
Client-Side Monitoring Techniques for Web Sites

Ricardo Filipe and Filipe Araujo

CISUC, Dept. of Informatics Engineering
University of Coimbra

Coimbra, Portugal
rafilipe@dei.uc.pt, filipius@uc.pt

Abstract—Ensuring the correct presentation and execution
of web sites is a major concern for system developers and
administrators. Unfortunately, only end users can determine
which resources are available and working properly. For example,
some internal or external addresses might be unavailable or
unreachable for specific clients, while seemingly available re-
sources, like JavaScript, might run with errors in some browsers.
While standard monitoring and analytic tools certainly provide
valuable information on web pages, problems might still escape
such measures, to reach end web users. To demonstrate the
limitations of current tools, we ran an experiment to count web
page errors in a sample of 3,000 web sites, including network
and JavaScript errors. Our results are significant: as many as
16% of the top 1,000 sites have errors in their own resources; less
popular sites have even more. Based on these results, we make
a review of three client-side monitoring approaches to mitigate
such errors: stand-alone applications, browser extensions and
JavaScript snippets with analytic tools. Interestingly, even the
latter approach, which requires no software installation, and
involves no security changes, can cover a large fraction of existing
web errors.

Index Terms—Web monitoring, Client-side monitoring, Ana-
lytics.

I. INTRODUCTION

Web site monitoring plays a major role in mitigating the
negative consequences of programming errors and network
malfunctions. Several studies [1], [2] show the significant
impact for companies, when users experience blank pages,
missing items, or are unable to interact with the web page.
One may consider that the consequences would be minimal,
but the true costs of a web page malfunction come from
disgruntled customers and the respective impact on the com-
pany’s reputation. To control failures in web resources, system
administrators must keep a watchful eye on a large range of
system parameters, like memory occupation, network interface
utilization, among an endless number of other metrics, such
as page load time. Unfortunately, even with all these metrics
— that add complexity and intrusiveness to the system —,
clients may experience some problems, due to web page ex-
ternal content, and client specific conditions, such as network
glitches or incompatible browser versions. In fact, even sites
belonging to the top-50 of the world wide web have errors [3],
thus suggesting that expensive monitoring mechanisms cannot

provide a completely accurate picture of web page reliability.
Another study [4] shows that an earlier detection of failures
would reduce the majority of customer complaints. Indeed,
customer feedback is a key aspect for web page trustworthiness
since some server issues might not produce the same effects
in all clients.

We argue that there are still no effective means to easily
detect web page problems. A possible approach is to send
browsing data to some analytic tool. These tools may handle
problems such as nonexistent pages in the domain, but, since
they are oriented to advertising and search engine optimiza-
tion, they typically neglect correct web page display.

To demonstrate that the web currently suffers from a lack
of proper monitoring, in Section II, we describe an experiment
with 3,000 sites of the top 1,000,000 web sites of the Alexa
ranking [5]. The 3,000 samples cover sites from the range
1-1,000, 10,000-20,000 and also from 100,000-200,000. We
used the Chrome web browser from two distinct locations in
Europe, to ensure realistic access to web pages, and simulate
real user interactions. We collected metrics, such as network
errors, broken links or JavaScript problems.

We think that the results we present in Section III are
noteworthy: 16% of the top 1,000 sites have errors in their
web page resources, being this value higher for less popular
sites. This demonstrates that no widespread monitoring tool
effectively prevents these errors. Then, in Section IV, we
proceed to discuss possible client-side monitoring solutions,
to complement available monitoring techniques. We compare
the client-side solutions, based on their level of intrusiveness
for the client. Unfortunately, as we might expect, approaches
that can collect more metrics are also much more intrusive.
Nevertheless, even non-intrusive light-weight approaches can
cover a significant fraction of web errors. These light-weight
approaches have the additional benefit of not compromising
client security or increasing the complexity of monitoring.

II. EXPERIMENTAL SETTINGS

Before rendering and displaying an HTML (HyperText
Markup Language) page, browsers must first fetch the page
from a server, using a URL (Uniform Resource Locator).
The browser then goes through the page, to build the DOM
(Document Object Model), render the corresponding tree and978-1-5090-3216-7/16/$31.00 c©2016 IEEE

TABLE I. SOFTWARE USED AND DISTRIBUTION.

Component Observations Version
Selenium selenium-server-standalone jar 2.45.0
Chrome browser 48.0.2564.103
Chrome driver 2.21.371461
Xvfb xorg-server 1.13.3

display it. The browser might need to download other re-
sources referenced in the main page. To fetch these resources,
the browser opens several TCP [6] (Transmission Control
Protocol) connections to their respective server, either internal
or external to the domain. However, each of these resources is
subject to failures that might impact the user experience. To
analyze the extension of problems, we inspected 3,000 sites,
including the most popular ones, and looked for very specific
metrics:

• We decomposed network errors into DNS (Domain Name
System) errors, in the phase of name lookup; TCP, if the
connection crashes or the server is unreachable; and other
errors.

• For HTTP errors related to resources, we looked to the
range 4xx and 5xx. In our experiments, we do not count
how many of these errors exist in a single page, but only
whether they exist.

• We count broken links, where the server responds with a
4xx or 5xx HTTP code. Again, we only count the number
of web sites that have errors in these ranges.

• We also care for other errors related to resources: fonts,
style sheets, images and JavaScript. These errors might
originate in the network layer, while processing the script
(if applied), or in the cancellation of a resource download,
e.g., because a change in the page made it unnecessary.

For the sake of doing an online analysis of the web sites,
we used Selenium [7], to emulate clients accessing web pages
through browsers. We used the Xvfb virtual display emulator
for the client machine. This display performs all graphical
functions, without actually needing a real screen, thus allowing
Selenium to run without a terminal. We wrote a program
in Java that ran in the background, attached to this display
emulator. This program used Selenium and Chrome, to access
a list of web sites. We used a Linux machine, running in the
facilities of our department in Portugal and another instance
in Hungary, at MTA SZTAKI’s laboratories [8]. Clients run-
ning from different locations experienced different network
connectivities, thus displaying distinct perspectives for the
same web page, like resources inaccessible from only one of
the locations. Additionally, since programs ran autonomously,
with a time lapse of several hours, they occasionally observed
different page errors. Table I lists the software we used and
the respective versions.

This program used as input a file that we retrieved from
Alexa [5], with the top one million ranking sites. We se-
quentially analyzed 3,000 sites from this file: from pages 1
to 1,000; then from rank 10,000 to 20,000 with steps of 10

(e.g. rank 10,000; 10,010; 10,020;...) and finally, from 100,000
to 200,000 with steps of 100.

Additionally, and one of the most relevant aspects of our
work is that we parse the main HTML page, to get all links
accessible to the users through web page interaction. We
follow and invoke these links, to check if any HTTP error
occurs, with error codes 4xx or 5xx, related to client or server
errors, respectively. This information is important, because the
availability of the links is tightly connected to the utility of
the web page. As we shall see the number of broken links is
surprisingly high, even in top web sites.

III. RESULTS

In this section, we present the results of our experiment.
The experiment took several days to finish, mostly due to the
invocation of links associated with each web page. Tables IIa
and IIb present the most significant results we got. To conserve
space, we only display the results of our client in Portugal, as
the client in Hungary got similar results.

In Table IIa, we analyze the number of web pages with
network or HTTP errors. This table displays problems with
page resources (HTTP 4xx and 5xx), e.g., some image; con-
nection errors (DNS, TCP and other) and broken links, i.e.,
links that point to resources outside the page and that exhibit
some problem. Connection errors are all related to the main
HTML page or one of its resources. As we mentioned before,
the numbers in the table refer to the total number of sites where
we could observe the problem. This means that, for example,
in the first line, first column of Table IIa, the number of HTTP
4xx errors in the top 1,000 sites is 161. I.e., 161 sites have
one or more resources that are not accessible and return a 4xx
error code.

The number of errors is quite high in general, especially in
lower raking sites. Differences between the first and the other
two rows of the table are blatant, for most metrics. This is true
for internal problems and for external links, including network
error conditions, which are also much less frequent in the top
ranking sites. Most problems come from the external links
that tend to break quite often, either with a 4xx or a 5xx error
code (right side of the table). However, internal problems (left-
side of the table) are arguably more important, as they might
result in visible problems in the page layout. Interestingly,
as much as 16% of the top-tier sites may suffer from some
form of internal problem. This number is even higher for
the lower rankings. The same is true for connectivity errors
(center of the table). DNS, TCP and other forms of errors
are less frequent in major sites. The HTTP 5xx error codes
are the only ones where the frequency of problems seems
stable across all rankings. This might be due to an inverse
relation between complexity and ranking positions (i.e., more
complex pages correspond to lower ranking numbers), but a
clear demonstration of such hypothesis requires further study.
Overall, these results suggest that top-tier sites either have
better network connections, or more server resources, or both.
We might say the same about the contents themselves, most

TABLE II. NUMBER OF SITES WITH ERRORS - PORTUGAL

(a) Network and HTTP errors

HTTP 4xx
errors

HTTP 5xx
errors

DNS
errors

TCP
errors

Other
Network errors

Broken
Links 4xx

Broken
Links 5xx

range1000 161 62 68 27 96 115 65
range10000 251 47 122 38 111 182 42
range100000 291 51 113 37 114 193 43

(b) Resource errors and Event averages

Resource
Font errors

Resource
style sheet error

Resource
image error

Resource
JS error

Resource
JS External

Resource
JS Internal

Resource
JS Both

DOM
Event

Load
Event

range1000 11 15 131 153 136 13 4 4517 33
range10000 16 16 134 189 136 39 14 6097 24
range100000 27 27 143 174 103 62 9 6963 19

likely due to significant advantages in the lifecycle of the
web pages (one or more among design, development, testing,
deployment, and maintenance).

In Table IIb, we show the number of sites that returned
at least one resource error, for different types of resources.
Resource problems include errors getting fonts, images or
processing JavaScript (left side). Regarding JavaScript errors,
we split data into external or internal to the web page domain,
or both, if errors exist in internal and external resources. We
can see that fonts and style sheet resources do not pose major
problems for sites. The main offenders to web page reliability
are images and JavaScript. Another interesting result is that
top-tier sites have more errors in external JavaScript resources.
This is an indication that top pages rely more on standard
libraries, normally hosted in another domain.

IV. CLIENT-SIDE MONITORING

In this section, we discuss some solutions that might serve
to improve web page reliability. We suggest three different
options involving different levels of transparency to the client:
a stand-alone approach, a browser extension and a JavaScript
snippet.

For a stand-alone application (similar to the one we used
in Section II), the possibilities are endless. By having total
control of the browser and resorting to a testing framework
such as Selenium, developers can test pretty much anything.
The major disadvantage of this approach is that a customized
stand-alone application is not practical or reasonable to install
on the clients. Monitoring a site in this way, would therefore
be limited to a handful probes controlled by the site owners.

A second approach would be to install a browser extension
to get the most important metrics from the web page interac-
tion and send them to a central monitoring site (we refer to
some work using browser plugins in Section V). Extensions
could bypass some of the security constraints associated with
JavaScript. For example, with extensions, it would be possible
to have access to the browser APIs and therefore to network
logs. This would enable network error collection (DNS, TCP

and others). Additionally, the extension could invoke links as-
sociated with a web page. Unfortunately, extensions have two
setbacks: firstly, it does not look feasible to convince hundreds
or thousands of users to install some browser extension that
could raise issues, concerning security and privacy; secondly,
different extensions should be developed for each different
browser, thus entailing a great effort and cost.

As a third approach, site owners might use JavaScript and
AJAX in the web pages they serve, to collect error information.
By precluding the need for special software, this would rule
out the shortcomings of the previous approaches. Furthermore,
this would allow for a very simple integration with analytic
tools, like Google Analytics [9]. Naturally, this can only work
for resources inside the main page, once the browser loads the
JavaScript. Collecting different kinds of errors with JavaScript
and AJAX raises a number of challenges, but it is still possible,
as we can see in the following list:

1) Networking Errors: with JavaScript, one can only infer
DNS or TCP errors, using the Resource Timing API [10], as
some browsers add entries in the PerformanceResourceTiming
array, for resources with network issues.

2) Internal 4xx Errors: it is possible to customize an HTTP
4xx page for this range of errors. As the user is redirected to
this page, administrators will receive an alert.

3) Internal 5xx Errors: the browser may analyze the con-
nection and the response times. If the former is different from
zero, while the latter is zero, the browser has an indication
that it could not retrieve the resource from the server.

4) External Broken Links: we might invoke links from a
proxy, using some AJAX solution [11]. This proxy will then
invoke the URL and return the request in JSON, thus not
breaking cross-domain security.

5) Resource Errors: regarding JavaScript exceptions
and console logs, it is possible to use the
window.addEventListener for error events
with the useCapture argument set to true or use
window.onerror event. This will retrieve the element
or script that originated the error, and not the specific error
message. We briefly compare the alternatives in Table III.

TABLE III. COMPARISON OF METHODOLOGIES

Stand-alone
Application

Browser
Extension

JavaScript
Code

Network
Problems Y Y Y

Indirectly for resources
Broken
Links Y Y Y

Proxy
JavaScript

Errors Y Y Y

Real-world
application

Hard to
deploy

Security
constraints

Easier to scale
and deploy

V. RELATED WORK

We divide previous work on web sites reliability into two
categories: (i) methods or platforms that collect client metrics;
(ii) studies regarding top sites reliability.

Regarding monitoring platforms, Dasu [12] is a client-based
software that gathers metrics from different locations. It is
limited by the number of hosts that are online, and discards
HTML objects from third-party resources or JavaScript errors.
In [13], Flach et al. use a browser plugin to analyze sites
based on rules. This work only focuses on connectivity issues.
In [14], authors propose a collaborative approach to detect
performance problems. They use a web browser extension on
each client and send all information to a central point, for
processing. In [15], authors aim to detect user-visible failures,
by analyzing Web logs and users’ browsing patterns. However,
the client may not react to the visible failure (e.g., by leaving
the page, or not refreshing it) making this a major concern.

Regarding the reliability of top web sites, in [16] the goal is
to collect web page evolution over time. [17] uses a different
approach, implementing a web crawler that gathers HTTP,
DNS and TCP connection data, to understand in which layer
do most of the user-visible page failures occur. This, however,
uses a customized crawler, instead of a common browser.
In [18], authors gather network information from 80 sites,
and analyze the source of the problems. However, recent
studies suggest that this pattern of concurrent accesses can
significantly change the results observed [19].

Unlike previous work, we consider a very wide range of
sites, using a real web browser.

VI. CONCLUSION

The evidences we collected in this paper support the point of
view that monitoring remains as a largely unsolved challenge
to this day. Even large companies with vast resources fail to
provide impeccable, failure-free, web sites. To mitigate this
problem, we argue that web site providers must include client-
side observations into their monitoring tools. Despite the trade-
offs involved, the least intrusive mechanisms can still detect a
large number of errors.

ACKNOWLEDGMENT

This work was partially carried out under the project
PTDC/EEI-ESS/1189/2014 — Data Science for Non-
Programmers, supported by COMPETE 2020, Portugal 2020-
POCI, UE-FEDER and FCT.

REFERENCES

[1] “A study about online transactions, prepared for tealeaf technology
inc, oct 2005,” http://www-01.ibm.com/software/info/tealeaf/, retrieved:
April, 2016.

[2] “Causes of failure in web applications (cmupdl-05-109), dec 2005,” http:
//repository.cmu.edu/cgi/viewcontent.cgi?article=1047&context=pdl, re-
trieved: April, 2016.

[3] No time for downtime: It managers feel the heat to prevent outages that
can cost millions of dollars, Internet Week, N.807, 3, Internet Week
Std., Apr 2000.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do
internet services fail, and what can be done about it?” in
Proceedings of the 4th Conference on USENIX Symposium on Internet
Technologies and Systems - Volume 4, ser. USITS’03. Berkeley,
CA, USA: USENIX Association, 2003, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251460.1251461

[5] “Alexa — top-ranked websites,” https://support.alexa.com/hc/en-
us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-
websites-, retrieved: April, 2016.

[6] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122,
3168. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[7] “Selenium browser automation,” http://www.seleniumhq.org/, retrieved:
April, 2016.

[8] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda, From Cluster
Monitoring to Grid Monitoring Based on GRM. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 874–881. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44681-8 121

[9] “Google analytics solutions,” https://analytics.google.com/, retrieved:
April, 2016.

[10] “Papers — Resource Timing,” https://www.w3.org/TR/2016/WD-
resource-timing-20160225/, retrieved: March, 2016.

[11] “Webpage — Yahoo Query Language (YQL),” https://developer.yahoo.
com/yql/, retrieved: April, 2016.

[12] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Busta-
mante, B. Krishnamurthy, and W. Willinger, “Dasu: Pushing experiments
to the internet’s edge,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). Lombard, IL: USENIX, 2013, pp. 487–499.

[13] T. Flach, E. Katz-Bassett, and R. Govindan, “Diagnosing slow
web page access at the client side,” in Proceedings of the 2013
Workshop on Student Workhop, ser. CoNEXT Student Workhop ’13.
New York, NY, USA: ACM, 2013, pp. 59–62. [Online]. Available:
http://doi.acm.org/10.1145/2537148.2537160

[14] S. Agarwal, N. Liogkas, P. Mohan, and V. Padmanabhan, “Webprofiler:
Cooperative diagnosis of web failures,” in Communication Systems and
Networks (COMSNETS), 2010 Second International Conference on, Jan
2010, pp. 1–11.

[15] W. Li and I. Gorton, “Analyzing web logs to detect user-visible
failures,” in Proceedings of the 2010 Workshop on Managing Systems
via Log Analysis and Machine Learning Techniques, ser. SLAML’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 6–6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1928991.1929000

[16] “Http archive,” http://httparchive.org/, retrieved: April, 2016.
[17] C. Vaz, L. Silva, and A. Dourado, “Detecting user-visible failures in

web-sites by using end-to-end fine-grained monitoring: An experimental
study,” in Network Computing and Applications (NCA), 2011 10th IEEE
International Symposium on, Aug 2011, pp. 338–341.

[18] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye, “A
study of end-to-end web access failures,” in Proceedings of CoNEXT,
Lisboa, Portugal, December 2006.

[19] J. Sommers and P. Barford, “An active measurement system for
shared environments,” in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’07. New York,
NY, USA: ACM, 2007, pp. 303–314. [Online]. Available: http:
//doi.acm.org/10.1145/1298306.1298348

