006, pp.
103–114.

[11] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai, “Bottleneck
detection using statistical intervention analysis,” in Managing Virtual-
ization of Networks and Services. Springer, 2007, pp. 122–134.

[12] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation of
n-tier systems: Observation and analysis of multi-bottlenecks,” in
Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009, pp. 118–127.

[13] R. Chi, Z. Qian, and S. Lu, “A heuristic approach for scalability of
multi-tiers web application in clouds,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth International
Conference on, 2011, pp. 28–35.

[14] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads,” in Proceedings
of the 7th international conference on Autonomic computing, ser.
ICAC ’10. New York, NY, USA: ACM, 2010, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/1809049.1809053

[15] S. Agarwal, N. Liogkas, P. Mohan, and V. Padmanabhan, “Webprofiler:
Cooperative diagnosis of web failures,” in Communication Systems and
Networks (COMSNETS), 2010 Second International Conference on, Jan
2010, pp. 1–11.

[16] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Sla-driven
automatic bottleneck detection and resolution for read intensive multi-
tier applications hosted on a cloud,” in Advances in Grid and Pervasive
Computing. Springer, 2010, pp. 37–46.

[17] H. Liu and S. Wee, “Web server farm in the cloud: Performance
evaluation and dynamic architecture,” in Proceedings of the 1st
International Conference on Cloud Computing, ser. CloudCom ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 369–380. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-10665-1 34

[18] B. Singh and P. Nain, “Article: Bottleneck occurrence in cloud com-
puting,” IJCA Proceedings on National Conference on Advances in
Computer Science and Applications (NCACSA 2012), vol. NCACSA,
no. 5, pp. 1–4, May 2012, published by Foundation of Computer
Science, New York, USA.

[19] R. Filipe, S. Boychenko, and F. Araujo, “On client-side bottleneck
identification in HTTP servers,” in Proceedings of the 5th INForum
— Simpósio de Informática, Covilh, Portugal, September 2015.

[20] M. Attariyan, M. Chow, and J. Flinn, “X-ray: automating root-
cause diagnosis of performance anomalies in production software,”
in Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387910

[21] F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D.
Nguyen, “Barricade: defending systems against operator mistakes,” in
Proceedings of the 5th European conference on Computer systems,
ser. EuroSys ’10. New York, NY, USA: ACM, 2010, pp. 83–96.
[Online]. Available: http://doi.acm.org/10.1145/1755913.1755924

[22] “Papers — HP Web server performance tool,” http://www.hpl.hp.com/
research/linux/httperf/, retrieved: May, 2015.

[23] “Performance tools — Apache JMeterTM ,” http://jmeter.apache.org/,
retrieved: May, 2015.

[24] “Papers — Navigation Timing,” https://dvcs.w3.org/hg/webperf/raw-
file/tip/specs/NavigationTiming/Overview.html, retrieved: May, 2015.

[25] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122,
3168. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[26] “Papers — Selenium Browser automation,” http://www.seleniumhq.org/,
retrieved: May, 2015.

[27] “Crontab - quick reference — admin’s choice - choice of
unix and linux administrators,” http://www.adminschoice.com/crontab-
quick-reference, retrieved: May, 2015.

[28] “Xvfb,” http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.
xhtml, retrieved: May, 2015.

[29] “Breaking news, u.s., world, weather, entertainment & video news -
cnn.com,” http://edition.cnn.com, retrieved: May, 2015.

[30] “Amazon.com: Online shopping for electronics, apparel, computers,
books, dvds & more,” http://www.amazon.com, retrieved: May, 2015.

[31] “Alexa — Top Sites in Portugal,” http://www.alexa.com/topsites/
countries/PT, retrieved: May, 2015.

[32] “Papers — Windows Azure Service Level Agreement,” http://www.
windowsazure.com/en-us/support/legal/sla/, retrieved: May, 2015.

[33] “Papers — HP Service Level Agreement,” https://www.hpcloud.com/
SLA, retrieved: May, 2015.

[34] “Papers — Amazon EC2 Service Level Agreement,” http://aws.amazon.
com/ec2-sla/, retrieved: May, 2015.

[35] “Facebook crash,” http://www.dailymail.co.uk/sciencetech/article-
3252603/Facebook-goes-Social-network-crashes-time-month-leaving-
users-panic.html, retrieved: Nov, 2015.

[36] “Papers — RMI overview,” https://docs.oracle.com/javase/tutorial/rmi/
overview.html, retrieved: Nov, 2015.

[37] “Papers — Amazon Web Services,” http://aws.amazon.com/, retrieved:
Nov, 2015.

[38] B. Clifton, Advanced Web Metrics with Google Analytics. Alameda,
CA, USA: SYBEX Inc., 2008.


