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Abstract

This thesis leverages the general framework of probabilistic graphical models to de-

velop probabilistic approaches for learning from crowdsourced data. This type of data

is rapidly changing the way we approach many machine learning problems in different

areas such as natural language processing, computer vision and music. By exploit-

ing the wisdom of crowds, machine learning researchers and practitioners are able to

develop approaches to perform complex tasks in a much more scalable manner. For

instance, crowdsourcing platforms like Amazon mechanical turk provide users with an

inexpensive and accessible resource for labeling large datasets efficiently. However,

the different biases and levels of expertise that are commonly found among different

annotators in these platforms deem the development of targeted approaches necessary.

With the issue of annotator heterogeneity in mind, we start by introducing a class of

latent expertise models which are able to discern reliable annotators from random ones

without access to the ground truth, while jointly learning a logistic regression classifier

or a conditional random field. Then, a generalization of Gaussian process classifiers to

multiple-annotator settings is developed, which makes it possible to learn non-linear

decision boundaries between classes and to develop an active learning methodology

that is able to increase the efficiency of crowdsourcing while reducing its cost. Lastly,

since the majority of the tasks for which crowdsourced data is commonly used involves

complex high-dimensional data such as images or text, two supervised topic models are

also proposed, one for classification and another for regression problems. Using real

crowdsourced data from Mechanical Turk, we empirically demonstrate the superiority of

the aforementioned models over state-of-the-art approaches in many different tasks such

as classifying posts, news stories, images and music, or even predicting the sentiment

of a text, the number of stars of a review or the rating of movie.
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But the concept of crowdsourcing is not limited to dedicated platforms such as

Mechanical Turk. For example, if we consider the social aspects of the modern Web,

we begin to perceive the true ubiquitous nature of crowdsourcing. This opened up an

exciting new world of possibilities in artificial intelligence. For instance, from the per-

spective of intelligent transportation systems, the information shared online by crowds

provides the context that allows us to better understand how people move in urban

environments. In the second part of this thesis, we explore the use of data generated by

crowds as additional inputs in order to improve machine learning models. Namely, the

problem of understanding public transport demand in the presence of special events

such as concerts, sports games or festivals, is considered. First, a probabilistic model is

developed for explaining non-habitual overcrowding using crowd-generated information

mined from the Web. Then, a Bayesian additive model with Gaussian process com-

ponents is proposed. Using real data from Singapore’s transport system and crowd-

generated data regarding special events, this model is empirically shown to be able to

outperform state-of-the-art approaches for predicting public transport demand. Fur-

thermore, due to its additive formulation, the proposed model is able to breakdown an

observed time-series of transport demand into a routine component corresponding to

commuting and the contributions of individual special events.

Overall, the models proposed in this thesis for learning from crowdsourced data are

of wide applicability and can be of great value to a broad range of research communities.

Keywords: probabilistic models, crowdsourcing, multiple annotators, transport de-

mand, urban mobility, topic modeling, additive models, Bayesian inference
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Resumo

A presente tese propõe um conjunto de modelos probabiĺısticos para aprendizagem a

partir de dados gerados pela multidão (crowd). Este tipo de dados tem vindo rap-

idamente a alterar a forma como muitos problemas de aprendizagem máquina são

abordados em diferentes áreas do domı́nio cient́ıfico, tais como o processamento de

linguagem natural, a visão computacional e a música. Através da sabedoria e conhec-

imento da crowd, foi posśıvel na área de aprendizagem máquina o desenvolvimento de

abordagens para realizar tarefas complexas de uma forma muito mais escalável. Por

exemplo, as plataformas de crowdsourcing como o Amazon mechanical turk (AMT)

colocam ao dispor dos seus utilizadores um recurso acesśıvel e económico para etique-

tar largos conjuntos de dados de forma eficiente. Contudo, os diferentes vieses e ńıveis

de peŕıcia individidual dos diversos anotadores que contribuem nestas plataformas tor-

nam necessário o desenvolvimento de abordagens espećıficas e direcionadas para este

tipo de dados multi-anotador.

Tendo em mente o problema da heterogeneidade dos anotadores, começamos por

introduzir uma classe de modelos de conhecimento latente. Estes modelos são ca-

pazes de diferenciar anotadores confiáveis de anotadores cujas respostas são dadas de

forma aleatória ou pouco premeditada, sem que para isso seja necessário ter acesso às

respostas verdadeiras, ao mesmo tempo que é treinado um classificador de regressão

loǵıstica ou um conditional random field. De seguida, são considerados modelos de cres-

cente complexidade, desenvolvendo-se uma generalização dos classificadores baseados

em processos Gaussianos para configurações multi-anotador. Estes modelos permitem

aprender fronteiras de decisão não lineares entre classes, bem como o desenvolvimento

de metodologias de aprendizagem activa, que são capazes de aumentar a eficiência do

crowdsourcing e reduzir os custos associados. Por último, tendo em conta que a grande

maioria das tarefas para as quais o crowdsourcing é usado envolvem dados complexos e
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de elevada dimensionalidade tais como texto ou imagens, são propostos dois modelos de

tópicos supervisionados: um, para problemas de classificação e, outro, para regressão.

A superioridade das modelos acima mencionados sobre as abordagens do estado da arte

é empiricamente demonstrada usando dados reais recolhidos do AMT para diferentes

tarefas como a classificação de posts, not́ıcias, imagens e música, ou até mesmo na

previsão do sentimento latente num texto e da atribuição do número de estrelas a um

restaurante ou a um filme.

Contudo, o conceito de crowdsourcing não se limita a plataformas dedicadas como

o AMT. Basta considerarmos os aspectos sociais da Web moderna, que rapidamente

começamos a compreender a verdadeira natureza ub́ıqua do crowdsourcing. Essa com-

ponente social da Web deu origem a um mundo de possibilidades estimulantes na área

de inteligência artificial em geral. Por exemplo, da perspectiva dos sistemas inteligentes

de transportes, a informação partilhada online por multidões fornece o contexto que nos

dá a possibilidade de perceber melhor como as pessoas se movem em espaços urbanos.

Na segunda parte desta tese, são usados dados gerados pela crowd como entradas adi-

cionais de forma a melhorar modelos de aprendizagem máquina. Nomeadamente, é

considerado o problema de compreender a procura em sistemas de transportes na pre-

sença de eventos, tais como concertos, eventos desportivos ou festivais. Inicialmente,

é desenvolvido um modelo probabiĺıstico para explicar sobrelotações anormais usando

informação recolhida da Web. De seguida, é proposto um modelo Bayesiano aditivo

cujas componentes são processos Gaussianos. Utilizando dados reais do sistema de

transportes públicos de Singapura e dados gerados na Web sobre eventos, verificamos

empiricamente a qualidade superior das previsões do modelo proposto em relação a

abordagens do estado da arte. Além disso, devido à formulação aditiva do modelo

proposto, verificamos que este é capaz de desagregar uma série temporal de procura

de transportes numa componente de rotina (e.g. devido à mobilidade pendular) e nas

componentes que correspondem às contribuições dos vários eventos individuais identi-

ficados.

No geral, os modelos propostos nesta tese para aprender com base em dados gerados

pela crowd são de vasta aplicabilidade e de grande valor para um amplo espectro de
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comunidades cient́ıficas.

Palavras-chave: modelos probabiĺısticos, crowdsourcing, múltiplos anotadores, mo-

bilidade urbana, modelos de tópicos, modelos aditivos, inferência Bayesiana
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Notation

The notation used in this thesis is intended to be consistent and intuitive, while being

as coherent as possible with the state of the art. In order to achieve that, symbols can

sometimes change meaning during one or more chapters. However, such changes will

be explicitly mentioned in the text, so that the meaning of a given symbol is always

clear from the context.

Lowercase letters, such as x, represent variables. Vectors are denoted by bold

letters such as x, where the nth element is referred as xn. All vectors are assumed

to be column vectors. Uppercase Roman letters, such as N , denote constants, and

matrices are represented by bold uppercase letters such as X. A superscript T denotes

the transpose of a matrix or vector, so that xT will be a row vector.

Consider a discrete variable z that can take K possible values. It will be often

convenient to represent z using a 1-of-K (or one-hot) coding scheme, in which z is a

vector of length K such that if the value of the variable is j, then all elements zk of z

are zero except element zj , which takes the value 1. Regardless of its coding scheme, a

variable will always be denoted by a lowercase non-bold letter.

If there exist N values x1, ...,xN of a D-dimensional vector x = (x1, ..., xD)T, the

observations can be combined into an N × D data matrix X in which the nth row of

X corresponds to the row vector xT
n . This is convenient for performing operations over

this matrix, thus allowing the representation of certain equations to be more compact.

However, in some situations it will be necessary to refer to groups of matrices and

vectors. A simple and intuitive way of doing so, is by using ranges in the subscript.

Hence, if βk is a vector, the collection of all {βk}Kk=1 can simply be referred as β1:K .

Similarly, the collection of matrices {Mn}Nn=1 can be denoted as M1:N . This notation

provides a non-ambiguous and intuitive way of denoting collections of vectors and

matrices without introducing new symbols and keeps the notation uncluttered.
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The following tables summarize the notation used in this thesis.

General mathematical notation

Symbol Meaning

, Defined as
∝ Proportional to, so y = ax can be written as y ∝ x
∇ Vector of first derivatives
exp(x) Exponential function, exp(x) = ex

I(x) Indicator function, I(x) = 1 if x is true, otherwise I(x) = 0
δx,x′ Kronecker delta function, δx,x′ = 1 if x = x′ and δx,x′ = 0 otherwise
Γ(x) Gamma function, Γ(x) =

∫∞
0 ux−1e−udu

Ψ(x) Digamma function, Ψ(x) = d
dx log Γ(x)

Linear algebra notation

Symbol Meaning
tr(X) Trace of matrix X
det(X) Determinant of matrix X
X−1 Inverse of matrix X

XT Transpose of matrix X
xT Transpose of vector x
ID Identity matrix of size D ×D
1D Vector of ones with length D
0D Vector of zeros with length D

Probability notation

Symbol Meaning
p(x) Probability density or mass function
p(x|y) Conditional probability density of x given y
x ∼ p x is distributed according to distribution p
Eq[x] Expected value of x (under the distribution q)
Vq[x] Variance of x (under the distribution q)
cov[x] Covariance of x

KL(p||q) Kullback-Leibler divergence, KL(p||q) =
∫
p(x) log p(x)

q(x)

Φ(x) cumulative unit Gaussian, Φ(x) = (2π)−1/2
∫ x
−∞ exp(−u2/2)du

Sigmoid(x) Sigmoid (logistic) function, Sigmoid(x) = 1/(1 + e−x)

Softmax(x,η) Softmax function, Softmax(x,η)c = exp(ηT
c x)∑

l exp(ηT
l x)

, for c ∈ {1, . . . , C}
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Machine learning notation

Symbol Meaning
xn nth instance
cn true class for the nth instance
yrn label of the rth annotator for the nth instance
αr sensitivity of the rth annotator (Chapters 3 and 4)
βr specificity of the rth annotator (Chapters 3 and 4)
η regression coefficients or weights
N number of instances
R number of annotators
C number of classes
D dataset
Πr reliability parameters of the rth annotator
πrc,l probability that the rth annotator provides the label l given that the true

class is c
zrn latent reliability indicator variable (Chapter 3)
φr reliability parameter for the rth annotator (Chapter 3)
Z or Z(·) normalization constant
K number of feature functions (Chapter 3);

number of topics (Chapter 5)
T length of the sequence (Chapter 3)
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Symbol Meaning
fn function value for the nth instance, f(xn)
ε observation noise
m(x) mean function
k(x,x′) covariance function
KN N ×N covariance matrix
x∗ test point
f∗ function value for the test instance, f(x∗)
k∗ vector with the covariance function evaluated between the test point x∗

and all the points x in the dataset
k∗∗ covariance function evaluated between the test point x∗ and itself
VN N ×N covariance matrix with observation noise included
D dimensionality of the input space (Chapter 4);

number of documents in the dataset (Chapter 5)
βk distribution over words of the kth topic
θd topic proportions of the dth document
zdn topic assignment for the nth word in the dth document
wdn nth word in the dth document
Nd number of words in the dth document (Chapter 5)
Dr number of documents labeled by the rth annotator (Chapter 5)
V size of the word vocabulary (Chapter 5)
α parameter of the Dirichlet prior over topic proportions (Chapters 5)
τ parameter of the Dirichlet prior over the topics’ distribution over words
ω parameter of the Dirichlet prior over the reliabilities of the annotators
z̄d mean topic-assignment for the dth document
cd true class for the dth document
yd,r label of the rth annotator for the dth document
xd true target value for the dth document
br bias of the rth annotator (Chapter 5)
pr precision of the rth annotator (Chapter 5)
L evidence lower bound
hn nth hotspot impact (Chapter 6)
an nth non-explainable component (Chapter 6)
bn nth explainable component (Chapter 6)
ein contribution of the ith event on the nth observation (Chapter 6);

ith event associated on the nth observation (Chapter 7)
βa variance associated with the non-explainable component an (Ch. 6)
βe variance associated with the event component ein (Chapter 6)
xrn routine features associated with the nth observation
xein features of the ith event associated with the nth observation
En number of events associated with the nth observation
yrn contribution of the routine components to the the nth observation
yein contribution of the ith event to the the nth observation
βr variance associated with the routine component yrn (Chapter 7)
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Chapter 1

Introduction

1.1 Motivation

The origins of the field of machine learning can be traced back to the middle of the 20th

century. However, it was not until the early 1990s that it started to have a significant

and widespread practical impact, with the development of many successful applications

in various research domains ranging from autonomous vehicles to speech recognition.

This success can be justified by several factors such as the development of improved

algorithms or the growing availability of inexpensive computers with an ever-increasing

processing power. But perhaps the most important driving factor of this success was the

exponential increase of data being gathered and stored. However, while this provides

researchers with an unprecedented potential for solving complex problems, the growing

sizes of modern datasets also pose many interesting challenges to the machine learning

community. It is in this data-driven world that crowdsourcing plays a vital role.

Crowdsourcing (Howe, 2008) is the act of someone taking a task once performed by

a single individual and outsourcing it to an undefined and generally large network of

people. By relying on information produced by large crowds, crowdsourcing is rapidly

redefining the way we approach many machine learning problems and the way that

datasets are built. Through crowdsourcing, machine learning researchers and practi-

tioners are able to exploit the wisdom of crowds to teach machines how to perform

complex tasks in a much more scalable manner.

Let us consider the subclass of machine learning tasks corresponding to supervised

learning problems. In supervised learning, the goal is to learn a mapping from inputs
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x to outputs y, given a labeled set of input-output pairs. Given a supervised learning

problem, there are two ways in which crowdsourced data can be used to build predictive

models: by using the labels provided by multiple annotators as a replacement for the

true outputs y when these are hard or expensive to obtain, or by using information

provided by crowds as additional input features that can help the model to understand

the mapping from inputs x to outputs y. In this thesis, we develop probabilistic models

for learning from crowdsourced data in both of these settings. Each of them provides

its own set of challenges. However, as we shall see next, they are both of great practical

importance.

A very popular way of applying crowdsourcing to machine learning problems is

through the use of multiple annotators and crowds to label large datasets. With the

development and proliferation of crowdsourcing platforms such as Amazon mechanical

turk (AMT)1 and CrowdFlower2, it is becoming increasingly easier to obtain labeled

data for a wide range of tasks from different areas such as computer vision, natural lan-

guage processing, speech recognition, music, etc. The attractiveness of these platforms

comes not only from their low cost and accessibility, but also from the surprisingly

good quality of the labels obtained, which has been shown to compete with that of

labels provided by “experts” in various tasks (Snow et al., 2008). Furthermore, by

distributing the workload among multiple annotators, labeling tasks can be completed

in a significantly smaller amount of time and it becomes possible to label large datasets

efficiently.

From a more general viewpoint, the concept of crowdsourcing goes beyond dedicated

platforms such as AMT and often surfaces in more implicit ways. For example, the

Web, through its social nature, also exploits the wisdom of crowds to annotate large

collections of data. By categorizing texts, tagging images, rating products or clicking

links, Web users are generating large volumes of labeled content.

From another perspective, there are tasks for which ground truth labels simply can-

not be obtained due to their highly subjective nature. Consider for instance the tasks

of sentiment analysis, movie rating or keyphrase extraction. These tasks are subjective

in nature and hence no absolute gold standard can be defined. In such cases the only

attainable goal is to build a model that captures the wisdom of the crowds (Surowiecki,

1http://www.mturk.com
2http://www.crowdflower.com
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2004) as well as possible. For such tasks, crowdsourcing platforms like AMT become

a natural solution. However, the large amount of labeled data needed to compensate

for the heterogeneity of annotators’ expertise can rapidly raise its actual cost beyond

acceptable values. Since different annotators have different levels of expertise and per-

sonal biases, it is essential to account for the uncertainty associated with their labels,

and parsimonious solutions need to be designed that are able to deal with such real

world constraints (e.g. annotation cost) and heterogeneity.

Even in situations where ground truth can be obtained, it may be too costly. For

example, in medical diagnosis, determining whether a patient has cancer may require a

biopsy, which is an invasive procedure and thus should only be used as a last resource.

On the other hand, it is rather easy for a diagnostician to consult her colleagues for

their opinions before making a decision. Therefore, although there is no crowdsourcing

involved in this scenario, there are still multiple experts, with different levels of exper-

tise, providing their own (possibly incorrect) opinions, from which machine learning

algorithms have to be able to learn from.

For this kind of problems, an obvious solution is to use majority voting. How-

ever, majority voting relies on the frequently wrong assumption that all annotators are

equally reliable. Such an assumption is particularly threatening in more heterogeneous

environments like AMT, where the reliability of the annotators can vary dramatically

(Sheng et al., 2008; Callison-Burch & Dredze, 2010). It is therefore clear that targeted

approaches for multiple-annotator settings are required.

So far we have been discussing the use of labels provided by multiple annotators

and crowds as a noisy proxy for true outputs y in supervised learning settings. As we

discussed, there are numerous factors that make the use this alternative very appealing

to machine learning researchers and practitioners, such as cost, efficiency, accessibility,

dataset sizes or task subjectiveness. However, there are other ways of exploiting data

generated by crowds in machine learning tasks. Namely, we will now consider the

use of crowdsourced data as additional input features to supervised machine learning

algorithms. In order to do so, we shall focus on the particular problem of understanding

urban mobility.

During the last decade, the amount of sensory data available for many cities in

the world has reached a level which allows for the “pulse” of the city to be accurately

captured in real-time. In this data-driven world, technologies that enable high quality
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and high resolution spatial and temporal data, such as GPS, WiFi, Bluetooth, RFID

and NFC, play a vital role. These technologies have become ubiquitous - we can

find their use in transit smartcards, toll collection systems, floating car data, fleet

management systems, car counters, mobile phones, wearable devices, etc. All this data

therefore allows for an unprecedented understanding of how cities behave and how

people move within them. However, while this data has the potential of monitoring

urban mobility in real-time, it has limited capability on explaining why certain patterns

occur. Unfortunately, without a proper understanding of what causes people to move

within the city, it also becomes very difficult to make predictions about their mobility,

even for a very near future.

Let us consider the case of public transportation. For environmental and societal

reasons, public transport has a key role in the future of our cities. However, the

challenge of tuning public transport supply adequately to the demand is known to

be complicated. While typical planning approaches rely on understanding habitual

behavior (Krygsman et al., 2004), it is often found that our cities are too dynamic and

difficult to predict. A particularly disruptive case is with special events, like concerts,

sports games, sales, festivals or exhibitions (Kwon et al., 2006). Although these are

usually planned well in advance, their impact is difficult to predict, even when organizers

and transportation operators coordinate. The problem highly increases when several

events happen concurrently. To solve these problems, costly processes, heavily reliant on

manual search and personal experience, are usual practice in large cities like Singapore,

London or Tokyo.

Fortunately, another pervasive technology exists: the internet, which is rich in

crowd-generated contextual information. In the internet, users share information about

upcoming public special events, comment about their favorite sports teams and artists,

announce their likes and dislikes, post what they are doing and much more. Therefore,

within this crowdsourced data lay explanations for many of the mobility patterns that

we observe. However, even with access to this data, understanding and predicting

impacts of future events is not a humanly simple task, as there are many dimensions

involved. One needs to consider details such as the type of a public event, popularity

of the event protagonists, size of the venue, price, time of day and still account for

routine demand behavior, as well as the effect of other co-occurring events. In other
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words, besides data, sound computational methodologies are also necessary to solve

this multidimensional problem.

The combination of the generalized use of smartcard technologies in public trans-

portation systems with the ubiquitous reference to public special events on the internet

effectively proposes a potential solution to these limitations. However, the question

of developing an efficient and accurate transportation demand model for special event

scenarios, in order to predict future demands and to understand the impact of indi-

vidual events, has remained an unmet challenge. Meeting that challenge would be of

great value for public transport operators, regulators and users. For example, operators

can use such information to increase/decrease supply based on the predicted demand

and regulators can raise awareness to operators and users on potential non-habitual

overcrowding. Furthermore, regulators can also use this information to understand

past overcrowding situations, like distinguishing circumstantial from recurrent over-

crowding. Lastly, public transport users can enjoy a better service, where there are no

disruptions and the supply is adequately adjusted to the demand.

1.2 Contributions

This thesis aims at solving some of the research challenges described in the previous

section by proposing novel probabilistic models that make effective use of crowdsourced

data for solving machine learning problems. In summary, the main contributions of this

thesis are:

• a probabilistic model for supervised learning with multiple annotators where the

reliability of the different annotators is treated as a latent variable. The proposed

model is capable of distinguishing the good annotators from the less good or even

random ones in the absence of ground truth labels, while jointly learning a lo-

gistic regression classification model. The particular modeling choice of treating

the reliability of the annotators as a latent variable results in various attractive

properties, such as the ease of implementation and generalization to other clas-

sifiers, the natural extension to structured prediction problems, and the ability

to overcome overfitting issues to which more complex models of the annotators

expertise can be susceptible as the number of instances labeled per annotator

decreases (Rodrigues et al., 2013a).
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• a probabilistic approach for sequence labeling using conditional random fields

(CRFs) for scenarios where label sequences from multiple annotators are available

but there is no actual ground truth. The proposed approach uses an expectation-

maximization (EM) algorithm to jointly learn the CRF model parameters, the

reliability of the annotators and the estimated ground truth labels sequences

(Rodrigues et al., 2013b).

• a generalization of Gaussian process classifiers to explicitly handle multiple an-

notators with different levels of expertise. In this way, we are bringing a powerful

non-linear Bayesian classifier to multiple-annotator settings. This contrasts with

previous works, which usually rely on linear classifiers such as logistic regression

models. An approximate inference algorithm using expectation propagation (EP)

is developed, which is able to compensate for the different biases and reliabili-

ties among the various annotators, thus obtaining more accurate estimates of

the ground truth labels. Furthermore, by exploiting the capability of the pro-

posed model to explicitly handle uncertainty, an active learning methodology is

proposed, which allows to further reduce annotation costs by actively choosing

which instance should be labeled next and which annotator should label it (Ro-

drigues et al., 2014).

• two fully generative supervised topic models, one for classification and another

for regression problems, that account for the different reliabilities of multiple

annotators and corrects their biases. The proposed models are then capable of

jointly modeling the words in documents as arising from a mixture of topics,

the latent true labels as a result of the empirical distribution over topics of the

documents, and the labels of the multiple annotators as noisy versions of the

latent ground truth. By also developing a regression model, we are broadening

the spectrum of practical applications of the proposed approach and targeting

several important machine learning problems. While most of the previous works

in the literature focus on classification problems, the equally important topic of

learning regression models from crowds has been studied to a much smaller extent.

The proposed model is therefore able to learn, for example, how to predict the

rating of movies or the number of stars of a restaurant from the noisy or biased

opinions of different people. Furthermore, efficient stochastic variational inference
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algorithms are developed, which allow both models to scale to very large datasets

(Rodrigues et al., 2015, 2017).

• a probabilistic model that given a non-habitual overcrowding hotspot, which oc-

curs when the public transport demand is above a predefined threshold, it is

able to break down the excess of demand into a set of explanatory components.

The proposed model uses information regarding special events (e.g. concerts,

sports games, festivals, etc.) mined from the Web and preprocessed through

text-analysis techniques in order to construct a list of candidate explanations,

and assigns to each individual event a share of the overall observed hotspot size.

This model is tested using real data from the public transport system of Singa-

pore, which was kindly provided for the purpose of this study by the Land and

Transport Authority (LTA) (Pereira et al., 2014a).

• a Bayesian additive model with Gaussian process components that combines

smartcard data from public transport with crowd-generated information about

events that is continuously mined from the Web. In order to perform inference in

the proposed model, an expectation propagation algorithm is developed, which

allows us to predict the total number of public transportation trips under special

event scenarios, thereby contributing to a more adaptive transportation system.

Furthermore, for multiple concurrent events, the proposed algorithm is able to

disaggregate gross trip counts into their most likely components related to spe-

cific events and routine behavior (e.g. commuting). All this information can be

of great value not only for public transport operators and planners, but also for

event organizers and public transport users in general. Moreover, it is important

to point out the wide applicability of the proposed Bayesian additive framework,

which can be adapted to different application domains such as electrical signal

disaggregation or source separation (Rodrigues et al., 2016; Pereira et al., 2014b,

2012).

Finally, it is worth noting that the source code of the models developed in the context

of this thesis and all the datasets used for evaluating them (with the exception of

the public transport dataset from LTA, which is proprietary) have been made publicly

available for other researchers and practitioners to use in their own applications and for

purposes of comparing different approaches. This includes various datasets collected
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from Amazon mechanical turk for many different tasks, such as classifying posts, news

stories, images and music, or even predicting the sentiment of a text, the number of

stars of a review or the rating of movie. As for the source code, it has been properly

documented and made available together with brief user manuals. All this information

can be found in: http://www.fprodrigues.com/

1.3 Thesis structure

As previously mentioned, there are two ways in which crowdsourced data can be used

to build predictive models: by using the labels provided by multiple annotators as

noisy replacements for the true outputs y when these are hard or expensive to obtain,

or by using information provided by crowds as additional input features to the model

in order to better understand the mapping from inputs x to outputs y. As such, this

thesis is naturally divided in two parts, each corresponding to one of these two settings.

Common to both parts is a background chapter — Chapter 2. This chapter provides

the necessary background knowledge in probabilistic graphical models, Bayesian infer-

ence and parameter estimation, which are at the heart of all the approaches developed

throughout the thesis.

Part I of this thesis starts with the development of a new class of probabilistic

models for learning from multiple annotators and crowds in Chapter 3, which we

refer to as latent expertise models. A model based on a logistic regression classifier is

first presented and then, taking advantage of the extensibility of the proposed class of

latent expertise models, a natural extension is developed to sequence labeling problems

with conditional random fields.

Logistic regression models and conditional random fields are both linear models of

their inputs. Hence, without resorting to techniques such as the use of basis functions,

the applicability of those models can be limited, since they cannot define non-linear

decision boundaries in order to distinguish between classes. With that in mind, Chap-

ter 4 presents an extension of Gaussian process classifiers, which are non-linear and

non-parametric classifiers, to multiple annotator settings. Furthermore, by taking ad-

vantage of some of the properties of the proposed model, an active learning algorithm

is also developed.
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In Chapter 5, the idea of developing non-linear models for learning from multiple

annotators and crowds is taken one step further. Since many tasks for which crowd-

sourcing is typically used deal with complex high-dimensional data such as images or

text, in Chapter 5 two supervised topic models for learning from multiple annotators

are proposed: one for classification and another for regression problems.

In Part II of this thesis, we turn our attention to the use of crowdsourced data

as inputs, and in Chapter 6 an additive model for explaining non-habitual transport

overcrowding is proposed. By making use of crowd-generated data about special events,

the proposed model is able to break overcrowding hotspots into the contributions of

each individual event.

Although presenting satisfactory results in its particular problem, the model pre-

sented in Chapter 6 is a simple linear model of its inputs. Chapter 7 takes the idea of

additive formulations beyond linear models, by presenting a Bayesian additive model

with Gaussian process components for improving public transport demand predictions

through the inclusion of crowdsourced information regarding special events.

In Chapter 8, final conclusions regarding the developed models and the obtained

results are drawn, and directions for future work are discussed.
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Chapter 2

Graphical models, inference and

learning

2.1 Probabilistic graphical models

“As far as the laws of mathematics refer to reality, they are not certain,

as far as they are certain, they do not refer to reality.”

– Albert Einstein, 1956

Probabilities are at the heart of modern machine learning. Probability theory pro-

vides us with a consistent framework for quantifying and manipulating uncertainty,

which is caused by limitations in our ability to observe the world, our ability to model

it, and possibly even because of its innate nondeterminism (Koller & Friedman, 2009).

It is, therefore, essential to account for uncertainty when building models of reality.

However, probabilistic models can sometimes be quite complex. Hence, it is important

to have a simple and compact manner of expressing them.

Probabilistic graphical models provide an intuitive way of representing the struc-

ture of a probabilistic model, which not only gives us insights about the properties of

the model, such as conditional independencies, but also helps us design new models. A

probabilistic graphical model consists of nodes, which represent random variables, and

edges that express probabilistic relationships between the variables. Graphical mod-

els can be either undirected or directed. In the latter, commonly known as Bayesian

networks (Jensen, 1996), the directionality of the edges is used to convey causal rela-
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a bn cn βπ

N

Figure 2.1: Example of a (directed) graphical model.

tionships (Pearl, 2014). This thesis will make extensive use of directed graphs and a

special type of graphs called factor graphs, which generalize both directed and undi-

rected graphs. Factor graphs are useful for solving inference problems and enabling

efficient computations.

2.1.1 Bayesian networks

Consider an arbitrary joint distribution p(a,b, c) over the random variables a, b =

{bn}Nn=1 and c = {cn}Nn=1 that we want to model. This joint distribution can be

factorized in various ways. For instance, making use of the chain rule (or prod-

uct rule) of probability, it can be verified that p(a,b, c) = p(a) p(b|a) p(c|b, a) and

p(a,b, c) = p(c) p(a,b|c) are both equivalently valid factorizations of p(a,b, c). By

linking variables, a probabilistic graphical model specifies how a joint distribution fac-

torizes. Furthermore, by omitting the links between certain variables, probabilistic

graphical models convey a set of conditional independencies, which simplifies the fac-

torization.

Figure 2.1 shows an example of a Bayesian network model representing a factoriza-

tion of the joint distribution p(a,b, c). Notice that, instead of writing out the multiple

nodes for {bn}Nn=1 and {cn}Nn=1 explicitly, a rectangle with the label N was used to

indicate that the structure within it repeats N times. This rectangle is called a plate.

Also, we adopted the convention of using large circles to represent random variables

(a, bn and cn) and small solid circles to denote deterministic parameters (π and β)

(Bishop, 2006). Observed variables are identified by shading their nodes. The unob-

served variables, also known as hidden or latent variables, are indicated using unshaded

nodes.

By reading off the dependencies expressed in the probabilistic graphical model of

Figure 2.1, the joint distribution of the model, given the parameters π and β, factorizes
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as

p(a,b, c|π,β) = p(a|π)

N∏
n=1

p(bn|a) p(cn|bn,β). (2.1)

Hence, rather than encoding the probability of every possible assignment to all the vari-

ables in the domain, the joint probability breaks down into a product of smaller factors,

corresponding to conditional probability distributions over a much smaller space of

possibilities, thus leading to a substantially more compact representation that requires

significantly less parameters.

So far we have not discussed the form of the individual factors. It turns out that,

for generative models such as the one in Figure 2.1, a great way to do so is through

what is called the generative process of the model. Generative models specify how to

randomly generate observable data, such as cn in our example, typically given some

latent variables, such as a and bn. They contrast with discriminative models by being

full probabilistic models of all the variables, whereas discriminative approaches model

only the target variables conditional on the observed ones. A generative process is then

a description of how to sample observations according to the model.

Returning to our previous example of Figure 2.1, a possible generative process is as

follows:1

1. Draw a|π ∼ Beta(a|π)

2. For each n

(a) Draw bn|a ∼ Bernoulli(bn|a)

(b) Draw cn|bn,β ∼ Bernoulli(cn|βbn)

Given this generative process, we know that, for example, the variable a follows a

beta distribution2 with parameter π. Similarly, the conditional probability of cn given

bn is a Bernoulli distribution with parameter βbn . Generative processes are then an

excellent way of presenting a generative model, and they complement the framework

of probabilistic graphical models by conveying additional details. Also, when designing

models of reality, it is often useful to think generatively and describe how the observed

data came to be. Hence, we shall make extensive use of generative processes throughout

this thesis for presenting models.

1A familiar reader might recognize this as an example of a mixture model.
2A brief overview of the probability distributions used in this thesis is provided in Appendix A.
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2.1.2 Factor graphs

Directed and undirected probabilistic graphical models allow a global function of sev-

eral variables to be expressed as a product of factors over subsets of those variables.

These factors can be, for example, probability distributions, as we saw with Bayesian

networks (see Eq. 2.1). Factor graphs (Kschischang et al., 2001) differ from directed

and undirected graphical models by introducing additional nodes for explicitly repre-

senting the factors, which allows them to represent a wider spectrum of distributions

(Koller & Friedman, 2009). Figure 2.2 shows an example of a factor graph over the

variables a, b, c and d, where the factors are represented using small solid squares.

b d

a cf1

f2

f3

f4

Figure 2.2: Example of a factor graph.

Like Bayesian networks, factor graphs encode a joint probability distribution over

a set of variables. However, in factor graphs, the factors do not need to be probabil-

ity distributions. For example, the factor graph in Figure 2.2 encodes the following

factorization of the joint probability distribution over the variables a, b, c and d

p(a, b, c, d) =
1

Z
f1(a) f2(a, b) f3(a, c) f4(c, d). (2.2)

Notice how the factors are now arbitrary functions of subsets of variables. Hence, a nor-

malization constant Z is required to guarantee that the joint distribution p(a, b, c, d) is

properly normalized. If the factors correspond to normalized probability distributions,

the normalization constant Z can be ignored.

As we shall see later, a great advantage of factor graphs is that they allow the

development of efficient inference algorithms by propagating messages in the graph

(Kschischang et al., 2001; Murphy, 2012) (see Section 2.2.3).
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2.2 Bayesian inference

Having specified the probabilistic model, the next step is to perform inference. Inference

is the procedure that allows us to answer various types of questions about the data

being modeled, by computing the posterior distribution of the latent variables given

the observed ones. For instance, in the example of Figure 2.1, we would like to compute

the posterior distribution of a and b, given the observations c. Bayesian inference is a

particular method for performing statistical inference, in which Bayes’ rule is used to

update the posterior distribution of a certain variable(s) as new evidence is acquired.

Bayesian inference can be exact or approximate. In this thesis we will make use

of both exact inference and approximate inference procedures, namely variational in-

ference (Jordan et al., 1999; Wainwright & Jordan, 2008) and expectation propagation

(EP) (Minka, 2001).

2.2.1 Exact inference

Without loss of generality, let z = {zm}Mm=1 denote the set of latent variables in a given

model, and let x = {xn}Nn=1 denote the observations. Using Bayes’ rule, the posterior

distribution of z can be computed as

posterior︷ ︸︸ ︷
p(z|x) =

p(x, z)

p(x)
=

likelihood︷ ︸︸ ︷
p(x|z)

prior︷︸︸︷
p(z)

p(x)︸︷︷︸
evidence

. (2.3)

The model evidence, or marginal likelihood, can be computed by making use of the sum

rule of probability to give

p(x) =
∑
z

p(x|z) p(z), (2.4)

where the summation is replaced by integration in the case that z is continuous instead

of discrete.

At this point, it is important to introduce a broad class of probability distributions

called the exponential family (Duda & Hart, 1973; Bernardo & Smith, 2009). A dis-

tribution over z with parameters η is a member of the exponential family if it can be

written in the form

p(z|η) =
1

Z(η)
h(z) exp(ηTu(z)), (2.5)
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where η are called the natural parameters, u(z) is a vector of sufficient statistics and

h(z) is a scaling constant, often equal to 1. The normalization constant Z(η), also

called the partition function, ensures that the distribution is normalized.

Many popular distributions belong to the exponential family, such as the Gaussian,

exponential, beta, Dirichlet, Bernoulli, multinomial and Poisson (Bernardo & Smith,

2009). Exponential family members have many interesting properties, which make them

so appealing for modelling random variables. For example, the exponential family has

finite-sized sufficient statistics, which means that the data can be compressed into a

fixed-sized summary without loss of information.

A particularly useful property of exponential family members is that they are closed

under multiplication. This means that if we multiply together two exponential family

distributions p(z) and p(z′), the product p(z, z′) = p(z) p(z′) will also be in the expo-

nential family. This property is closely related to the concept of conjugate priors. In

general, for a given posterior distribution p(z|x), we seek a prior distribution p(z) so

that when multiplied by the likelihood p(x|z), the posterior has the same functional

form as the prior. This is called a conjugate prior. For any member of the expo-

nential family there exists a conjugate prior (Bishop, 2006; Bernardo & Smith, 2009).

For example, the conjugate prior for the parameters of a multinomial distribution is

the Dirichlet distribution, while the conjugate prior for the mean of a Gaussian is an-

other Gaussian. As we shall see, the choice of conjugate priors greatly simplifies the

calculations involved in Bayesian inference. Furthermore, the fact that the posterior

keeps the same functional form as the prior, allows the development of online learn-

ing algorithms, where the posterior is used as the new prior, as new observations are

sequentially acquired.

2.2.2 Variational inference

Unfortunately, for various models of practical interest, it is infeasible to evaluate the

posterior distribution exactly or to compute expectations with respect to it. There are

several reasons for this. For example, it might be the case where the dimensionality of

the latent space is too high to work with directly, or because the form of the posterior

distribution is so complex that computing expectations is not analytically tractable, or

even because some of the required integrations might not have closed-form solutions.
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Consider, for example, the case of the model of Figure 2.1. The posterior distribution

over the latent variables a and b is given by

p(a,b|c) =
p(a,b, c)

p(c)
=

p(a|π)
∏N
n=1 p(bn|a) p(cn|bn,β)∫

a

∑
b p(a|π)

∏N
n=1 p(bn|a) p(cn|bn,β)

. (2.6)

The numerator can be easily evaluated for any combination of the latent variables, but

the denominator is intractable to compute. In such cases, where computing the exact

posterior distribution is infeasible, we need to resort to approximate inference algo-

rithms, which turn the computation of posterior distributions into a tractable problem,

by trading off computation time for accuracy.

We can differentiate between two major classes of approximate inference algorithms,

depending on whether they rely on stochastic or deterministic approximations. Stochas-

tic techniques for approximate inference, such as Markov chain Monte Carlo (MCMC)

(Gilks, 2005), rely on sampling and have the property that given infinite computational

resources they can generate exact results. For example, MCMC methods are based on

Monte Carlo approximations, whose main idea is to use repeated sampling to approx-

imate the desired distribution. MCMC methods iteratively construct a Markov chain

of samples, which, at the some point, converges. At this stage, the sample draws are

close to the true posterior distribution and they can be collected to approximate the

required expectations. However, in practice, it is hard to determine when a chain has

converged or “mixed”. Furthermore, the number of samples required for the chain to

mix can be very large. As a consequence, MCMC methods tend to be computationally

demanding, which generally restricts their application to small-scale problems (Bishop,

2006). On the other hand, deterministic methods, such as variational inference and

expectation propagation, are based on analytical approximations to the posterior dis-

tribution. Therefore, they tend to scale better to large-scale inference problems, making

them better suited for the models proposed in this thesis.

Variational inference, or variational Bayes (Jordan et al., 1999; Wainwright & Jor-

dan, 2008), constructs an approximation to the true posterior distribution p(z|x) by

considering a family of tractable distributions q(z). A tractable family can be obtained

by relaxing some constraints in the true distribution. Then, the inference problem is

to optimize the parameters of the new distribution so that the approximation becomes

as close as possible to the true posterior. This reduces inference to an optimization

problem.
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The closeness between the approximate posterior q(z), known as the variational

distribution, and the true posterior p(z|x) can be measured by the Kullback-Leibler

(KL) divergence (MacKay, 2003), which is given by

KL(q(z)||p(z|x)) =

∫
z
q(z) log

q(z)

p(z|x)
. (2.7)

Notice that the KL divergence is an asymmetric measure. Hence, we could have chosen

the reverse KL divergence, KL(p(z|x)||q(z)), but that would require us to be able to

take expectations with respect to p(z|x). In fact, that would lead to a different kind of

approximation algorithm, called expectation propagation, which shall be discussed in

Section 2.2.3.

Unfortunately, the KL divergence in (2.7) cannot be minimized directly. However,

we can find a function that we can minimize, which is equal to it up to an additive

constant, as follows

KL(q(z)||p(z|x)) = Eq
[

log
q(z)

p(z|x)

]
= Eq[log q(z)]− Eq[log p(z|x)]

= Eq[log q(z)]− Eq
[

log
p(z,x)

p(x)

]
= −(Eq[log p(z,x)]− Eq[log q(z)]︸ ︷︷ ︸

L(q)

) + log p(x)︸ ︷︷ ︸
const.

. (2.8)

The log p(x) term of (2.8) does not depend on q and thus it can be ignored. Minimizing

the KL divergence is then equivalent to maximizing L(q), which is called the evidence

lower bound. The fact that L(q) is a lower bound on the log model evidence, log p(x),

can be emphasized by recalling Jensen’s inequality to notice that, due to the concavity

of the logarithmic function, logE[p(x)] > E[log p(x)]. Thus, Jensen’s inequality can be

applied to the logarithm of the model evidence to give

log p(x) = log

∫
z
p(z,x)

= log

∫
z

q(z)

q(z)
p(z,x)

= logEq
[
p(z,x)

q(z)

]
> Eq[log p(z,x)]− Eq[log q(z)]︸ ︷︷ ︸

L(q)

. (2.9)
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The evidence lower bound L(q) is tight when q(z) ≈ p(z|x), in which case L(q) ≈

log p(x). The goal of variational inference is then to find the parameters of the varia-

tional distribution q(z), known as the variational parameters, that maximize the evi-

dence lower bound L(q).

The key to make variational inference work is to find a tractable family of ap-

proximate distributions q(z) for which the expectations in (2.9) can be easily com-

puted. The most common choice for q(z) is a fully factorized distribution, such that

q(z) =
∏M
m=1 q(zm). This is called a mean-field approximation. In fact, mean field

theory is by itself a very important topic in statistical physics (Parisi, 1988).

Using a mean-field approximation corresponds to assuming that the latent variables

{zi}Mi=1 are independent of each other. Hence, the expectations in (2.9) become sums

of simpler expectations. For example, the term Eq[log q(z)] becomes Eq[log q(z)] =∑M
m=1 Eq[log q(zm)]. The evidence lower bound, L(q), can then be optimized by using

a coordinate ascent algorithm that iteratively optimizes the variational parameters of

the approximate posterior distribution of each latent variable q(zm) in turn, holding

the others fixed, until a convergence criterium is met. This ensures convergence to

a local maximum of L(q). We shall see practical examples of variational inference in

Chapter 5.

2.2.3 Expectation propagation

Expectation propagation (EP) (Minka, 2001) is another deterministic method for ap-

proximate inference. It differs from variational inference by considering the reverse

KL divergence KL(p||q) instead of KL(q||p). This gives the approximation different

properties.

Consider an arbitrary probabilistic graphical model encoding a joint probability

distribution over observations x = {xn}Nn=1 and latent variables z = {zm}Mm=1, so that

it factorizes as a product of factors fi(z)

p(z,x) =
∏
i

fi(z), (2.10)

where we omitted the dependence of the factors on the observations for the ease of

exposition and to keep the presentation coherent with the literature (Minka, 2001;
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Bishop, 2006; Murphy, 2012). The posterior distribution of the latent variables is then

given by

p(z|x) =
p(z,x)

p(x)
=

1

p(x)

∏
i

fi(z). (2.11)

The model evidence p(x) is obtained by marginalizing over the latent variables, i.e.

p(x) =
∫
z

∏
i fi(z), where the integral is replaced by a summation in the case that z

is discrete. However, without loss of generality, we shall assume for the rest of this

section that z is continuous.

In expectation propagation, we consider an approximation to the posterior distri-

bution of the form

q(z) =
1

ZEP

∏
i

f̃i(z), (2.12)

where the normalization constant ZEP is required to ensure that the distribution inte-

grates to unity. Just as with variational inference, the approximate posterior q(z) needs

to be restricted in some way, in order for the required computations to be tractable. In

particular, we shall assume that the approximate factors f̃i(z) belong to the exponen-

tial family, so that the product of all the factors is also in the exponential family and

thus can be described by a finite set of sufficient statistics.

As previously mentioned, expectation propagation considers the reverse KL, KL(p||q).
However, minimizing the global KL divergence between the true posterior and the ap-

proximation, KL(p(z|x)||q(z)), is generally intractable. Alternatively, one could con-

sider minimizing the local KL divergences between the different individual factors,

KL(fi(z)||f̃i(z)), but that would give no guarantees that the product of all the factors∏
i f̃i(z) would be a good approximation to

∏
i fi(z), and actually, in practice, it leads

to poor approximations (Bishop, 2006). EP uses a tractable compromise between these

two alternatives, where the approximation is made by optimizing each factor in turn

in the context of all the remaining factors.

Let us now see in more detail how the posterior approximation of EP is done.

Suppose we want to refine the factor approximation f̃j(z), and let p\j(z) and q\j(z)

be the product of all the other factors (exact or approximate) that do not involve j,

i.e. p\j(z) ,
∏
i6=j fi(z) and q\j(z) ,

∏
i6=j f̃i(z). This defines the context of a factor.
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Ideally, in order to optimize a given factor f̃j(z), we would like to minimize the KL

divergence KL(p(z|x)||q(z)), which can be written as

KL
(

1

p(x)
fj(z) p\j(z)

∣∣∣∣∣∣∣∣ 1

ZEP

f̃j(z) q\j(z)

)
, (2.13)

but, as previously mentioned, this is intractable to compute. We can make this tractable

by assuming that the approximations we already made, q\j(z), are a good approxima-

tion for the rest of the distribution, i.e. q\j(z) ≈ p\j(z). This corresponds to making the

approximation of the factor f̃j(z) in the context of all the other factors, which ensures

that the approximation is most accurate in the regions of high posterior probability

as defined by the remaining factors (Minka, 2001). Of course the closer the context

approximation q\j(z) is to the true context p\j(z), the better the approximation for

the factor f̃j(z) will be. EP starts by initializing the factors f̃i(z) and then iteratively

refines each of these factors one at the time, much like the coordinate ascent algorithm

used in variational inference iteratively optimizes the evidence lower bound with respect

to one of the variational parameters.

Let q(z) be the current posterior approximation and let f̃j(z) be the factor we wish

to refine. The context q\j(z), also known as the cavity distribution, can be obtained

either by explicitly multiplying all the other factors except f̃j(z) or, more conveniently,

by dividing the current posterior approximation q(z) by f̃j(z)

q\j(z) =
q(z)

f̃j(z)
. (2.14)

Notice that q\j(z) corresponds to an unnormalized distribution, so that it requires its

own normalization constant Zj in order to be properly normalized. We then wish to

estimate the new approximate distribution qnew(z) that minimizes the KL divergence

KL
(

1

Zj
fj(z) q\j(z)

∣∣∣∣∣∣∣∣qnew(z)

)
. (2.15)

It turns out that, as long as qnew(z) is in the exponential family, this KL divergence can

be minimized by setting the expected sufficient statistics of qnew(z) to the correspond-

ing moments of Z−1
j fj(z) q\j(z) (Koller & Friedman, 2009; Murphy, 2012), where the

normalization constant is given by Zj =
∫
z fj(z) q\j(z). The revised factor can then be

computed as

f̃j(z) = Zj
qnew(z)

q\j(z)
. (2.16)
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In many situations, it is useful to interpret the expectation propagation algorithm

as message-passing in a factor graph. This perspective can be obtained by viewing the

approximation f̃j(z) as the message that factor j sends to the rest of the network, and

the context q\j(z) as the collection of messages that factor j receives. The algorithm

then alternates between computing expected sufficient statistics and propagating these

in the graph, hence the name “expectation propagation”.

By considering the reverse KL divergence, the approximations produced by EP have

rather different properties than those produced by variational inference. Namely, while

the former are “moment matching”, the latter are “mode seeking”. This is particularly

important when the posterior is highly multimodal. Multimodality can be caused by

non-identifiability in the latent space or by complex nonlinear dependencies (Bishop,

2006). When a multimodal distribution is approximated by a unimodal one using

the KL divergence KL(q||p), the resulting approximation will fit one of the modes.

Conversely, if we use the reverse KL divergence, KL(p||q), the approximation obtained

would average across all the modes. Hence, depending on the practical application at

hand, one approach is preferable over the other. We shall see practical applications of

EP in Chapters 4 and 7.

2.3 Parameter estimation

A probabilistic model usually consists of variables, relationships between variables, and

parameters. Parameters differ from latent variables by being single-valued instead of

having a probability distribution over a range of possible values associated. Section 2.2

described exact and approximate methods for inferring the posterior distribution of the

latent variables given the observed ones. In this section, we will give an overview of

common approaches to find point-estimates for the parameters of a model, that will be

useful for the models proposed in this thesis.

2.3.1 Maximum likelihood and MAP

Let x = {xn}Nn=1 be a set of observed variables and θ denote the set of model param-

eters. The most widely known method for determining the values of θ is maximum-

likelihood estimation (MLE). As the name suggests, it consists of setting the parameters
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θ to the values that maximize the likelihood of the observations. For both computa-

tional and numerical stability reasons, it is convenient to maximize the logarithm of

likelihood. The maximum-likelihood estimator is then given by

θMLE = arg max
θ

(
log p(x|θ)

)
. (2.17)

This maximization problem can be easily solved by taking derivatives of log p(x|θ)

w.r.t. θ and equating them to zero in order to obtain a solution.

In many situations, we want to incorporate prior knowledge regarding the param-

eters θ. This can be done by defining a prior distribution over θ, p(θ). This can be

useful, for instance, for regularization purposes. Suppose θ corresponds to a vector

of weights. We can prevent these to be arbitrarily large, by assigning θ a Gaussian

prior with a small variance. In fact, as it turns out, this corresponds to a popular type

of regularization called `2-regularization (see Ng (2004) for an insightful discussion on

different types of regularization).

Given a prior distribution over the parameters, p(θ), the posterior distribution can

be obtained by making use of Bayes’ theorem

p(θ|x) =
p(x|θ) p(θ)

p(x)
. (2.18)

Since p(x) is constant w.r.t. θ, we can find a point-estimate for the parameters by

maximizing the logarithm of numerator

θMAP = arg max
θ

(
log p(x|θ) + log p(θ)

)
. (2.19)

This is called a maximum-a-posteriori (MAP) estimate. Notice that, contrarily to

Bayesian inference, where the full posterior distribution is computed, MAP estimation

determines a single point-estimate for the parameters θ, which corresponds to the mode

of the posterior distribution.

2.3.2 Expectation maximization

Many models of practical interest often combine observed variables with latent ones.

Let z = {zm}Mm=1 denote the set of latent variables in the model. Without loss of

generality, we shall assume that z is discrete. However, the discussion would still apply

if z was continuous, simply by replacing the summations over z by integrals.
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Ideally, for models with unobserved variables, we would like to find the parameters

θ that maximize the (log) marginal likelihood of the data (or model evidence) given by

log p(x|θ) = log
∑
z

p(x, z|θ). (2.20)

Unfortunately, this is generally intractable to maximize directly because of the summa-

tion that appears inside the logarithm and prevents it from acting directly on the joint

distribution, which would allow us to exploit the factorization of the latter to re-write

log p(x|θ) as a sum of logarithms of simpler and more tractable terms. Furthermore,

this optimization problem is not convex, which makes it even harder to solve.

On the other hand, if the latent variables z were observed, then we could simply

find the parameters θ that maximize the complete-data log likelihood, log p(x, z|θ).

Since the latent variables are not observed, we cannot maximize log p(x, z|θ) directly.

However, we can instead maximize its expected value under a current estimate, q(z),

of the posterior distribution, p(z|x,θ), which is given by

Eq[log p(x, z|θ)] =
∑
z

q(z) log p(x, z|θ). (2.21)

Using the newly estimated parameters, we can then revise our estimate, q(z), of the

posterior distribution of the latent variables, p(z|x,θ). Iterating between these two

steps gives rise to the expectation-maximization (EM) algorithm (Dempster et al., 1977).

The EM algorithm is then a general method for estimating the parameters in a

probabilistic model in the presence of latent variables. It consists of two steps: the

E-step and the M-step. In the E-step, the posterior distribution of the latent variables

q(z) = p(z|x,θold) is estimated given some “old” estimate of the parameter values θold.

In the M-step, we find the “new” parameters θnew that maximize

θnew = arg max
θ

(∑
z

q(z) log p(x, z|θ)

)
. (2.22)

The EM algorithm iterates between these two steps until a convergence criterion is

satisfied. At each iteration, the algorithm guarantees that the log likelihood of the

observed data, log p(x|θ), increases. In order to verify that, let us recall Eq. 2.8 and

re-write it as

log p(x|θ) = Eq[log p(z,x|θ)] + H(q) + KL(q(z)||p(z|x,θ)), (2.23)
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where we made the model parameters θ explicit, and defined the entropy of q, H(q) ,

−Eq[log q(z)]. Since the KL divergence is always non-negative, we have that

log p(x|θ) > Eq[log p(z,x|θ)] + H(q). (2.24)

Hence, the right-hand side of (2.24) is a lower-bound on the log marginal likelihood

log p(x|θ). This bound is tight when the KL divergence term vanishes from (2.23). The

KL divergence KL(q(z)||p(z|x,θ)) is zero when q(z) = p(z|x,θ). Hence, the E-step of

the EM algorithm makes this bound tight. When this bound is tight, we have that

log p(x|θ) is equal to Eq[log p(z,x|θ)] up to an additive constant, H(q), which does

not depend on the model parameters θ (see Eq. 2.24). The expected complete-data

log likelihood, Eq[log p(z,x|θ)], can then be used as a proxy for optimizing θ, which

corresponds to the M-step of the EM algorithm.

This view of EM as optimizing a lower bound on the (log) marginal likelihood

of the data highlights its close relation with variational inference. In fact, when the

exact posterior over the latent variables, p(z|x,θ), is intractable to compute, variational

inference can be used in the E-step to approximate it. This procedure is commonly

known as variational Bayes EM (VBEM) (Bernardo et al., 2003; Murphy, 2012).
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Part I

Learning from crowds
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Chapter 3

Latent expertise models

3.1 Introduction

“I think it is much more interesting to live with uncertainty than to live with answers

that might be wrong.”

– Richard Feynman

As explained in Chapter 1, learning from multiple annotators is an increasingly

important research topic in modern machine learning. The main intuition is that

different annotators have different levels of expertise. As it turns out, these differences

in expertise can have significant impacts in practical applications, as various authors

have shown (e.g. Snow et al. (2008); Raykar et al. (2010)). It is therefore essential to

account for their effect when learning predictive models using data labeled by multiple

annotators and crowds.

Let D = {xn, cn}Nn=1 be a dataset of size N , where for each input vector xn ∈ RD

we are given the corresponding correct target cn. In a typical supervised learning

setting, our goal is to find a function that maps inputs xn to targets cn, such that

the prediction error on unseen inputs x∗ is minimized. When learning from multiple

annotators, instead of a single ground truth label cn, for each instance xn we are given

a set of labels yn = {y1
n, . . . , y

R
n }, which correspond to the noisy answers of multiple

annotators. In such cases, the simplest solution would be to use majority voting to

estimate cn from yn, or to use the average of yn if the answers yrn are continuous

variables. This corresponds to assuming that all the R annotators are equally reliable,
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since their votes are weighted equally. Unfortunately, this assumption generally does

not hold in practice (Snow et al., 2008; Sheng et al., 2008; Callison-Burch, 2009).

Instead of relying on majority voting, Dawid & Skene (1979) proposed an approach

for estimating the error rates of multiple patients (annotators) given their responses

(labels) to multiple medical questions (instances). The idea behind this approach, and

many others that later followed, is to consider that there is an unobserved or latent

ground truth cn. The different annotators are then assumed to provide noisy versions

yrn of this latent ground truth, such that the annotators will provide the correct label

cn with probability p(yrn = cn|cn), or some other (incorrect) label l with probability

p(yrn = l|cn). Notice that these probabilities are conditioned on the latent true class

cn. Hence, each annotator can have different probabilities of providing a correct label

depending on what the latent true class cn is. For the sake of simplicity and without

loss of generality, let us consider for now that the responses are binary variables, such

that yrn ∈ {0, 1}. Translating this idea into a probabilistic model, yields the following

generative process:

1. For each question n

(a) For each patient r

i. If true class cn = 1

Draw patient’s answer yrn|αr ∼ Bernoulli(yrn|αr)

ii. If true class cn = 0

Draw patient’s answer yrn|βr ∼ Bernoulli(yrn|1− βr)

Since we are focusing on binary classification problems, the parameters of the Bernoullis,

αr and βr, can be interpreted as the sensitivity and specificity, respectively, of the rth

annotator. Figure 3.1 shows the corresponding probabilistic graphical model, where N

denotes the number of instances (questions) and R is the total number of annotators

(patients). Notice how the ground truth labels cn are represented using an unshaded

circle, indicating that they are latent variables. If the sensitivities α = {αr}Rr=1 and

specificities β = {βr}Rr=1 of the different annotators were known, it would be easy to

estimate the ground truth c = {cn}Nn=1. Similarly, if the ground truth c was known,

it would be straightforward to estimate the sensitivities α and specificities β. This
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apparent chicken-and-the-egg problem can be solved by using an EM algorithm, as

proposed by Dawid & Skene (1979).

Although this work just focuses on estimating the hidden ground truth labels and

the error rates of the different annotators, it inspired other works where there is an

explicit attempt to learn a classifier. For example, Smyth et al. (1995) proposed a

similar approach to solve the problem of volcano detection and classification in Venus

imagery with data labeled by multiple experts. As in previous works, this approach

relies on a latent variable model where the ground truth labels are treated as latent

variables. The main difference is that the authors use the estimated (probabilistic)

ground truth labels to explicitly learn a classifier.

More recently, Snow et al. (2008) demonstrated that learning from labels provided

by multiple non-expert annotators can be as good as learning from the labels of one

expert. Such kind of findings inspired the development of new approaches that, unlike

previous ones (Smyth et al., 1995; Donmez & Carbonell, 2008; Sheng et al., 2008), do

not rely on repeated labeling, i.e. having the same annotators labeling the same set of

instances. This is the case of the approach proposed by Raykar et al. (2009, 2010), in

which the reliabilities of the different annotators and a classifier are learnt jointly. The

idea is to extend Dawid & Skene’s framework by modeling the ground truth labels with

a logistic regression parameterized by a vector of coefficients η. The generative process

is then as follows:

1. For each instance xn

(a) Draw true class cn|xn,η ∼ Bernoulli(cn|Sigmoid(xn,η))

(b) For each annotator r

i. If true class cn = 1

Draw annotator’s answer yrn|αr ∼ Bernoulli(yrn|αr)

cn yrny
r
n

α

βR

N

Figure 3.1: Graphical model of the approach of Dawid & Skene (1979).
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xn cn yrny
r
n

η

α

βR

N

Figure 3.2: Graphical model of the approach of Raykar et al. (2010).

ii. If true class cn = 0

Draw annotator’s answer yrn|βr ∼ Bernoulli(yrn|1− βr)

In the generative process above, the notation Sigmoid(xn,η) is used to denote a logis-

tic sigmoid function, which is commonly used in logistic regression and is defined as:

Sigmoid(xn,η) , 1/(1 + exp(−ηTxn)). Figure 3.2 shows the corresponding graphical

model representation.

By using a logistic regression to model the ground truth labels as a function of the

inputs, the approach proposed by Raykar et al. is able to generalize across the instances

labeled by the different annotators. Hence, they are not required to label exactly the

same instances, thus allowing the dataset to be split and distributed among different

annotators for labeling. This can be achieved by replacing R by Rn in the graphical

model, where Rn denotes the annotators that labeled the nth instance, and making

changes in the equations accordingly. Nevertheless, for the ease of exposition, we shall

assume that, for all the models in this thesis, all annotators label all the instances, i.e.

Rn = R. However, this is for presentation purposes only, since all the implementations

take this into consideration. As with previous approaches, the authors use an EM

algorithm to infer the latent ground truth labels c (E-step), as well as to estimate the

sensitivities α and specificities β of the annotators and the coefficients η of the logistic

regression (M-step).

The model proposed by Raykar et al. (2010) relies on the assumption that the

labels provided by the different annotators do not dependent on the instances that

they are labeling. In other words, it assumes the conditional independence of yrn on

xn given cn, which we can readily observe from the graphical model in Figure 3.2, by

noticing that once the true classes cn are observed, the annotators labels yrn become
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Figure 3.3: Graphical model of the approach of Yan et al. (2010).

independent of xn (they only depend on cn). This is reasonable for a wide class of

practical applications. Nevertheless, Yan et al. (2010) question this assumption and

relax it by proposing a model where the annotators’ reliabilities are conditioned on the

input instance through a second logistic regression with annotator-specific coefficients

ηr. Figure 3.3 shows the graphical model proposed by Yan et al. (2010). In fact,

this line of work inspired many interesting extensions. For example, Yan et al. (2011)

suggest an active learning methodology for reducing the annotation costs, by selecting

which instance should be labeled next and which annotator should label it. Yet, with

the concern that the reliability of the annotators may change over time, Donmez et al.

(2010) propose the use of a particle filter (Bishop, 2006) to model their time-varying

accuracies.

So far we have been discussing approaches that were developed mainly for classifi-

cation problems. However, although to a smaller extent, there are other research works

that address different types of target variables as well. For example, from a regression

perspective, the problem of learning from multiple annotators has been addressed in

the context of Gaussian processes by Groot et al. (2011). For ranking problems, the

problem of learning from multiple annotators has been studied, for example, by Wu

et al. (2011).

Regardless of the nature of the target variables, the approaches described above all

share one common aspect: they are centered on the unobserved true labels, of which

the various annotators are assumed to provide noisy versions. Therefore, they typically

approach the problem of learning from multiple annotators by treating the unobserved

true labels as latent variables in a probabilistic framework, which hinders a natural

extension to structured prediction problems such as sequence labeling tasks, due to the
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combinatorial explosion of possible outcomes of the latent variables. Sequence labeling

refers to the supervised learning task of assigning a label to each element of a sequence.

Typical examples are part-of-speech (POS) tagging, named entity recognition (NER)

and gene prediction (Allen et al., 2004; Allen & Salzberg, 2005). In such tasks, the

individual labels cannot be considered as detached from the context, i.e. the preceding

and succeeding elements of the sequence and their corresponding labels.

Two of the most popular sequence models are hidden Markov models (HMM) (Ra-

biner, 1990) and conditional random fields (CRF) (Lafferty et al., 2001). Due to the

usual high-dimensional feature spaces (especially considering CRFs), these models fre-

quently require large amounts of labeled data to be properly trained, which complicates

the construction and release of datasets and makes it almost prohibitive to do with a

single annotator. Although in some domains, the use of unlabeled data can help in

making this problem less severe (Bellare & Mccallum, 2007), a more natural solution

is to rely on multiple annotators. For example, for many tasks, Amazon mechanical

turk (AMT) can be used to label large amounts of sequential data (Callison-Burch &

Dredze, 2010). However, the large numbers needed to compensate for the heterogene-

ity of annotators expertise rapidly raise its actual cost beyond acceptable values. A

parsimonious solution needs to be designed that is able to deal with such real world

constraints and heterogeneity.

In this chapter, we propose a new class of models for learning from multiple anno-

tators that contrasts with previous works by focusing on the reliability of the different

annotators. As we shall see, by treating the information regarding the unknown re-

liability of the annotators as latent variables, the proposed model extends naturally

to sequence labelings problems, leading to a tractable model that generalizes CRFs to

multiple-annotator settings. In Section 3.2, we introduce this concept of latent expertise

models in the context of logistic regression classifiers, and in Section 3.3, we extend it

to conditional random fields.

3.2 Distinguishing good from random annotators

A key problem in learning from multiple annotators is that of distinguishing the good

ones from the less good, or even random ones, in the absence of ground truth labels.

This is particularly important in crowdsourcing platforms like AMT, since it allows us
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to reward good workers and ban, or even deny payment, to random workers. In this

section, we shall formalize this idea into a probabilistic model that treats the expertise

of the different annotators as latent variables. But first, let us motivate it by analyzing

in more detail some of the problems that can arise when using a latent ground truth

model.

3.2.1 The problem with latent ground truth models

Let us consider the popular latent ground truth model proposed by Raykar et al. (2009,

2010). Extending this model to multi-class problems leads to the following generative

process:

1. For each instance xn

(a) Draw true class cn|xn,η ∼ Multinomial(cn|Softmax(xn,η))

(b) For each annotator r

i. Draw annotator’s answer yrn|cn,Πr ∼ Multinomial(yrn|πrcn)

The notation Softmax(xn,η) is used to denote a softmax function (Murphy, 2012). The

softmax is the multi-dimensional generalization of the logistic sigmoid and it is defined

as

Softmax(xn,η)c =
exp(ηT

c xn)∑
l exp(ηT

l xn)
, for c ∈ {1, . . . , C} (3.1)

where C is the number of classes. The matrix Πr = (πr1, . . . ,π
r
C)T corresponds to the

confusion matrix of the rth annotator, such that the element πrc,l corresponds to the

probability that the annotator provides the label l given that the true class is c.

Following the generative process described above, the complete-data likelihood

p(Y, c|X,η,Π1:R) is given by

p(Y, c|X,η,Π1:R) =

N∏
n=1

p(cn|xn,η)

R∏
r=1

p(yrn|cn,Πr), (3.2)

where X = {xn}Nn=1 and Y = {y1
n, . . . , y

R
n }Nn=1. Since the true labels c are not observed,

we need to average over their possible values in order to obtain the marginal likelihood

of the observed data D = {X,Y}, yielding

p(Y|X,η,Π1:R) =
N∏
n=1

∑
cn

p(cn|xn,η)
R∏
r=1

p(yrn|cn,Πr). (3.3)
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Even if we consider an approach like EM for inferring the ground truth labels

c and to estimate the model parameters η and Π1:R, we would still be stuck with

a marginalization over the output space by averaging over all possible values for the

latent true labels cn. Although this marginalization is not problematic for classification

problems where the number of classes, C, is small, for other types of problems like

sequence labeling tasks (or any task with structured outputs), marginalizing over the

output space is intractable in general (Sutton, 2012). If we consider, for example, the

tasks of part-of-speech tagging or named entity recognition, which are usually handled

as a sequence labeling problems, it is easy to see that the number of possible label

sequences grows exponentially with the length of the sentence, deeming the summation

over the output space intractable.

Regarding complexity, by modeling annotator expertise with a full confusion ma-

trix Πr, the generative process described is able to model class-specific biases that

annotators might have. However, this comes at a potential cost. Since the matrix Πr

comprises C × C parameters, and since in practice, on crowdsourcing platforms like

AMT, the annotators frequently label a rather small set of instances, having a model

with so many parameters for the reliability of the annotators can lead to overfitting.

Hence, in situations where annotator biases are unlikely to occur, having a simpler

model with less parameters for the annotator’s expertise can be preferable.

3.2.2 Latent expertise models

Let us now propose a different class of models for learning from multiple annotators,

which we refer to as latent expertise models. The idea is to encode the information

regarding whether or not the rth annotator is labeling the nth instance correctly using

a latent binary variable zrn. Hence, zrn ∼ Bernoulli(φr), where the parameter φr cor-

responds to the accuracy of the rth annotator. The expected value of this Bernoulli

random variable E[zrn] = p(zrn = 1|φr) can then be interpreted as the probability of an

annotator providing a correct label or, in other words, as an indicator of how reliable

an annotator is. This is a key difference between this model and latent ground truth

models such as the ones by Dawid & Skene (1979) and Raykar et al. (2010). While,

the latter approaches model the annotators’ expertise using a full confusion matrix, the

proposed model keeps a single accuracy parameter φr per annotator.
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Figure 3.4: Graphical model of the proposed latent expertise model.

For the sake of simplicity, let us assume that unreliable annotators provide labels

at random with uniform probability and that good annotators provide labels according

to a multi-class logistic regression model on the inputs xn. The generative process can

then be defined as follows:

1. For each instance xn

(a) For each annotator r

i. Draw reliability indicator zrn|φr ∼ Bernoulli(zrn|φr)

ii. If zrn = 1

Draw answer yrn|xn,η ∼ Multinomial(yrn|Softmax(xn,η))

iii. If zrn = 0

Draw answer yrn ∼ Uniform(yrn)

Following the generative process, we can define the conditional probability distribution,

p(yrn|xn, zrn,η), as

p(yrn|xn, zrn,η) ,

(
exp(ηT

yrn
xn)∑

l exp(ηT
l xn)

)zrn( 1

C

)1−zrn
, (3.4)

where C is the number of classes. This can be verified by assigning values to zrn. If we

set zrn = 1, the likelihood of a multi-class logistic regression is recovered and, conversely,

if we set zrn = 0, we get the uniform model, as desired.

Figure 3.4 shows the probabilistic graphical model corresponding to the proposed

generative process. According to the graphical model, the complete-data likelihood
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factorizes as

p(Y,Z|X,φ,η) =
N∏
n=1

R∏
r=1

p(zrn|φr) p(yrn|xn, zrn,η), (3.5)

where Z = {zr}Rr=1 with zr = {zrn}Nn=1, and φ = {φ1, . . . , φR}. Notice that, similarly to

previous works (e.g. Dawid & Skene (1979); Raykar et al. (2010); Yan et al. (2010)),

we are assuming that the annotators make their decisions independently of each other.

This is in general a reasonable assumption.

Since the latent indicator variables zrn are not observed, we need to average over

their possible values. The marginal likelihood of the data is then given by

p(Y|X,φ,η) =

N∏
n=1

R∏
r=1

∑
zrn∈{0,1}

p(zrn|φr) p(yrn|xn, zrn,η). (3.6)

Our goal is to estimate the parameters {φ,η}.

3.2.3 Estimation

As with other latent variable models, we rely on expectation-maximization (EM) (Demp-

ster et al., 1977) to infer the posterior distribution of the latent variables zrn and to

estimate the parameters φ and η.

If we observed the complete dataset {X,Y,Z}, the log likelihood would simply be

given by log p(Y,Z|X,φ,η). Since we only have access to the “incomplete” dataset

{X,Y}, our state of the knowledge about the values of Z (the reliabilities of the anno-

tators) can be given by the posterior distribution p(Z|X,Y,φ,η). Let q(Z) denote an

estimate of the posterior distribution p(Z|X,Y,φ,η). In EM, instead of considering

the complete data log likelihood, log p(Y,Z|X,φ,η), we consider its expected value

under our current estimate of the posterior distribution of the latent variables q(Z)

given by

Eq(Z)[log p(Y,Z|X,φ,η)] =
∑
Z

q(Z) log p(Y,Z|X,φ,η)

=
N∑
n=1

R∑
r=1

∑
zrn∈{0,1}

q(zrn) log
(
p(zrn|φr) p(yrn|xn, zrn,η)

)
. (3.7)
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Given a current estimate of the parameters {φ,η}, the posterior distribution of the

individual latent variables p(zrn|xn, yrn,φ,η), which we abbreviate as q(zrn), can be es-

timated using the Bayes theorem, yielding

q(zrn = 1) =
p(zrn = 1|φr) p(yrn|xn, zrn = 1,η)

p(zrn = 1|φr) p(yrn|xn, zrn = 1,η) + p(zrn = 0|φr) p(yrn|xn, zrn = 0,η)

=
φr exp(ηT

yrn
xn)/

∑
l exp(ηT

l xn)

φr exp(ηT
yrn

xn)/
∑

l exp(ηT
l xn) + (1− φr)(1/C)

, (3.8)

where we made use of (3.4).

The expected value of the complete data log likelihood then becomes

Eq(Z)

[
log p(Y,Z|X,φ,η)

]
=

N∑
n=1

R∑
r=1

q(zrn = 1) log

(
φr

exp(ηT
yrn

xn)∑
l exp(ηT

l xn)

)

+

N∑
n=1

R∑
r=1

(
1− q(zrn = 1)

)
log

(
(1− φr) 1

C

)
. (3.9)

In the M-step of the EM algorithm, we use this expectation to estimate the model

parameters.

The EM algorithm can then be summarized as follows:

E-step Compute the posterior distribution of the latent variables zrn using (3.8).

M-step Estimate the new model parameters ηnew and φnew given by

ηnew = arg max
η

N∑
n=1

R∑
r=1

q(zrn = 1) log

(
exp(ηT

yrn
xn)∑

l exp(ηT
l xn)

)
(3.10)

(φr)new =
1

N

N∑
n=1

I(yrn = ĉn), (3.11)

where the estimated ground truth labels ĉn are given by ĉn = arg maxc (ηT
c xn).

Since taking derivatives of (3.9) w.r.t. η and setting them to zero does not yield a closed-

form solution, we use a numerical optimization procedure, namely limited-memory

BFGS (Liu & Nocedal, 1989), to find a maximum. The gradient is given by

∇ηc =

N∑
n=1

R∑
r=1

q(zrn = 1)

(
I(yrn = c)− exp(ηT

c xn)∑
l exp(ηT

l xn)

)
xn. (3.12)

Notice that this is very similar to the standard training of a multi-class logistic regres-

sion model. However, in this case, the contributions to the log likelihood of the labels
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provided by the different annotators are being “weighted” by their reliabilities, or in

other words, by how likely they are to be correct. This makes our proposed approach

quite easy to implement in practice.

3.3 Sequence labeling with multiple annotators

Despite the variety of approaches presented for learning from multiple annotators under

different paradigms, the problem of sequence labeling using multiple-annotator data

was left practically untouched, with the only relevant work being done by Dredze et al.

(2009). In this work the authors propose a method for learning structured predictors,

namely conditional random fields (CRFs), from instances with multiple labels in the

presence of noise. This is achieved by modifying the CRF objective function used for

training through the inclusion of a per-label prior, thereby restricting the model from

straying too far from the provided priors. The per-label priors are then re-estimated

by making use of their likelihoods under the whole dataset. In this way, the model

is capable of using knowledge from other parts of the dataset to prefer certain labels

over others. By iterating between the computation of the expected values of the label

priors and the estimation of the model parameters in an EM-like style, the model is

expected to give preference to the less noisy labels. Hence, we can view this process as

self-training, i.e. a process whereby the model is trained iteratively on its own output.

Although this approach makes the model computationally tractable, their experimental

results indicate that this method only improves performance in scenarios where there

is a small amount of training data (low quantity) and when the labels are noisy (low

quality).

It is important to stress that, contrarily to the model proposed in this section, the

model by Dredze et al. (2009) is a multi-label model, and not a multi-annotator model,

in the sense that the knowledge about who provided the multiple label sequences is

completely discarded. The obvious solution for including this knowledge would be to

use a latent ground truth model similar to the one proposed by Raykar et al. (2009,

2010), thus extending that work to sequence labeling tasks. However, as discussed in

Section 3.2.1, treating the ground truth label sequences as latent variables and using

an EM algorithm to estimate the model parameters would be problematic, since the

number of possible label sequences grows exponentially with the length of the sequence,
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making the marginalization over the latent variables intractable. In contrast, in this

section we extend the idea of latent expertise models that we developed in Section 3.2.2

for logistic regression to CRFs, thus leading to a tractable solution.

3.3.1 Conditional random fields

Let xn = {xn,t}Tt=1 be a sequence of discrete input variables of length T , and let

cn = {cn,t}Tt=1 be a sequence of labels, corresponding to labels of each element in

the input sequence xn. If we consider, for example, the problem of POS tagging,

the variable xn,t can be regarded as the tth word in the nth sentence and cn,t as its

corresponding part-of-speech (e.g. noun, verb, adjective, etc.). If for a dataset of

N input sequences X = {xn}Nn=1 we knew the corresponding correct label sequences

C = {cn}Nn=1, we could model the probabilities of the label sequences C given the

input sequences X using a linear-chain CRF (Lafferty et al., 2001). Although we shall

focus on linear-chain CRFs, such as those commonly used for NER and POS tagging,

it is important to point out that the proposed approach is equally applicable to general

CRFs.

In a linear-chain CRF the conditional probability of a sequence of labels c given a

sequence of observations x is given by

pcrf(c|x,η) =
1

Z(x,η)

T∏
t=1

exp

(
K∑
k=1

ηk fk(ct−1, ct,x, t)

)
, (3.13)

where T is the length of the sequence, K is an arbitrary number of features, fk(ct−1, ct,x, t)

is a feature function (often binary-valued, but that can also be real-valued), ηk is a

learned weight associated with feature fk, and Z(x,η) is an input-dependent normal-

ization function that makes the probability of all label sequences sum to one, i.e.

Z(x,η) =
∑
c

T∏
t=1

exp

(
K∑
k=1

ηk fk(ct−1, ct,x, t)

)
. (3.14)

The feature functions can capture any aspect of the state transitions ct−1 → ct and of

the whole input sequence x, which in fact, can be used to understand the relationship

between labels and the characteristics of the whole input sequence x at a given moment

t.

According to the model defined in (3.13), the most probable labeling sequence for

an input sequence x is given by c∗ = arg maxc pcrf(c|x,η), which can be efficiently
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determined through dynamic programming using the Viterbi algorithm (see Sutton

(2012) for the details on how to perform exact inference on linear-chain CRFs).

The parameters η of a CRF model are typically estimated from an i.i.d. dataset

by a maximum-a-posteriori (MAP) procedure. Assuming a zero-mean Gaussian prior

with σ2 variance on each individual ηk, such that ηk ∼ N(ηk|0, σ2), the posterior on η

is proportional to

p(η|X,C, σ2) ∝

(
N∏
n=1

pcrf(cn|xn,η)

)
︸ ︷︷ ︸

likelihood

K∏
k=1

N(ηk|0, σ2)︸ ︷︷ ︸
prior

. (3.15)

We can find a MAP estimate of the parameters by maximizing the logarithm of (3.15)

w.r.t. η

ηMAP = arg max
η

N∑
n=1

T∑
t=1

K∑
k=1

ηk fk(cn,t−1, cn,t,xn, t)−
N∑
n=1

logZ(xn,η)−
K∑
k=1

η2
k

2σ2
,

where we made use of (3.13) and the definition of a Gaussian in (A.12). Typically,

a numerical optimization procedure, such as limited-memory BFGS (Liu & Nocedal,

1989), is used to find an optimum.

3.3.2 Proposed model

Let yr be a sequence of labels assigned by the rth annotator to some observed input

sequence x. If we were told the actual (unobserved) sequence of true labels c for

that same input sequence x, we could evaluate the quality, or reliability, of the rth

annotator in a dataset by measuring its precision and recall. Furthermore, we could

combine precision and recall in a single measure by using the traditional F1-measure,

and use this combined measure to evaluate how “good” or “reliable” a given annotator

is according to some ground truth. In practice any appropriate loss function can be

used to evaluate the quality of the annotators. The choice of one metric over others is

purely problem-specific. The F-measure is considered here due to its wide applicability

in sequence labeling problems and, particularly, in the tasks used in the experiments

(Section 3.4).

Since we do not know the set of actual ground truth label sequences C for the

input sequences X, we must find a way to estimate it using the sets of label sequences
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provided by the R different annotators {Y1, ...,YR}, and learn a CRF model along the

way. For that, we shall consider a slightly different approach to the one we developed in

Section 3.2.2 for logistic regression. Namely, instead of considering that, when labeling

the nth instance, each annotator r flips a biased coin (represented through the variables

zrn) to decide whether or not to provide the correct label, we shall consider that the

annotators throw a die to determine which one of them will provide the correct label

sequences. Let z be the outcome of that die draw and let F1-measurer(Y
r,C) denote

the F1-measure of the answers of the rth annotator, Yr, evaluated against the ground

truth label sequences C. Considering the F1-measure to be a good indicator of how

reliable, or how likely an annotator is to provide correct label sequences, we can assume

that z ∼ Multinomial(φ), i.e., z has a multinomial distribution with parameters φ =

(φ1, . . . , φR)T, where we define

φr ,
F1-measurer(Y

r,C)∑R
j=1 F1-measurej(Y

j ,C)
, (3.16)

thus ensuring the constraints φr ≥ 0 (since the F1-measure is always non-negative)

and
∑

r φr = 1. Depending on the value of the variable z, the annotator then decides

whether or not to provide correct labels.

The expectation E[zr] = p(zr = 1) can therefore be interpreted as the probability

of picking the label sequences provided by the rth annotator as the correct ones (i.e.

for which F1-measurer(Y
r,C) = 1) and using those for training. An analogy for this

model would be a student picking a book to learn about some subject. The student

is provided by the university’s library with a set of books that cover that subject but

differ only in how good and pedagogical they are. The student then has to pick one of

the books from which to learn about that subject. Transferring this analogy back to

our multiple annotator setting, the random vector z can be viewed as picking the best

annotator from which to learn from, thus enforcing competition among the annotators.

The correct annotator is assumed to provide label sequences according to a CRF model,

pcrf(y
r
n|xn,η). The others are assumed to provide incorrect labels which we assume to

come from a random model prand(yrn). For the sake of simplicity, we assume the random

model prand(yrn) to be uniformly distributed. Hence

prand(yrn) =

T∏
t=1

1

C
, (3.17)
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Figure 3.5: Proposed latent expertise model for sequence labeling problems.

where T denotes the length of the sequence and C is the number of possible classes for

a sequence element1.

The generative process can then be summarized as follows:

1. Draw latent variable z|φ ∼ Multinomial(z|φ)

2. For each instance xn

(a) For each annotator r

i. If zr = 1:

Draw annotator’s answer yrn|xn,η ∼ pcrf(yrn|xn,η)

ii. If zr = 0:

Draw annotator’s answer yrn ∼ prand(yrn)

Figure 3.5 shows a plate representation of the proposed model.

Although it might seem too restrictive to assume that only one annotator provides

the correct label sequences, it is important to note that the model can still capture the

uncertainty regarding who the correct annotator should be. In alternative to this ap-

proach, one could replace the multinomial random variable z with multiple Bernoullis

zrn (one for each annotator) as we did in Section 3.2.2 for classification problems. From a

generative perspective, this would allow for multiple annotators to be correct. However,

it places too much emphasis on the form of prand(yrn), since it would be crucial for decid-

ing whether the annotator is likely to be correct. If we recall the posterior distribution

of zrn given by Eq. 3.8, we can see that if the value of prand(yrn) = p(yrn|xn, zrn = 0,η)

is too large or too small, the value of the fraction will be close to constant throughout

1Not to be confused with C, which denotes the set of ground truth label sequences.
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all annotators, thus making the model believe that they are all equally reliable. While

this was not a problem for classification tasks, it turns out that, for sequence labeling,

a poor choice of prand(yrn) leads to poor results. On the other hand, as we shall see

later, by using a multinomial distribution, the probabilities prand(yrn) cancel out from

the posterior distribution of z, thus forcing the annotators to “compete” with each

other for the best label sequences.

Following the generative process described above, we can define

p(y1
n, . . . ,y

R
n |xn, z,η) =

R∏
r=1

p(yrn|xn, zr,η)

=

R∏
r=1

(
pcrf(y

r
n|xn,η)

)(zr)(
prand(yrn)

)(1−zr)
, (3.18)

where we made use of the assumption that the annotators make their decisions inde-

pendently of each other.

If we observed the complete data {X,Y1, . . . ,YR, z}, then the likelihood would be

given by the following expression

p(Y1, . . . ,YR, z|X,φ,η) = p(z|φ)

N∏
n=1

p(y1
n, ...,y

R
n |xn, z,η). (3.19)

Since we do not actually observe z, we must marginalize over it by summing over all

its possible values. The likelihood of our model then becomes

p(Y1, . . . ,YR|X,φ,η) =
∑
z

p(z|φ)
N∏
n=1

p(y1
n, ...,y

R
n |xn, z,η). (3.20)

Recalling that z is multinomial variable represented using a 1-of-K coding, we can

re-write the summation in the equation above as

p(Y1, . . . ,YR|X,φ,η) =
∑
r

p(zr = 1|φ)
N∏
n=1

p(y1
n, ...,y

R
n |xn, zr = 1,η). (3.21)

Making use of (3.18) and the fact that p(zr = 1|φ) = φr, the likelihood can be further

simplified giving

p(Y1, . . . ,YR|X,φ,η) =

R∑
r=1

φr
N∏
n=1

pcrf(y
r
n|xn,η)

∏
j 6=r

prand(yjn|xn). (3.22)
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3.3.3 Estimation

As with the latent expertise model presented in Section 3.2, we rely on the EM algorithm

(Dempster et al., 1977) to compute the posterior distribution of the latent variable z

and to estimate the parameters {φ,η} of the proposed model.

The expectation of the complete-data log likelihood, log p(Y1, . . . ,YR, z|X,φ,η),

under our current estimate of the posterior distribution of the latent variables q(z) is

given by

Eq(z)[log p(Y1, . . . ,YR, z|X,φ,η)] =
∑
z

q(z) log p(Y1, . . . ,YR, z|X,φ,η)

=
∑
z

q(z) log
(
p(z|φ)

N∏
n=1

p(y1
n, ...,y

R
n |xn, z,η)

)
.

(3.23)

The posterior distribution of the latent variable z can be estimated using the Bayes’

theorem

q(zr = 1) = p(zr = 1|Y1, . . . ,YR,X,φ,η)

=
p(zr = 1|φ) p(Y1, ...,YR|X, zr = 1,η)∑R
j=1 p(z

j = 1|φ) p(Y1, ...,YR|X, zj = 1,η)

=
φr
∏N
n=1

(
pcrf(y

r
n|xn,η)

∏
k 6=r prand(ykn|xn)

)
∑R

j=1 φ
j
∏N
i=1

(
pcrf(y

j
n|xn,η)

∏
k 6=j prand(ykn|xn)

) . (3.24)

As long as we are assuming a uniform model for prand(yrn), we have that prand(yrn) =

prand(yjn),∀r, j ∈ {1, . . . , R}. Hence, the expression for the posterior distribution can

be further simplified, yielding

q(zr = 1) =
φr
∏N
n=1 pcrf(y

r
n|xn,η)∑R

j=1 φ
j
∏N
n=1 pcrf(y

j
n|xn,η)

. (3.25)

Making use of the same results that led to (3.22), the expected value of the log

likelihood in (3.23) becomes

Eq(z)[log p(Y1, . . . ,YR, z|X,φ,η)]

=

R∑
r=1

q(zr = 1)

(
log φr +

N∑
n=1

(
log pcrf(y

r
n|xn,η) +

∑
j 6=r

log prand(yjn|xn)
))

. (3.26)
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In the M-step of the EM algorithm, we estimate the new model parameters φnew

and ηnew. As we did in (3.16) for standard linear-chain CRFs, we place a zero-mean

Gaussian prior on η with σ2 variance, which prevents the coefficients η (weights) from

becoming arbitrarily large. This is a widely known form of regularlization, which is

commonly referred to as `2-regularization (Ng, 2004). The strength of the regularization

is controlled by the value of σ2. The regularized log likelihood is then given by

Eq(z)[log p(Y1, . . . ,YR, z|X,φ,η)] =
R∑
r=1

q(zr = 1)

(
log φr +

N∑
n=1

(
log pcrf(y

r
n|xn,η)

+
∑
j 6=r

log prand(yjn|xn)
))

+
K∑
k=1

logN(ηk|0, σ2).

(3.27)

The EM algorithm can then be summarized as follows:

E-step Compute the posterior distribution of the latent variable z using (3.25).

M-step Estimate new model parameters ηnew and φnew as

ηnew = arg max
η

N∑
n=1

R∑
r=1

q(zr = 1)
(

log pcrf(y
r
n|xn,η)

)
−

K∑
k=1

η2
k

2σ2
, (3.28)

(φr)new =
F1-measurer(Y

r,C)∑R
j=1 F1-measurej(Y

j ,C)
, (3.29)

where the estimated ground truth labels are given by cn = arg maxcn pcrf(cn|xn,ηnew),

which can be efficiently determined using the Viterbi algorithm1. In (3.28), the new

CRF model parameters ηnew are determined using limited-memory BFGS similarly to

normal CRF training (Sutton & McCallum, 2006). However, the log likelihood function

now includes a weighting factor: q(zr = 1). From this perspective, when learning from

label sequences of various annotators, the proposed model is weighting the latter by

how much it expects them to be right, while considering also how likely the other

annotators are to be correct. If, for example, there are only two “good” annotators,

they will share the responsibility in “teaching” the CRF model.

The initialization of the EM algorithm can be simply done by assigning random

values to the annotators reliabilities or by estimating the ground truth label sequences

1Note that the ground truth estimate is required to compute the F1-scores of the annotators and

estimate the multinomial parameters φ.
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C using majority voting. The algorithm stops when the expectation in (3.23) converges

or when the changes to the annotators reliabilities fall below a given threshold.

3.4 Experiments

The proposed models, multiple-annotator logistic regression (MA-LR) and multiple-

annotator conditional random fields (MA-CRF)1, from Sections 3.2 and 3.3, respec-

tively, were evaluated using both multiple-annotator data with simulated annotators

and data manually labelled using AMT. The following sections describe these experi-

ments.

Multiple-annotator logistic regression

The proposed MA-LR model was compared with the multi-class extension of the model

proposed by Raykar et al. (2010) (see Section 3.2.1), which, as we previously discussed,

is a latent ground truth model, and with two majority voting baselines:

• Soft majority voting (MVsoft): this corresponds to a multi-class logistic regression

model trained with the soft probabilistic labels resultant from the voting process.

• Hard majority voting (MVhard): this corresponds to a multi-class logistic regres-

sion model trained with the most voted labels resultant from the voting process,

i.e. the most voted class for a given instance gets “1” and the others get “0”.

In all experiments the EM algorithm was initialized with majority voting.

Simulated annotators

With the purpose of comparing the presented approaches in different classification

tasks, we used six popular benchmark datasets from the UCI repository2 — a collec-

tion of databases, domain theories, and data generators that are used by the machine

learning community for the empirical analysis of machine learning algorithms. Since

these datasets do not have labels from multiple annotators, the latter were simulated

from the ground truth using two different methods. The first method, denoted “label

1Source code for MA-LR and MA-CRF is available at: http://www.fprodrigues.com/
2http://archive.ics.uci.edu/ml/index.html
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Dataset Num. Instances Num. Features Num. Classes

annealing 798 38 6

image segmentation 2310 19 7

ionosphere 351 34 2

iris 150 4 3

parkinsons 197 23 2

wine 178 13 3

Table 3.1: Details of the UCI datasets.

flips”, consists in randomly flipping the label of an instance with a given uniform proba-

bility p(flip) in order to simulate an annotator with an average reliability of 1− p(flip).

The second method, referred to as “model noise”, seeks simulating annotators that

are more consistent in their opinions, and can be summarized as follows. First, a

multi-class logistic regression model is trained on the original training set. Then, the

resulting weights η are perturbed, such that the classifier consistently “fails” in a co-

herent fashion throughout the testset. To do so, the values of η are standardized, and

then random “noise” is drawn from a Gaussian distribution with zero mean and σ2

variance and added to the weights η. These weights are then “unstandardized” (by

reversing the standardization process previously used), and the modified multi-class

logistic regression model is re-applied to the training set in order to make predictions

that simulate the answers of an annotator. The quality of this annotator will vary

depending on the value of σ2 used. This processed is then repeated R times in order

to simulate the answers of R independent annotators.

Since in practice each annotator only labels a small subset of all the instances in

the dataset, we introduce another parameter in this annotator simulation process: the

probability p(label) of an annotator labeling an instance.

Table 4.1 describes the UCI datasets used in these experiments. Special care was

taken in choosing datasets that correspond to real data and that were among the

most popular ones in the repository and, consequently, among the machine learning

community. Datasets that were overly unbalanced, i.e. with too many instances of

some classes and very few instances of others, were avoided. Other than that, the

selection process was random, which resulted in a rather heterogeneous collection of

datasets: with different sizes, number of features and number of classes.
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Figure 3: Results for the Annealing, Ionosphere and Parkinsons datasets using the “la-
bel flips” method for simulating annotators. The “x” marks indicate the average true
accuracies of the simulated annotators.

13

Figure 3.6: Results for the annealing, ionosphere and parkinsons datasets using the

“label flips” method for simulating annotators. The “x” marks indicate the average true

accuracies of the simulated annotators.
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Figure 4: Results for the Iris, Segmentation and Wine datasets using the “model noise”
method for simulating annotators. The “x” marks indicate the average true accuracies of
the simulated annotators.

14

Figure 3.7: Results for the iris, segmentation and wine datasets using the “model noise”

method for simulating annotators. The “x” marks indicate the average true accuracies of

the simulated annotators.
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Figures 3.6 and 3.7 show the results obtained using 5 simulated annotators with

different reliabilities using the simulation methods described above: “label flips” and

“model noise”, respectively. All the experiments use 10-fold cross-validation. Due to

the stochastic nature of the simulation process of the annotators, each experiment was

repeated 30 times and the average results were collected. The plots on the left show

the root mean squared error (RMSE) between the estimated annotators accuracies and

their actual accuracies evaluated against the ground truth. The plots on the center and

on the right show, respectively, the trainset and testset accuracies. Note that, here,

unlike in “typical” supervised learning tasks, trainset accuracy is quite important since

it indicates how well the models are estimating the unobserved ground truth labels

from the opinions of the multiple annotators.

From a general perspective on the results of Figures 3.6 and 3.7, we can conclude

that both methods for learning from multiple annotators (MA-LR and Raykar) tend to

outperform the majority voting baselines under most conditions. Not surprisingly, as

the value of p(label), and consequently the average number of instances labeled by each

annotator, decreases, both the trainset and testset accuracies of all the approaches

decrease or stay roughly the same. As expected, a higher trainset accuracy usually

translates in a higher testset accuracy and a better approximation of the annotators

accuracies, i.e. lower root mean squared error (RMSE), since the approximation of the

ground truth is also better.

A more careful analysis of the results reveals that, contrarily to the model by Raykar

et al. (2010), the proposed model (MA-LR) is less prone to overfitting when the number

of instances labeled by each annotator decreases. This is a direct consequence of the

number of parameters used to model the annotators expertise. While the model by

Raykar et al. (2010) uses a full C × C confusion matrix for each annotator, making a

total of RC2 parameters, the proposed model only uses R parameters. However, it is

important to note that there is a tradeoff here, since the model by Raykar et al. can

capture certain biases in the annotators answers, which is not possible with the MA-LR

model.

Amazon mechanical turk

In order to assess the performance of MA-LR in learning from the labels of multiple non-

expert human annotators and compare it with the other approaches, two experiments
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Sentiment polarity Music genre

Number of answers collected 27747 2946

Number of workers 203 44

Avg. answers per worker (± std) 136.68 ± 345.37 66.93 ± 104.41

Min. answers per worker 5 2

Max. answers per worker 3993 368

Avg. worker accuracy (± std) 77.12 ± 17.10% 73.28 ± 24.16%

Min. worker accuracy 20% 6.8%

Max. worker accuracy 100% 100%

Table 3.2: Statistics of the answers of the AMT workers for the two experiments per-

formed. Note that the worker accuracies correspond to trainset accuracies.

were conducted using AMT: sentiment polarity and music genre classification1.

The sentiment polarity experiment was based on the sentiment analysis dataset

introduced by Pang & Lee (2005), which corresponds to a collection of more than ten

thousand sentences extracted from the movie reviews website RottenTomatoes2. These

are labeled as positive or negative depending on whether they were marked as “fresh”

or “rotten” respectively. From this collection, a random subset of 5000 sentences were

selected and published on AMT for annotation. Given the sentences, the workers were

asked to provide the sentiment polarity (positive or negative). The remaining 5428

sentences were kept for evaluation.

For the music genre classification experiment, the audio dataset introduced by

Tzanetakis & Cook (2002) was used. This dataset consists of a thousand samples

of songs with 30 seconds of length and divided among 10 different music genres: classi-

cal, country, disco, hiphop, jazz, rock, blues, reggae, pop and metal. Each of the genres

has 100 representative samples. A random 70/30 train/test split was performed on the

dataset, and the 700 training samples were published on AMT for classification. In this

case, the workers were required to listen to a 30-second audio clip and classify it as one

of the 10 genres enumerated above.

Table 3.2 shows some statistics about the answers of the AMT workers for both

datasets. Figure 3.8 further explores the distributions of the number of answers pro-

vided by each annotator and their accuracies for the sentiment polarity and music

1Datasets are available at: http://www.fprodrigues.com/ma-lr/
2http://www.rottentomatoes.com/
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Figure 3.8: Boxplots of the number of answers (a) and the accuracies (b) of the AMT

workers for the sentiment polarity (left) and music genre (right) datasets.

genre datasets. The figure reveals a highly skewed distribution of number of answers

per worker, which support our intuition that on this kind of crowdsourcing platforms

each worker tends to only provide a small number of answers, with only a couple of

workers performing high quantities of labelings.

Standard preprocessing and feature extraction techniques were performed on both

experiments. In the case of the sentiment polarity dataset, the stop-words were removed

and the remaining words were reduced to their root by applying a stemmer. This

resulted in a vocabulary with size 8919, which still makes a bag-of-words representation

computationally expensive. Hence, latent semantic analysis (LSA) was used to further

reduce the dimensionally of the dataset to 1200 features.

Regarding the music genre dataset, we used Marsyas1 — a standard music infor-

mation retrieval tool — to extract a collection of commonly used features in this kind

of tasks (Tzanetakis & Cook, 2002). These include means and variances of timbral

features, time-domain zero-crossings, spectral centroid, rolloff, flux and mel-frequency

cepstral coefficients (MFCC) over a texture window of 1 second. A total of 124 features

were extracted. The details on these features fall out of the scope of this thesis. The

interested reader is redirected to the appropriate literature (e.g. Aucouturier & Pachet

(2003); Tzanetakis & Cook (2002)).

Table 3.3 presents the results obtained by the different methods on the sentiment po-

larity and music genre datasets. As expected, the results indicate that both annotator-

aware methods are clearly superior when compared to the majority voting baselines.

1http://marsyasweb.appspot.com
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Sentiment polarity Music genre

Method Train acc. Test acc. Train acc. Test acc.

MVsoft 80.70% 71.65% 67.43% 60.33%

MVhard 79.68% 70.27% 67.71% 59.00%

Raykar 49.91% 48.67% 9.14% 12.00%

Raykar (w/prior) 84.92% 70.78% 71.86% 63.00%

MA-LR 85.40% 72.40% 72.00% 64.00%

Table 3.3: Trainset and testset accuracies for the different approaches on the datasets

obtained from AMT.

Also, notice that due to the fact that some annotators only label a very small portion

of instances, the “standard” model by Raykar et al. (2010) performs very poorly (as

bad as a random classifier) due to overfitting. In order to overcome this, a prior had

to be placed on the probability distribution that controls the quality of the annotators.

In the case of the sentiment polarity task, a Beta(1, 1) prior was used, and for the

music genre task we applied a symmetric Dirichlet(1C), where 1C denotes a vector of

1’s with length C. Despite the use of a prior, the model by Raykar et al. (2010) still

performs worse than the proposed MA-LR model, which takes advantage of its single

quality-parameter per annotator to produce better estimates of the annotators’ relia-

bilities. These results are coherent with our findings with the simulated annotators,

which highlights the quality of the proposed model.

Multiple-annotator conditional random fields

The proposed multiple-annotator conditional random fields (MA-CRF) model was eval-

uated in the field of natural language processing (NLP) for the particular tasks of named

entity recognition (NER) and noun phrase (NP) chunking. NER refers to the infor-

mation retrieval subtask of identifying and classifying atomic elements in text into

predefined categories such as the names of persons, organizations, locations and others,

while NP chunking consists of recognizing chunks of sentences that correspond to noun

phrases. Because of their many applications these tasks are considered very important

in the field of NLP and other related areas.

As in the previous section, we perform experiments using two types of annota-

tors: simulated annotators and real annotators from AMT. In both cases, the label

Chapter 3 55



sequences are represented using the traditional BIO scheme as introduced by Ramshaw

& Marcus (1995), which distinguishes between the beginning of a segment (B), in-

side of a segment (I) or outside (O). For example, using this scheme, the NER tags

for the sentence “Afonso Henriques was the first king of Portugal” will be the follow-

ing: “Afonso/B-PERSON Henriques/I-PERSON was/O the/O first/O king/O of/O

Portugal/B-LOCATION”.

The proposed approach is compared with four baselines:

• MVseq: majority voting at sequence level (i.e., the label sequence with more votes

wins);

• MVtoken: majority voting at token level (i.e., the BIO label with more votes for

a given token wins);

• MVseg: this corresponds to a two-step majority voting performed over the BIO

labels of the tokens. First, a majority voting is used for the segmentation process

(i.e. to decide whether the token should be considered as part of a segment - a

named entity for example), then a second majority voting is used to decide the

labels of the segments identified (e.g. what type of named entity it is);

• CRF-CONC: a CRF using all the data instances from all annotators concatenated

for training.

The proposed model is also compared with the two variants of multi-label model

proposed in (Dredze et al., 2009): MultiCRF and MultiCRF-MAX. The latter differs

from the former by training the CRF on the most likely (maximum) label instead of

training on the (fuzzy) probabilistic labels (kindly see (Dredze et al., 2009) for the

details). As an upper-bound, we also show the results of a CRF trained on ground

truth (gold) data. We refer to this as “CRF-GOLD”.

For all the experiments a simple set of features that is common in NLP tasks was

used, namely word identity features, capitalization patterns, numeric patterns, other

morphologic features (e.g. prefixes and suffixes), part-of-speech tags, bi-gram and tri-

gram features and window features (window size = 3). In MA-CRF, the EM algorithm

was initialized with token-level majority voting (MVtoken). The MultiCRF model was

initialized with uniform label priors.
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Simulated annotators

There are a few publicly available “golden” datasets for NER such as the 2003 CONLL

English NER task dataset (Sang & Meulder, 2003), which is a common benchmark

for sequence labeling tasks in the NLP community. Using this dataset, we obtained a

trainset and a testset of 14987 and 3466 sentences respectively.

Since the 2003 CONLL shared NER dataset does not contain labels from multiple

annotators, these were simulated for different reliabilities using the methods described

in Section 3.4 in the context of logistic regression: “model noise” and “label flips”.

Using the “model noise” method, we simulated 5 artificial annotators with σ2 =

{0.005, 0.05, 0.05, 0.1, 0.1}. This choice of values intends to reproduce a scenario where

there is a “good”, two “average” and two “bad” annotators. The proposed approach

(MA-CRF) and the four baselines were then evaluated against the testset. This process

was repeated 30 times and the average results are presented in Table 3.4. The results

indicate that MA-CRF outperforms the four proposed baselines in both the trainset and

testset. In order to assess the statistical significance of this result, after a Kolmogorov-

Smirnov test verified the normality of the distributions, a paired t-test was used to

compare the mean F1-score of MA-CRF in the testset against the MVseq, MVtoken,

MVseg and CRF-CONC baselines. The obtained p-values were 4 × 10−25, 7 × 10−10,

4 × 2−8 and 1 × 10−14 respectively, which indicates that the differences are all highly

significant.

Regarding the MultiCRF model, we can see that, at best, it performs almost as good

as MVtoken. Not surprisingly, the “MAX” version of MultiCRF performs better than

the standard version. This behavior is expected since the “hard” labels obtained from

majority voting also perform better than the “soft” label effect obtained in CRF-CONC.

Nonetheless, neither version of MultiCRF performs as well as MA-CRF (testset p-values

are 1× 10−26 and 1× 10−11 for the MultiCRF and MultiCRF-MAX respectively).

In order to empirically show that the proposed approach does not rely on repeated

labeling, i.e. multiple annotators labeling the same data instances, the same “golden”

NER dataset was split into five subsets, and for each subset an annotator was simulated

with a different level of reliability σ2 (namely, the values σ2 = {0.005, 0.05, 0.05, 0.1, 0.1}
were used) according to the “model noise” method described in Section 3.4. This pro-

cess was repeated 30 times and the average results for the provided testset can be found
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Trainset Testset

Method Prec. Recall F1 Prec. Recall F1

MVseq 24.1% 50.5% 32.6 ± 2.0% 47.3% 30.9% 37.3 ± 3.1%

MVtoken 56.0% 69.1% 61.8 ± 4.1% 62.4% 62.3% 62.3 ± 3.4%

MVseg 52.5% 65.0% 58.0 ± 6.9% 60.6% 57.1% 58.7 ± 7.1%

CRF-CONC 47.9% 49.6% 48.4 ± 8.8% 47.8% 47.1% 47.1 ± 8.1%

MultiCRF 39.8% 22.6% 28.7 ± 3.8% 40.0% 15.4% 22.1 ± 5.0%

MultiCRF-MAX 55.0% 66.7% 60.2 ± 4.1% 63.2% 58.4% 60.5 ± 3.6%

MA-CRF 72.9% 81.7% 77.0 ± 3.9% 72.5% 67.7% 70.1 ± 2.5%

CRF-GOLD 99.7% 99.9% 99.8% 86.2% 87.8% 87.0%

Table 3.4: Results for the CONLL NER task with 5 simulated annotators (with σ2 =

[0.005, 0.05, 0.05, 0.1, 0.1]) with repeated labeling.

Trainset Testset

Method Precision Recall F1 Precision Recall F1

CRF-CONC 52.1% 56.5% 54.0 ± 7.3% 53.9% 51.7% 52.6 ± 6.4%

MA-CRF 63.8% 71.1% 67.2 ± 1.7% 65.7% 62.7% 64.2 ± 1.6%

CRF-GOLD 99.7% 99.9% 99.8% 86.2% 87.8% 87.0%

Table 3.5: Results for the NER task with 5 simulated annotators (with σ2 =

[0.005, 0.05, 0.05, 0.1, 0.1]) without repeated labeling.

in Table 3.5. Since there was no repeated labeling, the majority voting baselines, as

well as the multi-label models (MultiCRF and MultiCRF-MAX), did not apply. The

obtained results indicate that, in a scenario without any repeated labeling, the pro-

posed approach (MA-CRF) still outperforms the CRF-CONC baseline. The statistical

significance of the difference between the F1-scores in the testset of these methods was

evaluated through a paired t-test using Python’s Scipy package1, indicating that the

difference of the means is highly significant (p− value = 1.47× 10−11).

The comparison of both experiments (with and without repeated labeling) indicates

that, in this setting, having less repeated labeling hurts the performance of MA-CRF.

Since this model differentiates between annotators with different levels of expertise, its

performance is best when the more reliable ones have annotated more sequences, which

is more likely to happen with more repeated labeling. Naturally, the opposite occurs

1http://www.scipy.org
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with CRF-CONC. Since in this setting the less reliable annotators dominate, more

repeated labeling translates in even more predominance of lower quality annotations,

which affects the performance of CRF-CONC.

For the NP chunking task, the 2003 CONLL English NER dataset was also used.

Besides named entities, this dataset also provides part-of-speech tags and syntactic tags

(i.e. noun phrases, verbal phrases, prepositional phrases, etc.). The latter were used to

generate a train and a testset for NP chunking with the same sizes of the corresponding

NER datasets.

In order to simulate multiple annotators in the NP chunking data, the alternative

method of randomly flipping the label of each token with uniform probability p(flip)

was used. Since for this task there are only two possible labels for each token (part

of a noun phrase or not part of a noun phrase)1, it is trivial to simulate multiple

annotators by randomly flipping labels. Using this method we simulated 5 annotators

with label flip probabilities p(flip) = {0.01, 0.1, 0.3, 0.5, 0.7}. This process was repeated

30 times and the average results are presented in Table 3.6. Differently to NER, NP

chunking is only a segmentation task, therefore the results for the MVseg baseline

would be equal to the results for MVtoken. The experimental evidence shows that the

proposed approach (MA-CRF) achieves a higher F1-score than the MVseq, MVtoken

and CRF-CONC baselines. The statistical significance of the difference between the

testset F1-scores of MA-CRF and all these three baselines (MVseq, MVtoken and CRF-

CONC) was evaluated using a paired t-test, yielding p-values of 2×10−30, 7×10−22 and

2 × 10−16 respectively. As with the NER task, the MA-CRF model also outperforms

the MultiCRF and MultiCRF-MAX approaches (testset p-values are 6 × 10−32 and

2× 10−21 respectively).

Amazon mechanical turk

The use of crowdsourcing platforms to annotate sequences is currently a very active

research topic (Laws et al., 2011), with many different solutions being proposed to

improve both the annotation and the learning processes at various levels like, for ex-

ample, by evaluating annotators through the use of an expert (Voyer et al., 2010), by

1In fact, since a BIO decomposition is being used, there are three possible labels: B-NP, I-NP and

O, and these labels are the ones that were used in the random flipping process.
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Trainset Testset

Method Prec. Recall F1 Prec. Recall F1

MVseq 50.6% 55.6% 53.0 ± 0.4% 66.1% 63.1% 64.6 ± 2.4%

MVtoken 83.6% 76.1% 79.7 ± 0.2% 83.3% 86.9% 85.0 ± 0.7%

CRF-CONC 84.3% 84.7% 84.5 ± 1.8% 83.8% 82.9% 83.3 ± 1.9%

MultiCRF 76.6% 65.6% 70.7 ± 0.4% 75.6% 64.9% 69.8 ± 0.4%

MultiCRF-MAX 83.6% 81.3% 82.5 ± 1.0% 81.2% 79.0% 80.1 ± 1.0%

MA-CRF 92.0% 91.8% 91.9 ± 1.9% 89.7% 89.7% 89.7 ± 0.8%

CRF-GOLD 99.9% 99.9% 99.9% 95.9% 91.1% 91.0%

Table 3.6: Results for the NP chunking task with 5 simulated annotators (with p(flip) =

[0.01, 0.1, 0.3, 0.5, 0.7]) with repeated labeling.

using a better annotation interface (Lawson et al., 2010), or by learning from partially

annotated sequences thus reducing annotation costs (Fernandes & Brefeld, 2011).

With the purpose of obtaining real data from multiple annotators, we uploaded

400 news articles from the 2003 CONLL shared NER task (for which we have ground

truth) on AMT for workers to label1. In this experiment, the workers were required

to identify the named entities in the sentence and classify them as persons, locations,

organizations or miscellaneous. Together with the named entity definition and the

categories description, the workers were also provided with two exemplifying sentences.

Workers with just a couple of answers were considered uninterested in the task and their

answers were discarded, giving a total of 47 valid annotators. The average number of

annotators per news article was 4.93, and each annotator labelled an average of 42 news

articles (see Figures 3.9a and 3.9b). In order to assess the quality of the annotators, we

measured the F1-scores of their answers against the ground truth. Figure 3.9c shows a

boxplot of the F1-scores obtained. It is interesting to notice that the quality of the AMT

workers varies enormously, with the lowest F1-score being 17.60% (a very unreliable

annotator), while the highest F1-score is 89.11% (arguably almost an expert).

As with the experiments with simulated annotators, the different approaches are

evaluated in the provided testset, as well as in the ground truth labels for those 400

news articles. The obtained results are presented in Table 3.7. These results indicate

that the proposed approach is better at uncovering the ground truth than all the

other approaches tested. This, in turn, results in a better performance on the testset.

1Datasets are available at: http://www.fprodrigues.com/crf-ma/
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Figure 3.9: Boxplots of (a) the number of answers per AMT worker, (b) the number of

answers per news article, and (c) the F1-scores of the answers provided by the different

annotators.

Furthermore, we also evaluated the RMSE between the true F1-scores of the annotators

(measured against the actual ground truth) and their estimated F1-scores according

to the MA-CRF approach (measured against the estimated ground truth). A value

of 8.61% was obtained, thus meaning that the reliability of the annotators is being

approximated quite well. These results also indicate that crowdsourcing presents an

interesting alternative solution for obtaining labeled data that could be used for training

a NER system.

In order to evaluate the impact of repeated labeling, a random subsampling of the

AMT data was performed. This experiment allows us to reproduce a situation where

each article is only labeled by one annotator, thus representing the minimum cost

attainable with AMT (with the same price per task). For each of the 400 news articles,

a single annotator was selected at random from the set of workers who labeled that

article. This process was repeated 30 times to produce 30 subsampled datasets. The

average precision, recall and F1-scores of the different methods are shown in Table 3.8.

Notice that, since there is no repeated labeling, both the majority voting baselines and

the multi-label models (MultiCRF and MultiCRF-MAX) do not apply. The obtained

results show that MA-CRF also outperforms CRF-CONC in this setting (p-value =

3.56× 10−7). Interestingly, when compared to the results in Table 3.7, this experiment

also shows how much could be gained by repeated labeling, thus providing a perspective

on the trade-off between repeated labeling and cost.
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Trainset Testset

Method Precision Recall F1 Precision Recall F1

MVseq 79.0% 55.2% 65.0% 44.3% 81.0% 57.3%

MVtoken 79.0% 54.2% 64.3% 45.5% 80.9% 58.2%

MVseg 83.7% 51.9% 64.1% 46.3% 82.9% 59.4%

CRF-CONC 86.8% 58.4% 69.8% 40.2% 86.0% 54.8%

MultiCRF 67.8% 15.4% 25.1% 74.8% 3.7% 7.0%

MultiCRF-MAX 79.5% 51.9% 62.8% 84.1% 37.1% 51.5%

MA-CRF 86.0% 65.6% 74.4% 49.4% 85.6% 62.6%

CRF-GOLD 99.2% 99.4% 99.3% 79.1% 80.4% 74.8%

Table 3.7: Results for the NER task using real data obtained from Amazon mechanical

turk.

Trainset Testset

Method Precision Recall F1 Precision Recall F1

CRF-CONC 71.1% 42.8% 53.1 ± 10.5% 35.9% 70.1% 47.2 ± 8.7%

MA-CRF 76.2% 54.2% 63.3 ± 1.6% 46.0% 78.2% 57.9 ± 1.8%

CRF-GOLD 99.2% 99.4% 99.3% 79.1% 80.4% 74.8%

Table 3.8: Results for the NER task using data from Amazon mechanical turk without

repeated labelling (subsampled data from the original dataset).

3.5 Conclusion

In this chapter, we presented latent expertise models: a novel class of probabilistic mod-

els for supervised learning from multiple-annotator data. Unlike previous approaches,

these models treat the reliabilities of the annotators as latent variables. This design

choice results in models with various attractive characteristics, such as: its easy im-

plementation and extension to other classifiers, the natural extension to structured

prediction problems using CRFs, and the ability to overcome the overfitting to which

more complex models of the annotators expertise can be susceptible as the number of

instances labeled by each annotator decreases.

We empirically showed, using both simulated annotators and human-labeled data

from Amazon mechanical turk, that under most conditions, the proposed MA-LR model

can achieve comparable or even better results when compared to a state-of-the-art

model (Raykar et al., 2010), despite its much smaller set of parameters to model the
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annotators expertise. When extended to CRFs, the proposed model was shown to

significantly outperform traditional approaches, such as majority voting and using the

labeled data from all the annotators concatenated for training, even in situations with

high levels of noise in the labels of the annotators and when the less reliable annotators

dominate.
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Chapter 4

Gaussian process classification

with multiple annotators

4.1 Introduction

The models discussed in Chapter 3 are based on linear classifiers. This is the case with

most of the state of the art in learning from multiple annotators and crowds. However,

in a wide majority of classification problems, the classes are not linearly separable. For

such problems, one can consider the use of basis functions as a way of achieving non-

linear classification boundaries, but since the functions are fixed a-priori, the number of

basis functions needed would grow exponentially with the dimensionality of the input

space (Bishop, 2006). Alternatively, one can achieve non-linear classifiers by considering

non-parametric models such as Gaussian processes.

In this chapter, we generalize standard Gaussian process classifiers to explicitly

handle multiple annotators with different levels of expertise. Gaussian processes (GPs)

are flexible non-parametric Bayesian models that fit well within the probabilistic mod-

eling framework (Barber, 2012). By explicitly handling uncertainty, GPs provide a

natural framework for properly dealing with multiple annotators with different levels

of expertise. This way, we are bringing a powerful non-linear Bayesian classifier to

multiple-annotator settings. Interestingly, it turns out that the computational cost of

approximate Bayesian inference with expectation propagation (EP) involved in this new

model is only greater up to a small factor (usually between 3 and 5) when compared

with standard GP classifiers, as we shall see in Section 4.6.
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Another great property of GPs is that they provide a natural framework for devel-

oping active learning strategies. Active learning is particularly important in multiple-

annotator settings. Since different annotators have different levels of expertise, we

wish to find both the instance whose label will be most informative for the classifica-

tion model and the annotator who is more likely to provide a correct label. Aiming

at reducing this cost, Chen et al. (2013) consider the problem of budget allocation

in crowdsourcing environments, which they formulate as a Bayesian Markov decision

process (MDP). In order to cope with computational tractability issues, they propose

a new approximate policy to allocate a pre-fixed amount of budget among instance-

worker pairs so that the overall accuracy can be maximized.

In the context of Gaussian processes, active learning was studied by Lawrence et al.

(2003), who proposed a differential entropy score, which favours points whose inclusion

leads to a large reduction in predictive (posterior) variance. This approach was then

extended by Kapoor et al. (2007), by introducing a heuristic which balances posterior

mean and posterior variance. In this chapter, we propose an active learning methodol-

ogy that further extends this work to multiple-annotator settings and introduces a new

heuristic for selecting the best annotator to label an instance.

On a different line of work, Bachrach et al. (2012) propose a probabilistic graphical

model that jointly models the difficulties of questions, the abilities of participants and

the correct answers to questions in aptitude testing and crowdsourcing settings. By

running approximate Bayesian inference with EP, the authors are able to query the

model for the different variables of interest. Then, by exploiting the principle of entropy,

the authors devise an active learning scheme, which queries the answers which are more

likely to reduce the uncertainty in the estimates of the model parameters. However,

this work does not address the problem of explicitly learning a classifier from multiple-

annotator data as we do in this chapter. Contrarily, Yan et al. (2011) suggest an active

learning methodology based on a logistic regression classifier. The authors are able to

formulate the active learning problem as a bi-convex optimization problem, which they

solve using a quasi-Newton numerical optimization procedure. Although this strategy

is capable of jointly selecting the new training points and annotators, the fact that

it requires a numerical optimization routine can make it computationally expensive.

Furthermore, it is specific to the logistic-regression-based probabilistic model proposed
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by the authors. In this chapter, we propose a simple and yet effective active learning

methodology that is well suited for the Gaussian processes framework.

The remainder of this chapter is organized as follows: Section 4.2 introduces Gaus-

sian processes and how they can be used for regression and classification; Sections 4.3

and 4.4 describe, respectively, the proposed GP-based multiple-annotator model and

how to perform inference on it; Section 4.5 describes the proposed active learning

methodology; in Section 4.6 the proposed approaches are experimentally evaluated

and, finally, Section 4.7 provides some conclusions.

4.2 Gaussian processes

In the previous chapter, we considered linear parametric models of the inputs x. For

continuous response variables y ∈ R, these models take the form

y = f(x) + ε, (4.1)

where f is a linear parametric function of the inputs x, such that, for example, f(x) =

ηTx, and ε ∼ N(ε|0, σ2). This particular formulation corresponds to a linear regression

model. Gaussian processes contrast with this kind of models in the sense that they are

non-parametric models.

A Gaussian process (GP) is defined as a collection of random variables, any finite

number of which have (consistent) joint Gaussian distributions (Rasmussen & Williams,

2005). Let us consider a multivariate (joint) Gaussian distribution, N(f|µ,Σ), over

the N-dimensional vector f = (f(x1), . . . , f(xN ))T. While a multivariate Gaussian

distribution is fully specified by a mean vector µ and a covariance matrix Σ, a GP is

a stochastic process fully specified by a mean function m(x) = E[f(x)] and a positive

definite covariance function k(x,x′) = cov[f(x), f(x′)]. By making use of the mean and

covariance functions, GPs specify a way to determine the mean of any arbitrary point

x in the input space and how that point covaries with the nearby points. We can then

think of GPs as a generalization of a multivariate Gaussian distribution to infinitely

many variables. If we loosely see a function as a infinitely long vector f, where each

entry specifies the function value f(x) for a particular input x, then we can see a GP

as a probability distribution over functions.
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A key step in modeling data with GPs, is then to define the mean and covariance

functions. The mean function defines the mean of the process and it is commonly taken

to be a zero-value vector, i.e. m(x) = 0. As for the covariance function, it specifies

basics aspect of the process, such as stationarity, isotropy, smoothness and periodicity.

Perhaps the most common choice of covariance function is the squared exponential,

which is defined as

kSE(x,x′) = exp

(
− |x− x′|2

2l2

)
, (4.2)

with the parameter l defining the characteristic length-scale. Notice how this function

goes to unity as x becomes closer to x′. Hence, nearby points are more likely to covary.

As a result, a GP prior with a squared exponential covariance function prefers smooth

functions. Figure 4.1(a) shows five sample functions from a GP with zero-mean and a

squared exponential covariance function with l = 1.

Regression

Having specified a GP prior, p(f|X) = GP(m(x) = 0, k(x,x′)), for the function values

f, where X = {xn}Nn=1 denotes the input data, the next step is to specify an appropri-

ate likelihood function. If we are considering a regression problem, then perhaps the

simplest likelihood function to use is a Gaussian distribution with mean f(x) and σ2

variance. Letting y = {yn}Nn=1 denote the target values corresponding to the inputs

X, such that yn ∈ R, we have that y ∼ N(y|f, σ2IN ), where IN refers to the N × N
identity matrix. Making use of marginalization property for Gaussian distributions in

(B.6), the marginal distribution of y is given by

p(y|X) =

∫
p(y|f)︸ ︷︷ ︸
likelihood

p(f|X)︸ ︷︷ ︸
GP prior

df

=

∫
N(y|f, σ2IN )N(f|0N ,KN ) df

= N(y|0N , σ2IN + KN︸ ︷︷ ︸
VN

)

= N(y|0N ,VN ), (4.3)

where 0N is used to denote a N -dimensional vector of zeros, KN denotes the covariance

function k(x,x′) evaluated between every pair of training inputs, and we defined VN ,
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((a)) samples from the GP prior ((b)) predictive posterior

((c)) samples from the GP posterior ((d)) pred. post. after hyper-param. opti-

mization

Figure 4.1: Example Gaussian process.
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σ2IN + KN , so that VN is a covariance matrix with elements

v(x,x′) = k(x,x′) + σ2δx,x′ , (4.4)

where δx,x′ denotes the Kronecker delta function, which in this case takes the value 1

if x = x′ and 0 otherwise.

In a regression problem, our aim is to make a prediction y∗ for a new input x∗. The

joint distribution over y∗, y1, ..., yN is simply given by

p(y∗,y|x∗,X) = N(y∗,y|0N+1,VN+1), (4.5)

where

VN+1 =

(
VN k∗
kT
∗ k∗∗ + σ2

)
. (4.6)

In the matrix above, we use k∗ to denote the covariance function evaluated between the

test point x∗ and all the other training points in X, and k∗∗ to denote the covariance

function evaluated between the test point x∗ against itself, i.e. k∗∗ = k(x∗, x∗).

Using this joint distribution, we can now determine the distribution of y∗ condi-

tioned on y, X and x∗, i.e. the predictive distribution, by making use of the conditional

probability for Gaussians from (B.5), giving:

p(y∗|y,x∗,X) = N(y∗|kT
∗VNy, k∗∗ + σ2 − kT

∗ (VN )−1k∗). (4.7)

Figure 4.1(b) shows the predictive posterior distribution given an artificial dataset

consisting of 20 samples from the function f(x) = sin(4x) plus small random Gaussian

white noise. Notice how the model is most confident in regions around the observed

data points and becomes more and more uncertain as we get away from those regions.

Figure 4.1(c) shows three samples from the posterior GP. As we can see, the sampled

functions are now constrained by the observations to go nearby them.

So far we have been assuming the hyper-parameter l, the length-scale of the covari-

ance function, to be fixed. However, it can be optimized by maximizing the marginal

log likelihood of the observations given by

log p(y|X) = logN(y|0N ,VN )

= −D
2

log(2π)− 1

2
log |VN | −

1

2
yT(VN )−1y. (4.8)

Figure 4.1(d) shows the new predictive posterior distribution for the artificial dataset

after optimizing the length-scale hyper-parameter l using a numeric optimizer, namely

L-BFGS (Nocedal & Wright, 2006).
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Classification

As we did for regression, we can use Gaussian processes for classification by choosing

an appropriate likelihood function. For the sake of simplicity, we shall focus on bi-

nary classification problems, although our discussion can be generalized to multi-class

problems. For binary classification problems, a common choice of likelihood functions

are sigmoid-like functions such as the logistic sigmoid, which we use in Section 3.2 for

logistic regression, or the probit function (Rasmussen & Williams, 2005). Here, we shall

consider the probit function, which corresponds to the cumulative density function of

a standard Gaussian distribution and is given by

Φ(fn) =

∫ fn

−∞
N(u|0, 1) du, (4.9)

where, following the literature, we abbreviated f(xn) as fn, in order to simplify no-

tation. Figure 4.2 shows the probit function for different values of fn. This function

then allows us to map the latent function values fn into the [0, 1] interval, making the

values of Φ(fn) valid probabilities which are then suitable for binary classification. The

probability of an instance belonging to the positive class, p(cn = 1|fn), then becomes

Φ(fn). Since the values of p(cn|fn) are required to sum to 1, in order for it to be a

valid probability distribution, we have that p(cn = 0|fn) = 1− p(cn = 1|fn) = Φ(−fn),

where we made use of the fact that 1 − Φ(fn) = Φ(−fn). The likelihood can then be

written as p(cn|fn) = Φ((−1)(1−cn)fn), which can easily be verified by assigning values

to cn ∈ {0, 1}. Gaussian process classification then proceeds by placing a GP prior over

the latent function f . Figure 4.3 shows a factor graph representation of the GP model

for classification.

In order to predict the class c∗ of a new test point x∗ given an observed dataset

D = {X, c}, we first compute the distribution of the latent variable f∗ corresponding

to the test point x∗

p(f∗|x∗,X, c) =

∫
p(f∗|f,x∗,X) p(f|X, c) df, (4.10)

and then use this distribution to compute the predictive distribution

p(c∗ = 1|x∗,X, c) =

∫
Φ(f∗) p(f∗|x∗,X, c) df∗. (4.11)

For a probit likelihood, the predictive distribution in (4.11) can be easily evaluated

analytically. However, the distribution over f∗ given by (4.10) is now intractable to
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Figure 4.2: Probit function.

compute, due to the fact that the posterior over the latent functions values p(f|X, c) is

non-Gaussian. This a consequence of the fact that the probit likelihood is not conjugate

to the Gaussian process prior. Hence, we cannot simply apply Bayes theorem in order

to obtain an exact answer as follows

posterior︷ ︸︸ ︷
p(f|X, c) =

probit
likelihood︷ ︸︸ ︷
p(c|f)

GP
prior︷ ︸︸ ︷
p(f|X)

p(c|X)︸ ︷︷ ︸
model evidence

. (4.12)

A standard procedure is to use EP to approximate this posterior distribution with a

Gaussian. The interested reader is redirected to (Rasmussen & Williams, 2005) for

the details on the EP algorithm for GP classification with a probit likelihood. In the

following section, we extend this model to multiple-annotator settings.

4.3 Proposed model

As previously discussed, when learning how to classify from multiple annotators, instead

of a single true class label cn for the nth instance, we are given a vector of class labels

yn = (y1
n, ..., y

R
n )T, corresponding to the noisy labels provided by the R annotators that

labeled that instance. Hence, a dataset D of size N is defined as D = {X,Y}, where

Y = (y1, ...,yN )T.
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cn

fn

g(f) = GP(m(x) = 0, k(x,x′))

hn(fn, cn) = Φ((−1)(1−cn)fn)

N

Figure 4.3: Factor graph for GP classification.

Letting cn be the unobserved true class label for a given input point xn, our goal

is to estimate the posterior distribution of c∗ for a new test point x∗. Mathematically,

we want to compute

p(c∗ = 1|x∗,X,Y) =

∫
Φ(f∗) p(f∗|x∗,X,Y) df∗, (4.13)

where the posterior distribution of the latent variable f∗ is given by the following

integral

p(f∗|x∗,X,Y) =

∫
p(f∗|x∗,X, f) p(f|X,Y) df. (4.14)

So far, these two equations are very similar to the ones for standard GP classification,

i.e. (4.11) and (4.10). As we did there, we shall place a GP prior on f, such that

f|X ∼ GP(m(x) = 0, k(x,x′)). By making use of Bayes rule, the posterior distribution

of the latent variables p(f|X,Y) that appears on the right-hand side of (4.14) becomes

p(f|X,Y) =
p(f|X) p(Y|f)
p(Y|X)

, (4.15)

where the prior p(f|X) is a zero-mean Gaussian distribution N(f|0N ,KN ) with a N×N
covariance matrix KN obtained by evaluating the covariance function k(x,x′) between

all input points, p(Y|f) is the likelihood term, and the denominator p(Y|X) corresponds

to the marginal likelihood of the data.

So far, we have not established how to model p(Y|f). In order to do that, we make

use of the latent variable c introduced earlier, which corresponds to the (latent) true

class labels. Using this latent variable, we can define the data-generating process to be

the following: for each input point xn there is a (latent) true class label cn, and the
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different R annotators then provide noisy versions yrn of cn. This amounts to saying that

p(yn|fn) =
∑

cn
p(cn|fn) p(yn|cn). Assuming that the annotators make their decisions

independently of each other allows p(yn|cn) to factorize, yielding

p(yn|fn) =
∑
cn

p(cn|fn)

R∏
r=1

p(yrn|cn), (4.16)

where p(cn|fn) = Φ((−1)(1−cn)fn) is the probit likelihood for values of cn ∈ {0, 1}, and

yrn|cn = 1 ∼ Bernoulli(αr)

yrn|cn = 0 ∼ Bernoulli(1− βr).

The parameters of these Bernoullis, αr and βr, can therefore be interpreted as the

sensitivity and specificity, respectively, of the rth annotator. This formulation is similar

to one proposed by Raykar et al. (2010). As we discussed in the previous chapter, this

approach has the advantage of being able to capture biases in the annotators’ labeling

style. Figure 4.4 shows a factor graph representation of the proposed multiple-annotator

GP classification model, where the differences to the factor graph for standard GP

classification in Figure 4.3 become clear. Also, please notice that in situations where

each annotator does not label all the instances, R can be simply replaced by Rn, which

denotes the annotators that labeled the nth instance.

Since the values of c are not observed, we have to marginalize over them by summing

over all its possible values. Hence,

p(f|X,Y) =
p(f|X)

∑
c p(Y|c) p(c|f)
p(Y|X)

, (4.17)

where we introduced the vector c = (c1, ..., cN )T.

By making use of the i.i.d. assumption of the data, we can re-write the posterior of

the latent variables f in (4.15) as

p(f|X,Y) =
1

Z
p(f|X)

N∏
n=1

∑
cn∈{0,1}

p(yn|cn) p(cn|fn), (4.18)

where Z is a normalization constant corresponding to the marginal likelihood of the

data p(Y|X). As with standard GP classification, the non-Gaussian likelihood term

deems the posterior distribution of the latent variables p(f|X,Y) also non-Gaussian,

thus making the integral in (4.14) intractable. In the following section, we shall develop

an EP algorithm (Minka, 2001) for performing approximate Bayesian inference in this

model.
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Figure 4.4: Factor graph for GP classification with multiple annotators.

4.4 Approximate inference

Our goal with EP is to approximate the posterior distribution of the latent variables

p(f|X,Y) with a Gaussian distribution q(f|X,Y) = N(µ,Σ). In EP, we approximate

the likelihood terms by local likelihood approximations in the form of unnormalized

Gaussian functions in the latent variables fn

∑
cn∈{0,1}

p(yn|cn) p(cn|fn) ' tn(fn|Z̃n, µ̃n, σ̃2
n)

, Z̃nN(fn|µ̃n, σ̃2
n), (4.19)

which defines the site parameters Z̃n, µ̃n and σ̃2
n of EP.

Also, in EP we abandon exact normalization for tractability. The product of the

(independent) likelihoods tn is then given by (Rasmussen & Williams, 2005)

N∏
n=1

tn(fn|Z̃, µ̃n, σ̃2
n) = N(µ̃, Σ̃)

N∏
n=1

Z̃n, (4.20)

where µ̃ is a vector of µ̃n and Σ̃ is a diagonal matrix with Σ̃nn = σ̃2
n.
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The posterior p(f|X,Y) is then approximated by q(f|X,Y), which is given by

q(f|X,Y) ,
1

ZEP
p(f|X)

N∏
n=1

tn(fn|Z̃, µ̃n, σ̃2
n)

= N(µ,Σ), (4.21)

with µ = ΣΣ̃−1µ̃ and Σ = (K−1
N + Σ̃−1)−1, where we made use of the formula for the

product of two Gaussians from Eq. B.1. The normalization constant, ZEP = q(Y|X),

is the EP algorithm’s approximation to the normalization term Z used in (4.18).

All there is to do now, is to choose the parameters of the local approximating

distributions tn. In EP, this consists of three steps. In step 1, the cavity distribution

q−n(fn) is computed by making use of the result in Eq. B.3 for the division of two

Gaussians to divide the approximate posterior marginal q(fn|X,Y) = N(fn|µn, σn) by

the approximate likelihood term tn that we want to refine, yielding

q−n(fn) ∝
∫
p(f|X)

N∏
j 6=n

tj(fj , Z̃j , µ̃j , σ̃
2
j ) dfj

, N(fn|µ−n, σ2
−n), (4.22)

where

µ−n = σ2
−n(σ−2

n µn − σ̃−2
n µ̃n) (4.23)

σ2
−n = (σ−2

n − σ̃−2
n )−1. (4.24)

In step 2, we combine the cavity distribution with the exact likelihood term,
∑

cn∈{0,1} p(yn|cn)p(cn|fn),

to get the desired (non-Gaussian) marginal, given by

q̂(fn) , ẐnN(µ̂n, σ̂
2
n)

' q−n(fn)
∑

cn∈{0,1}

p(yn|cn) p(cn|fn). (4.25)

By making use of the definitions of p(yn|cn) and p(cn|fn) introduced earlier, this

expression can be further manipulated, giving

q̂(fn) ' q−n(fn)(1− Φ(fn))
R∏
r=1

p(yrn|cn = 0) + q−n(fn) Φ(fn)
R∏
r=1

p(yrn|cn = 1)

= bnN(fn|µ−n, σ2
−n) + (an − bn) Φ(fn)N(fn|µ−n, σ2

−n), (4.26)
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where we defined

an =
R∏
r=1

p(yrn|cn = 1) =
R∏
r=1

(αr)(yn)(1− αr)(1−yn) (4.27)

bn =
R∏
r=1

p(yrn|cn = 0) =
R∏
r=1

(1− βr)(yn)(βr)(1−yn). (4.28)

We then choose a Gaussian approximation to the non-Gaussian marginal in (4.26) by

moment matching, i.e. we pick the Gaussian approximation that matches the moments

of (4.26). These moments are given by

Ẑn = bn + (an − bn) Φ(ηn) (4.29)

µ̂n = µ−n +
(an − bn)σ2

−nN(ηn)[
bn + (an − bn) Φ(ηn)

]√
1 + σ2

−n

(4.30)

σ̂2
n = σ2

−n −
σ4
−n

1 + σ2
−n

(
ηnN(ηn) (an − bn)

bn + (an − bn) Φ(ηn)
+

N(ηn)2 (an − bn)2

(bn + (an − bn) Φ(ηn))2

)
, (4.31)

where

ηn ,
µ−n√

1 + σ2
−n

.

The derivation of these moments can be found in Appendix C.1. Notice how, in the par-

ticular case when R = 1, αr = 1 and βr = 1, we get back the moments for the standard

GP classification model with a probit likelihood (see Rasmussen & Williams (2005)).

This shows how the proposed model is a generalization of the standard GP classifica-

tion model to multiple annotators, having the standard single-annotator version as a

special case.

Finally, in step 3, we compute the approximations tn that make the posterior have

the desired marginals from step 2. Particularly, we want the product of the cavity distri-

bution and the local approximation to have the desired moments, leading to (Rasmussen

& Williams, 2005)

tn(fn|Z̃n, µ̃n, σ̃2
n) =

q̂(fn)

q−n(fn)
(4.32)

µ̃n = σ̃2
n(σ̂−2

n µ̂n − σ−2
−nµ−n) (4.33)

σ̃2
n = (σ̂−2

n − σ−2
−n)−1 (4.34)

Z̃n = Ẑn
√

2π
√
σ2
−n + σ̃2

n exp

(
1

2

µ−n − µ̃n
σ2
−n − σ̃2

n

)
, (4.35)
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where we made use of the formula for the division of two Gaussians in Eq. B.3.

The different local approximating terms tn are then updated sequentially by iter-

ating through these three steps until convergence.

In order to make predictions, we make use of the EP approximation to the posterior

distribution q(f|X,Y) defined in (4.21), and plug it in (4.14) to compute the predictive

mean and variance of the latent variable f∗

Eq[f∗|x∗,X,Y] = kT
∗ (KN + Σ̃)−1µ̃ (4.36)

Vq[f∗|x∗,X,Y] = k(x∗,x∗)− kT
∗ (KN + Σ̃)−1k∗, (4.37)

where k∗ is a vector whose entries correspond to the covariance function k(x,x′) eval-

uated between the test point x∗ and all the training input points.

Finally, the approximate predictive distribution for the true class label c∗ is given

by the integral in (4.13), which can be analytically approximated as (Rasmussen &

Williams, 2005)

q(c∗ = 1|x∗,X,Y) = Φ

(
kT
∗ (KN + Σ̃)−1µ̃√

1 + k(x∗,x∗)− kT
∗ (KN + Σ̃)−1k∗

)
. (4.38)

So far, we have been assuming the annotators’ parameters αr and βr to be fixed.

However, we need to estimate those as well. This is done iteratively by scheduling the

updates as follows: every i EP sweeps through the data, or alternatively, when the

difference in the marginal likelihood between two consecutive iterations ε falls below a

certain threshold1, the values of αr and βr are re-estimated as

αr =

∑N
n=1 y

r
n q(cn = 1|X,Y)∑N

n=1 q(cn = 1|X,Y)
(4.39)

βr =

∑N
n=1(1− yrn)(1− q(cn = 1|X,Y))∑N

n=1 1− q(cn = 1|X,Y)
. (4.40)

Although this will raise the computational cost of EP, as we shall see in Section 4.6,

this increase is only by a small factor.

1During the experiments, these values were set to i = 3 and ε = 10−4.
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4.5 Active learning

The full Bayesian treatment of the Gaussian process framework provides natural ex-

tensions to active learning settings, which can ultimately reduce the annotation cost

even further.

In active learning with multiple annotators our goal is twofold: (1) pick an instance

to label next and (2) pick the best annotator to label it. For simplicity, we choose to

treat the two problems separately. Hence, in order to pick an instance to label, we take

the posterior distribution of the latent variable p(fu|xu,X,Y) = N(fu|µu, σ2
u) for all

unlabeled data points xu ∈ Xu and compute

x∗ = arg min
xu∈Xu

|µu|√
1 + σu

. (4.41)

This approach is analogous to the one proposed in Kapoor et al. (2007) for single-

annotator settings and provides a balance between the distance to the decision bound-

ary, given by the posterior mean |µu|, and the posterior variance σu (uncertainty)

associated with that point.

As for the choice of the annotator to label the instance picked, we proceed by iden-

tifying the annotator who is more likely to label it correctly given our current state of

knowledge, i.e. given our prior beliefs of the class which the instance belongs to and the

information about the levels of expertise of the different annotators. Mathematically,

we want to pick the annotator r∗ that maximizes

r∗ = arg max
r

(
p(yr = 1|c = 1) q(c = 1|x∗,X,Y) + p(yr = 0|c = 0) q(c = 0|x∗,X,Y)

)
= arg max

r

(
αrq(c = 1|x∗,X,Y) + βr

(
1− q(c = 1|x∗,X,Y)

))
. (4.42)

However, since we are now actively picking the annotators, there is a risk of gen-

erating a model that is biased towards labels from a single annotator when using this

heuristic. This happens because, if a single annotator provides the majority of the la-

bels, the estimate of the ground truth will be biased towards her opinion. Consequently,

her sensitivity and specificity parameters will also be biased, and she might end up be-

ing selected over and over. In order to address this issue, we introduce a dependency

on the annotator r when estimating αr and βr. Namely, we replace q(c = 1|X,Y) with

q(c = 1|X\xr,Y\yr) in (4.39) and (4.40), where Y\yr denotes all the labels except the

ones from annotator r, thereby deeming the ground truth estimates used for computing

the reliability parameters αr and βr of annotator r, independent of her own answers.
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4.6 Experiments

The proposed approaches1 are validated using both real and simulated annotators on

real datasets from different application domains.

Simulated annotators

In order to simulate annotators with different levels of expertise, we start by assigning

a sensitivity αr and specificity βr to each of the simulated annotators. Then for each

training point, we simulate the answer of the rth annotator by sampling yri from a

Bernoulli(αr) if the training point belongs to the positive class, and by sampling yri

from Bernoulli(1−βr) otherwise. This way, we can simulate annotators whose expected

values for the sensitivity and specificity will tend to αr and βr respectively, as the

number of training points goes to infinity.

This annotator simulation process is applied to various datasets from the UCI repos-

itory2, and the results of the proposed approach (henceforward referred to as GPC-MA)

is compared with two baselines: one consisting of using the majority vote for each in-

stance (referred as GPC-MV), and another baseline consisting of using all data points

from all annotators as training data (GPC-CONC). Note that if we simulate 7 annota-

tors, then the dataset for the latter baseline will be 7 times larger than the former one.

In order to also provide an upper bound/baseline we also show the results of a Gaussian

process classifier applied to the true (golden) labels c (referred as GPC-GOLD).

Table 4.1 shows the results obtained in 6 UCI datasets, by simulating 7 anno-

tators with sensitivities α = {0.9, 0.9, 0.8, 0.4, 0.3, 0.4, 0.6, 0.5} and specificities β =

{0.8, 0.9, 0.9, 0.4, 0.5, 0.5, 0.5, 0.4}. For all experiments, a random 70/30 train/test split

was performed and an isotropic squared exponential covariance function was used.

Taking advantage of the stochastic nature of the annotators’ simulation process, we

repeat each experiment 30 times and always report the average results along with with

respective standard deviations. Besides testset results, we also report performance met-

rics on the trainset because this corresponds to the important problem of uncovering

the ground truth labels from the noisy answers of multiple annotators. The statis-

tical significance of the differences between GPC-MA and the best baseline method

1Source code and datasets are available at: http://www.fprodrigues.com/gpc-ma/
2http://archive.ics.uci.edu/ml/
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Trainset Testset

Method Acc. AUC Acc. AUC

io
n
o
sp

h
er

e GPC-GOLD 1.000 1.000 0.900 0.999

GPC-CONC 0.811 0.880 0.743 0.830

GPC-MV 0.726 0.853 0.693 0.708

GPC-MA 0.978 0.998 0.889 0.987
p
im

a

GPC-GOLD 1.000 1.000 0.993 1.000

GPC-CONC 0.848 0.900 0.860 0.930

GPC-MV 0.840 0.955 0.860 0.967

GPC-MA 0.994 1.000 0.991 1.000

p
a
rk

in
so

n
s GPC-GOLD 1.000 1.000 0.992 0.999

GPC-CONC 0.827 0.889 0.851 0.899

GPC-MV 0.663 0.895 0.692 0.867

GPC-MA 0.910 0.999 0.947 0.992

b
u
p
a

GPC-GOLD 1.000 1.000 0.993 1.000

GPC-CONC 0.862 0.926 0.854 0.932

GPC-MV 0.793 0.961 0.816 0.953

GPC-MA 0.995 1.000 0.991 1.000

b
re

a
st

GPC-GOLD 1.000 1.000 0.997 1.000

GPC-CONC 0.922 0.938 0.936 0.983

GPC-MV 0.860 0.990 0.887 0.992

GPC-MA 0.995 1.000 0.996 1.000

ti
c-

ta
c-

to
e GPC-GOLD 1.000 1.000 1.000 1.000

GPC-CONC 0.828 0.887 0.884 0.952

GPC-MV 0.717 0.932 0.806 0.958

GPC-MA 0.999 1.000 1.000 1.000

Table 4.1: Average accuracy and AUC over 30 runs, obtained by simulating 7 artificial

annotators on different UCI datasets.

was evaluated using a paired t-test, yielding a p-value smaller than 2.2× 10−16 for all

datasets.

In order to compare the different approaches in terms of computational demands,

the execution times were also measured. Table 4.2 shows the average execution times

over 30 runs on a Intel Core i7 2600 (3.4GHZ) machine with 32GB DDR3 (1600MHZ)

of memory.

The results obtained show that the proposed approach (GPC-MA) consistently out-

performs the two baselines in the 6 datasets used, while only raising the computational
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Dataset GOLD CONC MV GPC-MA

ionosphere 0.495 403.618 0.476 2.470

pima 0.551 357.238 0.445 2.583

parkinsons 0.187 55.424 0.186 0.608

bupa 0.551 357.238 0.445 2.583

breast 2.176 3071.467 1.474 8.093

tic-tac-toe 3.67 5035.112 3.106 16.130

Table 4.2: Average execution times (in seconds) over 30 runs.

time by a small factor (between 3 and 5) when compared to the majority voting base-

line. Furthermore, we can see that GPC-MA is considerably faster (up to 100x) than

the GPC-CONC baseline, which is not surprising since the computational complexity

of GPs is O(N3) and the dataset used in GPC-CONC is R-times larger than the orig-

inal dataset. However, GPC-CONC seems to perform better than the other baseline

method: GPC-MV. We hypothesize that this is due to the fact that GPC-CONC can

model the uncertainty introduced by the heterogeneity in the annotators’ answers, by

considering how much these vary in a certain region of the space, while the GPC-MV

aggregates all the answers regardless of how consistent they are. Hence, if for example,

all 7 annotators assign the same label to some data point, the variance associated with

that data point will be lower than when the 7 annotators provide contradicting labels.

Figure 4.5 shows plots of the (negative) log marginal likelihood over 4 runs of GPC-

MA using 4 different datasets, where it becomes clear the effect of the re-estimation of

the annotator’s parameters α and β, which is evidenced by the periodic “steps” in the

log marginal likelihood.

Real annotators

The proposed approach was also evaluated on real multiple-annotator settings by ap-

plying it to the sentiment polarity and a music genre classification datasets used in

Section 3.4.

Tables 4.3 and 4.4 show the results obtained for the different approaches in the

sentiment and music datasets respectively. Since the music dataset corresponds to a

multi-class problem, we proceeded by transforming it into 10 different binary classifica-

tion tasks. Hence, each task corresponds to identifying songs of each genre. Unlike
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Figure 4.5: Plots of the log marginal likelihood over 4 runs of GPC-MA using 4 different

datasets.

Trainset Testset

Method Accuracy AUC Accuracy AUC

GPC-GOLD 0.987 0.999 0.723 0.785

GPC-MV 0.886 0.923 0.719 0.781

GPC-MA 0.900 0.944 0.721 0.783

Table 4.3: Results for the sentiment polarity dataset.

the previous experiments, with the music genre dataset a squared exponential co-

variance function with automatic relevance determination (ARD) was used, and the

hyper-parameters were optimized by maximizing the marginal likelihood.

Due to the computational cost of GPC-CONC and the size of the sentiment dataset,

we were unable to test this method on this dataset. Nevertheless, the obtained results

show the overall advantage of GPC-MA over the baseline methods.
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Trainset Testset

Method AUC F1 AUC F1

GPC-GOLD 1.000 1.000 0.852 0.683

GPC-CONC 0.926 0.700 0.695 0.423

GPC-MV 0.812 0.653 0.661 0.411

GPC-MA 0.943 0.702 0.882 0.601

Table 4.4: Results obtained for the music genre dataset.

Active learning

The active learning heuristics proposed were tested on the music genre dataset from

Section 4.6. For each genre, we randomly initialize the algorithm with 200 instances

and then perform active learning for another 300 instances. In order to make active

learning more efficient, in each iteration we rank the unlabeled instances according to

(4.41) and select the top 10 instances to label. For each of these instances we query

the best annotator according to the heuristic we proposed for selecting annotators

(4.42). Since each instance in the dataset is labeled by an average of 4.21 annotators,

picking a single annotator per instance corresponds to savings in annotation cost of more

than 76%. Each experiment is repeated 30 times with different random initializations.

Figure 4.6 shows how the average testset AUC for the different music genres evolves as

more labels are queried. We compare the proposed active learning methodology with

a random baseline. In order to make clear the individual contributions of each of the

heuristics proposed, we also show the results of using only the heuristic in (4.41) for

selecting an instance to label and selecting the annotators at random. As the figure

evidences, there is a clear advantage in using both active learning heuristics together,

which can provide an improvement in AUC of more than 10% after the 300 queries.

4.7 Conclusion

In this chapter, we presented a non-linear non-parametric Bayesian classifier for multiple-

annotator settings, which corresponds to a generalization of the Gaussian process clas-

sifier (a special case when R = 1, α = 1 and β = 1). By treating the unobserved true

labels as latent variables, this model is able to estimate the different levels of expertise

of the multiple annotators, thereby being able to compensate for their biases and thus
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obtaining better estimates of the ground truth labels. We empirically show, using both

simulated annotators and real multiple-annotator data collected from Amazon mechan-

ical turk, that while this model only incurs in a small increase in the computational cost

of approximate Bayesian inference with EP, it is able to significantly outperform all the

baseline methods. Furthermore, two simple and yet effective active learning heuristics

were proposed, which can provide an even further boost in classification performance,

while reducing the number of annotations required, and consequently the annotation

cost.
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Figure 4.6: Active learning results on music genre dataset.
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Chapter 5

Learning supervised topic models

from crowds

5.1 Introduction

So far, we have been assuming the inputs x of our supervised learning models to be

feature vectors resultant from some feature extraction procedure or another kind of pre-

processing phase. Hence, in the previous chapters, no models of p(x) were considered.

However, in many situations, we deal with complex high-dimensional data, such as

images or text. In these cases, working with the raw data is often not the best approach.

A common solution is to use topic models. In fact, the growing need to analyze large

document corpora has led to great developments in topic modeling. Topic models,

such as latent Dirichlet allocation (LDA) (Blei et al., 2003), allow us to analyze large

collections of documents, by revealing their underlying themes, or topics, and how each

document exhibits them. Therefore, it is not surprising that topic models have become

a standard tool in data analysis and machine learning, with many applications that

transcend their original purpose of modeling textual data, such as analyzing images

(Fei-Fei & Perona, 2005; Wang et al., 2009), videos (Niebles et al., 2008), survey data

(Erosheva et al., 2007) or social networks data (Airoldi et al., 2007).

Since documents are frequently associated with other variables such as labels, tags

or ratings, much interest has been placed on supervised topic models (Mcauliffe & Blei,

2008), which allow the use of that extra information to “guide” the topics discovery.

By jointly learning the topics distributions and a prediction model, supervised topic
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models have been shown to outperform the separate use of their unsupervised analogues

with an external regression or classification algorithm (Wang et al., 2009; Zhu et al.,

2012).

Supervised topics models are then state-of-the-art approaches for predicting target

variables associated with complex high-dimensional data, such as documents or images.

Unfortunately, as we previously discussed, the size of modern datasets deem the use of

a single annotator unrealistic and unfeasable for the majority of the real-world appli-

cations that involve some form of human labeling. For instance, the popular Reuters-

21578 benchmark dataset was categorized by a group of personnel from Reuters Ltd

and Carnegie Group, Inc. Similarly, the LabelMe1 project asks volunteers to annotate

images from a large collection using an online tool. Hence, it is seldom the case where

a single oracle labels an entire collection. Furthermore, through its social nature, the

web also exploits the wisdom of crowds to annotate large collections of documents and

images. By categorizing texts, tagging images or rating products, web users are gener-

ating large volumes of labeled content. However, as we saw in the previous chapters,

when learning supervised models from crowds the quality of labels can vary signifi-

cantly due to task subjectivity and annotator reliability (or bias) (Snow et al., 2008;

Rodrigues et al., 2013a).

In this chapter, we propose a fully generative supervised topic model that is able to

account for the different reliabilities of multiple annotators and correct their biases. The

proposed model is capable of jointly modeling the words in documents as arising from

a mixture of topics, the latent true labels as a result of the empirical distribution over

topics of the documents, and the labels of the multiple annotators as noisy versions

of that latent ground truth. This contrasts with the previous chapters, where we

assumed the input vectors (or features) to be fixed. Hence, no model of the inputs was

considered. Although one could treat the two problems separately, i.e. use a topic model

to build a lower-dimensional representation of the data and apply a multiple-annotator

model such as the ones developed in the previous chapters, this solution is suboptimal,

since the information from the target variables is not being used to “guide” the topics

discovery, which would allow the model to produce more discriminative topics. As we

shall see in Section 5.5, approaching the two problems jointly gives significantly better

results.

1http://labelme.csail.mit.edu

88 Chapter 5



We propose two different models, one for classification and another for regression

problems, thus covering a very wide range of possible practical application, as we

demonstrate in Section 5.5. Since the majority of the tasks for which multiple an-

notators are used generally involve complex data such as text, images and video, by

developing a multi-annotator supervised topic model we are contributing with a power-

ful tool for learning predictive models of complex high-dimensional data from crowds.

Given that the increasing sizes of modern datasets can pose a problem for obtaining

human labels as well as for Bayesian inference, we propose efficient stochastic variational

inference algorithms (Hoffman et al., 2013) that are able to scale to very large datasets.

We empirically show, using both simulated and real multiple-annotator labels obtained

from AMT for popular text and image collections, that the proposed models are able to

outperform other state-of-the-art approaches in both classification and regression tasks.

We further show the computational and predictive advantages of stochastic variational

inference algorithms over their batch counterparts.

The remainder of this chapter is organized as follows: Section 5.2 provides a liter-

ature review on supervised topic models; Sections 5.3 and 5.4 describes the proposed

models for classification and regression, respectively; in Section 5.5, we empirically

evaluate the proposed models and finally, in Section 5.6, we conclude.

5.2 Supervised topic models

In this section, we review the literature on supervised topic models. But before we

proceed, let us first review the simplest and, at the same time, the most popular

unsupervised topic model in the literature: latent Dirichlet allocation (LDA), as this

will allow us to better understand its supervised counterparts.

LDA is a generative model of the words in documents. The basic intuition behind

LDA is that documents exhibit multiple topics, which are represented as probability

distributions over words. The documents are then assumed to be mixtures of the

corpus-wide topics, such that each individual word in a document is drawn from one

of those topics. Figure 5.1 illustrates this intuition. In this example, we can see the

topics on the left, as distributions over words, and an article, entitled “Seeking Life’s

Bare (Genetic) Necessities”, being represented as a mixture of topics (the histogram
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Figure 5.1: Intuition behind LDA (source: Blei (2012))

at right). Each word in the article is then assigned a topic, represented by the colored

circles.

Translating this intuition into a generative model leads to the generative process of

LDA, which can be summarized as follows:

1. For each topic k

(a) Draw topic’s distribution over words βk|τ ∼ Dirichlet(βk|τ1V )

2. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(θd|α1K)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼ Multinomial(zdn|θd)

ii. Draw word wdn|zdn,β1:K ∼ Multinomial(wdn|βzdn)

where K denotes the number of topics and V is the length of the vocabulary. The

topic proportions are drawn from a Dirichlet distribution parameterized by α, which

controls the mean shape and sparsity of θd. High values of α (e.g., α > 1) lead to

smooth distributions, while small values (α ≤ 1) lead to sparse distributions. The
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Figure 5.3: Graphical model representation of sLDA.

same applies to the parameter τ . Figure 5.2 shows a graphical model representation of

LDA.

The goal with LDA is then to infer the posterior distribution over the latent struc-

ture, namely, the per-document topic proportions θd, the per-word topic assignments

zdn and the per-topic distribution over words βk. This posterior is intractable to com-

pute exactly. Hence, approximate Bayesian inference such as Gibbs sampling (Andrieu

et al., 2003; Steyvers & Griffiths, 2007) and variational inference (Blei et al., 2003; Mur-

phy, 2012) are typically used. Table 5.1 shows four examples of topics inferred from

the Touchstone Applied Science Associates corpus (Zeno et al., 1995). The words are

downwardly sorted by their probability under the topic, which means that the words

that best represent each topic are in the top positions. Clearly, topics join the words

semantically related. In the topic 247 are words related to drugs, in the topic 5, to

colors, in the 43rd topic, to mind and, in the topic 56, words relate to medical visits.

Since each document is assigned to a distribution over topics, a document about color

theory would have topic 5 as its main topic and a medical article would probably have

the 56th and 247th topics as its most likely topics.

Latent Dirichlet allocation (LDA) soon proved to be a powerful tool for model-
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Topic 247 Topic 5 Topic 43 Topic 56

word prob word prob word prob word prob

drugs .069 red .202 mind .081 doctor .074

drug .060 blue .099 thought .066 dr. .063

medicine .027 green .096 remember .064 patient .061

effects .026 yellow .073 memory .037 hospital .049

body .023 white .048 thinking .030 care .046

medicines .019 color .048 professor .028 medical .042

pain .016 bright .030 felt .025 nurse .031

person .016 colors .029 remembered .022 patients .029

marijuana .014 orange .027 thoughts .020 doctors .028

label .012 brown .027 forgotten .020 health .025

alcohol .012 pink .017 moment .020 medicine .017

dangerous .011 look .017 think .019 nursing .017

abuse .009 black .016 thing .016 dental .015

effect .009 purple .015 wonder .014 nurses .013

known .008 cross .011 forget .012 physician .012

pils .008 colored .009 recall .012 hospitals .011

Table 5.1: Example of four topics extracted from the TASA corpus in (Steyvers & Grif-

fiths, 2007).

ing documents (Blei et al., 2003) and images (Fei-Fei & Perona, 2005), by extracting

their underlying topics. However, the need to model the relationship between docu-

ments and labels quickly gave rise to many supervised variants of LDA. One of the

first notable works was that of Mcauliffe & Blei (2008) in developing supervised LDA

(sLDA). By extending LDA through the inclusion of a response variable that is linearly

dependent on the mean topic-assignments of the words in a document, sLDA is able

to jointly model the documents and their responses, in order to find the latent topics

that will best predict the response variables for future unlabeled documents. Although

initially developed for general continuous response variables, Wang et al. (2009) later

extended sLDA to classification problems, by modeling the relationship between topic-

assignments and labels with a softmax function. Letting cd denote the class of the dth

document, the generative process of sLDA is as follows:

1. For each topic k

(a) Draw topic’s distribution over words βk|τ ∼ Dirichlet(βk|τ1V )
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2. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(θd|α1K)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼ Multinomial(zdn|θd)

ii. Draw word wdn|zdn,β1:K ∼ Multinomial(wdn|βzdn)

(c) Draw class label cd|zd,η ∼ Multinomial(cd|Softmax(z̄d,η))

where z̄d is the mean topic-assignment for document d, i.e. z̄d = 1
Nd

∑Nd
n=1 z

d
n, and

p(cd|z̄d,η) is a multi-class logistic regression model, such that

p(cd|z̄d,η) =
exp(ηT

cd
z̄d)∑C

l=1 exp(ηT
l z̄

d)
. (5.1)

Notice that, while zdn is a nominal random variable represented using a 1-of-K encoding

and therefore denoted by a non-bold letter, the average of all zdn in a document, z̄d =

1
Nd

∑Nd
n=1 z

d
n, becomes a vector, which is made clear by the use of a bold letter. The

sLDA model then introduces a new set of parameters η, the coefficients of the logistic

regression model, which can be estimated using a variational Bayesian EM (VBEM)

procedure (Wang et al., 2009). Figure 5.3 shows the graphical model corresponding to

sLDA.

From a classification perspective, there are several ways in which document classes

can be included in LDA. The most natural one in this setting is probably the sLDA

approach, since the classes are directly dependent on the empirical topic mixture distri-

butions. This approach is coherent with the generative perspective of LDA but, never-

theless, several discriminative alternatives also exist. For example, DiscLDA (Lacoste-

Julien et al., 2009) introduces a class-dependent linear transformation on the topic

mixture proportions θd. Hence, the per-word topic assignment zdn are now drawn from

the linearly transformed mixture proportions, i.e. zdn ∼ Multinomial(zdn|Tcdθ
d). The

class-specific transformation matrices Tcd are then able to reposition the vectors θd

such that documents with the same class labels have similar topics mixture propor-

tions. Figure 5.4 shows a graphical model representation. In the case of DiscLDA, the

parameters T1:C are estimated by maximizing the conditional likelihood of response

variables (see Lacoste-Julien et al. (2009)).
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Figure 5.4: Graphical model representation of DiscLDA.
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Figure 5.5: Graphical model representation of Labeled-LDA.

An alternative way of including classes in LDA for supervision is the one proposed

by Ramage et al. (2009) in their Labeled-LDA model. Labeled-LDA is a variant of LDA

that incorporates supervision by constraining the topic model to assign to a document

only the topics that correspond to its label set. This is achieved by introducing the

per-document matrix Ld, with values:

Ldi,j =

{
1, if cdi = j.

0, otherwise.
(5.2)

The documents’ mixture proportions θd are then drawn from a Dirichlet distribution

with parameters Ld(α1K), thus forcing the mixture proportions to contain only the

topics corresponding to the classes that the document belongs to. Notice that, while

this has the advantage of allowing multiple labels per document, it is restrictive in the

sense that the number of topics needs to be the same as the number of possible labels.
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Figure 5.5 shows the graphical model representation of Labeled-LDA, thus evidencing

the differences to DiscLDA. Notice that, since Labeled-LDA allows multiple labels per

document, a bold letter cd is used to represent the classes. The vector cd is then a

C-dimensional binary vector (where C denotes the number of classes) indicating which

classes the dth document belongs to.

From a regression perspective, other than sLDA, the most relevant approaches are

the Dirichlet-multimonial regression (Mimno & McCallum, 2008) and the inverse re-

gression topic models (Rabinovich & Blei, 2014). The Dirichlet-multimonial regression

(DMR) topic model (Mimno & McCallum, 2008) includes a log-linear prior on the

document’s mixture proportions that is a function of a set of arbitrary features, such

as author, date, publication venue or references in scientific articles. The inferred

Dirichlet-multinomial distribution can then be used to make predictions about the val-

ues of theses features. The inverse regression topic model (IRTM) (Rabinovich & Blei,

2014) is a mixed-membership extension of the multinomial inverse regression (MNIR)

model proposed by Taddy (2013) that exploits the topical structure of text corpora to

improve its predictions and facilitate exploratory data analysis. However, this results in

a rather complex and inefficient inference procedure. Furthermore, making predictions

in the IRTM is not trivial. For example, MAP estimates of target variables will be in a

different scale than the original document’s metadata. Hence, the authors propose the

use of a linear model to regress metadata values onto their MAP predictions.

The approaches discussed so far rely on likelihood-based estimation procedures. The

work of Zhu et al. (2012) contrasts with these approaches by proposing MedLDA, a

supervised topic model that utilizes the max-margin principle for estimation. Despite

its margin-based advantages, MedLDA looses the probabilistic interpretation of the

document classes given the topic mixture distributions. On the contrary, this chapter

proposes two fully generative probabilistic models of the labels of multiple annotators

and the words in the documents.

5.3 Classification model

In this section, we develop a multi-annotator supervised topic model for classification

problems. The model for regression settings will be presented in Section 5.4. We start

by deriving a (batch) variational inference algorithm for approximating the posterior
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distribution over the latent variables and an algorithm to estimate the model parame-

ters. We then develop a stochastic variational inference algorithm that gives the model

the capability of handling large collections of documents. Finally, we show how to use

the learned model to classify new documents.

5.3.1 Proposed model

Let D = {wd,yd}Dd=1 be an annotated corpus of size D, where each document wd =

{wdn}
Nd
n=1 is given a set of labels yd = {ydr}Rr=1 from R distinct annotators. We can

take advantage of the inherent topical structure of documents and model their words

as arising from a mixture of topics, each being defined as a distribution over the words

in a vocabulary, as in LDA. In LDA, the nth word, wdn, in a document d is provided

a discrete topic-assignment zdn, which is drawn from the documents’ distribution over

topics θd. This allows us to build lower-dimensional representations of documents,

which we can explore to build classification models by assigning coefficients η to the

mean topic-assignment of the words in the document, z̄d, and applying a softmax

function in order to obtain a distribution over classes.

Unfortunately, a direct mapping between document classes and the labels provided

by the different annotators in a multiple-annotator setting would correspond to assum-

ing that they are all equally reliable, an assumption that is violated in practice, as

previous works clearly demonstrate (e.g. Snow et al. (2008); Rodrigues et al. (2013a)).

Hence, we assume the existence of a latent ground truth class, and model the labels

from the different annotators using a noise model that states that, given a true class c,

each annotator r provides the label l with some probability πrc,l. Hence, by modeling

the matrix Πr = {πrc}Cc=1, where C denotes the number of classes, we are in fact mod-

eling a per-annotator confusion matrix, which allows us to account for their different

levels of expertise and correct their potential biases.

The generative process of the proposed model for classification problems can then

be summarized as follows:

1. For each annotator r

(a) For each class c

i. Draw annotator reliability parameter πrc |ω ∼ Dirichlet(πrc |ω1C)
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Figure 5.6: Graphical representation of the proposed model for classification.

2. For each topic k

(a) Draw topic’s distribution over words βk|τ ∼ Dirichlet(βk|τ1V )

3. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(θd|α1K)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼ Multinomial(zdn|θd)

ii. Draw word wdn|zdn,β1:K ∼ Multinomial(wdn|βzdn)

(c) Draw latent (true) class cd|zd,η ∼ Multinomial(cd|Softmax(z̄d,η))

(d) For each annotator r

i. Draw annotator’s answer yd,r|cd,Πr ∼ Multinomial(yd,r|πr
cd

)

where z̄d is the mean topic-assignment for document d, i.e. z̄d = 1
Nd

∑Nd
n=1 z

d
n, and

p(cd|z̄d,η) is a multi-class logistic regression model, such that

p(cd|z̄d,η) =
exp(ηT

cd
z̄d)∑C

l=1 exp(ηT
l z̄

d)
. (5.3)

Figure 5.6 shows a graphical model representation of the proposed model, where

K denotes the number of topics, R denotes the number of annotators, and Nd is the

number of words in the dth document. Notice that we included a Dirichlet prior over

the topics βk to produce a smooth posterior and control sparsity. Similarly, instead

of computing maximum likelihood or MAP estimates for the annotators reliability
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parameters πrc , we place a Dirichlet prior over these variables and perform approximate

Bayesian inference. This contrasts with previous works on learning from crowds (e.g.

Raykar et al. (2010); Yan et al. (2010)).

5.3.2 Approximate inference

Given a dataset D = {W,Y}, where W = {wd}Dd=1 and Y = {yd}Dd=1, the goal of

inference is to compute the posterior distributions of: the per-document topic pro-

portions θd, the per-word topic assignments zdn, the per-topic distribution over words

βk, the per-document latent true class cd, and the per-annotator confusion parameters

Πr. As with LDA, computing the exact posterior distribution of the latent variables

is computationally intractable. Hence, we employ mean-field variational inference to

perform approximate Bayesian inference.

According to the graphical model (and the generative process), the joint distribution

of the proposed model factorizes as

p(θ1:D, z1:D,c,β1:K ,Π1:R,W,Y|Θ) =

(
R∏
r=1

C∏
c=1

p(πrc |ω)

)(
K∏
i=1

p(βi|τ)

)

×
D∏
d=1

p(θd|α)

(
Nd∏
n=1

p(zdn|θd) p(wdn|zdn,β1:K)

)
p(cd|zd,η)

R∏
r=1

p(yd,r|cd,Πr),

where Θ = {α, τ, ω,η} denotes the model parameters.

Variational inference methods seek to minimize the KL divergence between the

variational and the true posterior distribution. We assume a fully-factorized (mean-

field) variational distribution of the form

q(θ1:D, z1:D, c,β1:K ,Π1:R) =

(
R∏
r=1

C∏
c=1

q(πrc |ξrc)

)(
K∏
i=1

q(βi|ζi)

)

×
D∏
d=1

q(θd|γd)

(
Nd∏
n=1

q(zdn|φdn)

)
q(cd|λd).

The values Ξ1:R, ζ1:K , γ1:D, λ and Φ1:D are the variational parameters, where we

introduced the notation Ξr = {ξrc}Cc=1 and Φd = {φdn}
Nd
n=1. Table 5.2 shows the corre-

spondence between variational parameters and the original parameters.

Following Jordan et al. (1999) (see Section 2.2.2 for details), the KL minimization

can be equivalently formulated as maximizing the following lower bound on the log
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marginal likelihood

log p(D|Θ) = log

∫ ∑
z,c

q(θ1:D, z1:D, c,β1:K ,Π1:R)

× p(θ1:D, z1:D, c,β1:K ,Π1:R,W,Y|Θ)

q(θ1:D, z1:D, c,β1:K ,Π1:R)
dθ1:D dβ1:K dΠ1:R

> Eq[log p(θ1:D, z1:D, c,β1:K ,Π1:R,W,Y|Θ)]

− Eq[log q(θ1:D, z1:D, c,β1:K ,Π1:R)]

= L(γ1:D,Φ1:D,λ, ζ1:K ,Ξ1:R|Θ), (5.4)

which we maximize using coordinate ascent. Exploiting the factorization of the joint

and the variational distributions, we can write the evidence lower bound L as

L(γ1:D,Φ1:D,λ, ζ1:K ,Ξ1:R|Θ)

= Eq[log p(θ1:D, z1:D, c,β1:K ,Π1:R,W,Y|Θ)]

−Eq[log q(θ1:D, z1:D, c,β1:K ,Π1:R)]︸ ︷︷ ︸
H(q)

=
R∑
r=1

C∑
c=1

Eq[log p(πrc |ω)] +
K∑
i=1

Eq[log p(βi|τ)]

+
D∑
d=1

(
Eq[log p(θd|α)] +

Nd∑
n=1

Eq[log p(zdn|θd)] +
Nd∑
n=1

Eq[log p(wdn|zdn,β1:K)]

+ Eq[log p(cd|z̄d,η)] +
R∑
r=1

Eq[log p(yd,r|cd,Πr)]

)
+ H(q), (5.5)

where the entropy H(q) of the variational distribution is given by

H(q) =−
R∑
r=1

C∑
c=1

Eq[log q(πrc |ξrc)]−
K∑
i=1

Eq[log q(βi|ζi)]

−
D∑
d=1

(
Eq[log q(θd|γd)]−

Nd∑
n=1

Eq[log q(zdn|φdn)]− Eq[log q(cd|λd)]
)
. (5.6)

Please refer to Appendix C.2 for the details on how to compute each of these expec-

tations individually. The fully-expanded expression for the evidence lower bound L is

given in (C.10).
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Variational param. Original param. Description

Ξr = {ξrc}Cc=1 Πr = {πrc}Cc=1 per-annotator confusion parameters

ζ1:K = {ζk}Kk=1 β1:K = {βk}Kk=1 per-topic distribution over words

γ1:D = {γd}Dd=1 θ1:D = {θd}Dd=1 per-document topic proportions

λ1:D = {λd}Dd=1 c = {cd}Dd=1 per-document latent true class

Φd = {φdn}Nn=1 zd = {zdn}Nn=1 per-word topic assignments

Table 5.2: Correspondence between variational parameters and the original parameters.

Optimizing L w.r.t. γ and ζ, by taking derivatives and setting them to zero, gives

the same coordinate ascent updates as in (Blei et al., 2003), which are

γdi = α+

Nd∑
n=1

φdn,i (5.7)

ζi,j = τ +

D∑
d=1

Nd∑
n=1

wdn,jφ
d
n,i. (5.8)

The variational Dirichlet parameters ξ can be optimized by collecting only the terms

in L (please refer to Eq. C.10) that contain ξ

L[ξ] =
R∑
r=1

C∑
c=1

C∑
l=1

Eq[log πrc,l]

(
ω +

Dr∑
d=1

λdcy
d,r
l − ξ

r
c,l

)

−
R∑
r=1

C∑
c=1

log Γ

( C∑
t=1

ξrc,t

)
+

R∑
r=1

C∑
c=1

C∑
l=1

log Γ(ξrc,l),

where Dr denotes the documents labeled by the rth annotator, Eq[log πrc,l] = Ψ(ξrc,l)−
Ψ(
∑C

t=1 ξ
r
c,t), and Γ(·) and Ψ(·) are the gamma and digamma functions, respectively.

Taking derivatives of L[ξ] w.r.t. ξrc,l and setting them to zero, yields the following update

ξrc,l = ω +

Dr∑
d=1

λdcy
d,r
l . (5.9)

Similarly, the coordinate ascent updates for the documents distribution over classes

λ can be found by considering the terms in L that contain λ

L[λ] =

D∑
d=1

C∑
l=1

λdl η
T
l φ̄

d −
C∑
l=1

λdl log λdl +
D∑
d=1

R∑
r=1

C∑
l=1

C∑
c=1

λdl y
d,r
c Eq[log πrl,c],

100 Chapter 5



where φ̄d = 1
Nd

∑Nd
n=1φ

d
n. Adding the necessary Lagrange multipliers to ensure that∑C

l=1 λ
d
l = 1 and setting the derivatives w.r.t. λdl to zero gives the following update

λdl ∝ exp

(
ηT
l φ̄

d +
R∑
r=1

C∑
c=1

yd,rc Eq[log πrl,c]

)
. (5.10)

Observe how the variational distribution over the true classes results from a combination

between the dot product of the inferred mean topic assignment φ̄d with the coefficients

η and the labels yd from the multiple annotators “weighted” by their expected log

probability Eq[log πrl,c].

The main difficulty of applying standard variational inference methods to the pro-

posed model is the non-conjugacy between the distribution of the mean topic-assignment

z̄d and the softmax. Namely, in the expectation

Eq[log p(cd|z̄d,η)] = Eq
[

log
exp(ηT

cd
z̄d)∑C

l=1 exp(ηT
l z̄d)

]
= Eq[ηT

cd z̄
d]− Eq

[
log

C∑
l=1

exp(ηT
l z̄d)

]
,

the second term is intractable to compute. We can make progress by applying Jensen’s

inequality, which states that log(E[x]) > E[log(x)], to bound it as follows

−Eq
[

log
C∑
l=1

exp(ηT
l z̄d)

]
> − log

C∑
l=1

Eq[exp(ηT
l z̄d)]

= − log

C∑
l=1

Nd∏
j=1

(
φdj
)T

exp
(
ηl

1

Nd

)
= − log(aTφdn), (5.11)

where a ,
∑C

l=1 exp( ηlNd
)
∏Nd
j=1,j 6=n

(
φdj
)T

exp
(
ηl
Nd

)
, which is constant w.r.t. φdn. This

local variational bound can be made tight by noticing that log(x) 6 ε−1x + log(ε) −
1,∀x > 0, ε > 0, where the equality holds if and only if x = ε. Hence, given the

current parameter estimates (φdn)old, if we set x = aTφdn and ε = aT(φdn)old then, for

an individual parameter φdn, we have that

−Eq
[

log

C∑
l=1

exp(ηT
l z̄d)

]
> −(aT(φdn)old)−1(aTφdn)− log(aT(φdn)old) + 1.

Using this local bound to approximate the expectation of the log-sum-exp term, and

taking derivatives of the evidence lower bound w.r.t. φdn,i with the constraint that
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∑K
i=1 φ

d
n,i = 1, yields the following fix-point update

φdn,i ∝ exp

(
Ψ(γdi ) +

V∑
j=1

wdn,j

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))

+

∑C
l=1 λ

d
l ηl,i

Nd
− (aT(φdn)old)−1ai

)
. (5.12)

where V denotes the size of the vocabulary. Notice how the per-word variational

distribution over topics φdn depends on the variational distribution over the true class

label λd.

The variational inference algorithm iterates between equations 5.7-5.12 until the

evidence lower bound, Eq. 5.5, converges. See Appendix C.2 for additional details on

the derivation of this algorithm.

5.3.3 Parameter estimation

The model parameters are Θ = {α, τ, ω,η}. For the sake of simplicity we assume

the parameters α, τ and ω of the Dirichlet priors to be fixed, and only estimate the

coefficients η using a variational Bayesian EM (VBEM) algorithm. Therefore, in the

E-step we use the variational inference algorithm from section 5.3.2 to estimate the

posterior distribution of the latent variables, and in the M-step we find maximum

likelihood estimates of η by maximizing the evidence lower bound L. Unfortunately,

taking derivatives of L w.r.t. η does not yield a closed-form solution, hence we use a

numerical method, namely L-BFGS (Nocedal & Wright, 2006), to find an optimum.

The objective function and gradients are given by

L[η] =

D∑
d=1

(
C∑
l=1

λdl η
T
l φ̄

d − log

C∑
l=1

bdl

)

∇ηl,i =
D∑
d=1

(
λdl,iφ̄

d
i −

bdl∑C
t=1 b

d
t

Nd∑
n=1

1
Nd
φdn,i exp( 1

Nd
ηl,i)∑K

j=1 φ
d
n,j exp( 1

Nd
ηl,j)

)
,

where, for convenience, we defined

bdl ,
Nd∏
n=1

( K∑
i=1

φdn,i exp
( 1

Nd
ηl,i

))
. (5.13)

102 Chapter 5



5.3.4 Stochastic variational inference

In section 5.3.2 we developed a batch coordinate ascent algorithm for performing varia-

tional inference in the proposed model. This algorithm iterates between analyzing every

document in the corpus to infer the local hidden structure, and estimating the global

hidden variables. However, this can be inefficient for large datasets, since it requires

a full pass through the data at each iteration before updating the global variables,

Ξ1:R and ζ1:K . In this section we develop a stochastic variational inference algorithm

(Hoffman et al., 2013), which follows noisy estimates of the gradients of the evidence

lower bound L.

Based on the theory of stochastic optimization (Robbins & Monro, 1951), we can

find unbiased estimates of the gradients by subsampling a document (or a mini-batch of

documents) from the corpus, and using it to compute the gradients as if that document

was observed D times. Hence, given an uniformly sampled document d, we use the cur-

rent posterior distributions of the global latent variables, β and Π1:R, and the current

coefficient estimates η1:K , to compute the posterior distribution over the local hidden

variables θd, zd and cd using (5.7), (5.12) and (5.10) respectively. These posteriors are

then used to update the global variational parameters, ζ1:K and Ξ1:R by taking a step

of size ρt in the direction of the noisy estimates of the natural gradients.

Algorithm 1 describes a stochastic variational inference algorithm for the proposed

model. Given an appropriate schedule for the learning rates {ρt}, such that
∑

t ρt and∑
t ρ

2
t <∞, the stochastic optimization algorithm is guaranteed to converge to a local

maximum of the evidence lower bound (Robbins & Monro, 1951).

5.3.5 Document classification

In order to make predictions for a new (unlabeled) document d, we start by computing

the approximate posterior distribution over the latent variables θd and zd. This can be

achieved by dropping the terms that involve y, c and π from the model’s joint distribu-

tion (since, at prediction time, the multi-annotator labels are no longer observed) and

averaging over the estimated topics distributions. Letting the topics distribution over

words inferred during training be q(β1:K |ζ1:K) =
∏K
i=1 q(βi|ζi), the joint distribution
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Algorithm 1 Stochastic variational inference

1: Initialize γ
(0)
1:D, φ

(0)
1:D, λ

(0)
1:D, ζ

(0)
1:K , Ξ

(0)
1:R, t = 0

2: repeat

3: Set t = t + 1

4: Sample a document wd uniformly from the corpus

5: repeat

6: Compute φdn using (5.12), for n ∈ {1..Nd}
7: Compute γd using (5.7)

8: Compute λd using (5.10)

9: until local parameters φdn, γd and λd converge

10: Compute step-size ρt = (t+ delay)−κ

11: Update topics variational parameters

ζi,j
(t) = (1− ρt)ζ(t−1)

i,j + ρt

(
τ +D

Nd∑
n=1

wdn,jφ
d
n,i

)
12: Update annotators confusion parameters

ξrc,l
(t) = (1− ρt)ξrc,l

(t−1) + ρt
(
ω +Dλdc y

d,r
l

)
13: until global convergence criterion is met

for a single document is now simply given by

p(θd, zd) =

∫
q(β1:K |ζ1:K) p(θd|α)

Nd∏
n=1

p(zdn|θd) p(wdn|zdn,β1:K) dβ1:K .

Deriving a mean-field variational inference algorithm for computing the posterior over

q(θd, zd) = q(θd|γd)
∏Nd
n=1 q(z

d
n|φdn) results in the same fixed-point updates as in LDA

(Blei et al., 2003) for γdi (Eq. 5.7) and φdn,i

φdn,i ∝ exp

(
Ψ(γi) +

V∑
j=1

wdn,j

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

)))
. (5.14)

Using the inferred posteriors and the coefficients η estimated during training, we can

make predictions as follows

cd∗ = arg max
c
ηT
c φ̄

d. (5.15)

This is equivalent to making predictions in the classification version of sLDA (Wang

et al., 2009).
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Figure 5.7: Example of 4 different annotators (represented by different colours) with

different biases and precisions.

5.4 Regression model

In this section, we develop a variant of the model proposed in Section 5.3 for regression

problems. We shall start by describing the proposed model with a special focus on the

how to handle multiple annotators with different biases and reliabilities when the target

variables are continuous. Next, we present a variational inference algorithm, highlight-

ing the differences to the classification version. Finally, we show how to optimize the

model parameters.

5.4.1 Proposed model

Despite the considerable amount of approaches for learning classifiers from the noisy

answers of multiple annotators (see Section 3.1), for continuous response variables this

problem has been approached in a much smaller extent. For example, Groot et al.

(2011) address this problem in the context of Gaussian processes. In their work, the

authors assign a different variance to the likelihood of the data points provided by the

different annotators, thereby allowing them to have different noise levels, which can be
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estimated by maximizing the marginal likelihood of the data. Similarly, the authors in

(Raykar et al., 2010) propose an extension of their classification approach to regression

problems by assigning different variances to the Gaussian noise models of the different

annotators. In this section, we take this idea one step further by also considering a

per-annotator bias parameter, which gives the proposed model the ability to overcome

certain personal tendencies in the annotators labeling styles that are quite common,

for example, in product ratings and document reviews. Furthermore, we empirically

validate the proposed model using real multi-annotator data obtained from Amazon

mechanical turk (see Section 5.5). This contrasts with the previously mentioned works,

which rely only simulated annotators.

For developing a multi-annotator supervised topic model for regression, we shall

follow a similar intuition as the one we considered for classification. Namely, we shall

assume that, for a given document d, each annotator provides a noisy version, yd,r ∈ R,

of the true (continuous) target variable, which we denote by xd ∈ R. This can be, for

example, the true rating of a product or the true sentiment of a document. Assuming

that each annotator r has its own personal bias br and precision pr (inverse variance),

and assuming a Gaussian noise model for the annotators’ answers, we have that

yd,r ∼ N(yd,r|xd + br, 1/pr). (5.16)

This approach is therefore more powerful than previous works (Raykar et al., 2010;

Groot et al., 2011), where a single precision parameter was used to model the anno-

tators’ expertise. Figure 5.7 illustrates this intuition for 4 annotators, represented by

different colours. The “green annotator” is the best one, since he is right on the target

and his answers vary very little (low bias, high precision). The “yellow annotator” has

a low bias, but his answers are very uncertain, as they can vary a lot. Contrarily, the

“blue annotator” is very precise, but consistently over-estimates the true target (high

bias, high precision). Finally, the “red annotator” corresponds to the worst kind of

annotator (high bias and low precision).

Having specified a model for annotators answers given the true targets, the only

thing left is to do is to specify a model of the latent true targets xd given the empirical

topic mixture distributions z̄d. For this, we shall keep things simple and assume a linear

model as in sLDA (Mcauliffe & Blei, 2008). The generative process of the proposed

model for continuous target variables can then be summarized as follows:
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Figure 5.8: Graphical representation of the proposed model for regression.

1. For each annotator r

(a) For each class c

i. Draw annotator reliability parameter πrc |ω ∼ Dirichlet(πrc |ω1C)

2. For each topic k

(a) Draw topic’s distribution over words βk|τ ∼ Dirichlet(βk|τ1V )

3. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(θd|α1K)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼ Multinomial(zdn|θd)

ii. Draw word wdn|zdn,β1:K ∼ Multinomial(wdn|βzdn)

(c) Draw latent (true) value xd|zd,η, σ ∼ N(xd|ηTz̄d, σ2)

(d) For each annotator r

i. Draw annotator’s answer yd,r|xd, br, pr ∼ N(yd,r|xd + br, 1/pr)

Figure 5.8 shows a graphical representation of the proposed model.
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5.4.2 Approximate inference

The goal of inference is to compute the posterior distribution of the per-document topic

proportions θd, the per-word topic assignments zdn, the per-topic distribution over words

βk and the per-document latent true targets xd. As we did for the classification model,

we shall develop a variational inference algorithm using coordinate ascent.

According to the graphical model, the joint distribution of the proposed regression

model factorizes as

p(θ1:D,z1:D,x,β1:K ,Π1:R,W,Y|Θ) =

(
K∏
i=1

p(βi|τ)

)
D∏
d=1

p(θd|α)

×

(
Nd∏
n=1

p(zdn|θd) p(wdn|zdn,β1:K)

)
p(xd|zd,η)

R∏
r=1

p(yd,r|xd, br, pr), (5.17)

where x = {xd}Dd=1 and Θ = {α, τ, ω,η,b,p} denotes the model parameters. Notice

that the model parameters now include the biases b = {br}Rr=1 and precisions p =

{pr}Rr=1 of the different annotators.

We assume a fully-factorized (mean-field) variational distribution q of the form

q(θ, z1:D, c,β) =

(
K∏
i=1

q(βi|ζi)

)
D∏
d=1

q(θd|γd)

(
Nd∏
n=1

q(zdn|φdn)

)
q(xd|md, vd), (5.18)

where ζ1:K , γ1:D, φ1:D, m = {md}Dd=1 and v = {vd}Dd=1 are the variational parameters.

Kindly notice the new Gaussian term, q(xd|md, vd), corresponding to the approximate

posterior distribution of the unobserved true targets.

The lower-bound on the log marginal likelihood is now given by

L(γ,φ1:D,m,v, ζ|Θ) = Eq[log p(θ, z1:D,x,β,W,Y|Θ)]− Eq[log q(θ, z1:D,x,β)].

Replacing p(θ, z1:D,x,β,W,Y|Θ) and q(θ, z1:D,x,β) by their definitions in (5.17) and
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(5.18) gives

L(γ,φ1:D,m,v, ζ|Θ) =
K∑
i=1

Eq[log p(βi|τ)] +
D∑
d=1

(
Eq[log p(θd|α)]

+
Nd∑
n=1

Eq[log p(zdn|θd)] +

Nd∑
n=1

Eq[log p(wdn|zdn,β1:K)]

+ Eq[log p(xd|z̄d,η)] +
R∑
r=1

Eq[log p(yd,r|xd, br, pr]

)

−
K∑
i=1

Eq[log q(βi|ζi)]−
D∑
d=1

(
Eq[log q(θd|γd)]

−
Nd∑
n=1

Eq[log q(zdn|φdn)]− Eq[log q(xd|md, vd)]

)
. (5.19)

Optimizing the evidence lower bound L w.r.t. γ and ζ yields the same updates

from Eqs. 5.7 and 5.8. Optimizing w.r.t. φ gives a similar update to the one in sLDA

(Mcauliffe & Blei, 2008)

φdn,i ∝ exp

(
Ψ(γi) +

V∑
j=1

wdn,j

(
Ψ(ζi,j)−Ψ

(
V∑
k=1

ζi,k

))

+
md

Ndσ2
ηi −

2(ηTφd−n)ηi + η2
i

2(Nd)2σ2

)
, (5.20)

where we defined φd−n ,
∑

m6=nφ
d
m. This update differs only from the one in (Mcauliffe

& Blei, 2008) by replacing the true target variable by its expected value under the

variational distribution, which is given by Eq[xd] = md.

The only variables left for doing inference on are then the unobserved true targets

x = {xd}Dd=1. The variational distribution of xd is governed by two parameters: a mean

md and a variance vd. Collecting all the terms in L that contain m gives

L[m] = −
D∑
d=1

Rd∑
r=1

pr

2

(
(md)2 + 2mdbr − 2yd,rmd

)

−
D∑
d=1

1

2σ2

(
(md)2 − 2md(ηTφ̄d)

)
. (5.21)

Taking derivatives of L[m] and setting them to zero gives the following update for the
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mean md of latent true target of the dth document

md =
σ−2(ηTφ̄d) +

∑Rd
r=1 p

r(yd,r − br)
σ−2 +

∑R
r=1 p

r
. (5.22)

Notice how the value of md is a weighted average of what the linear regression model

on the empirical topic mixture believes that the true target should be, and the bias-

corrected answers of the different annotators weighted by their individual precisions.

As for m, we can optimize L w.r.t. v by collecting all terms that contain v

L[v] =

D∑
d=1

(
1

2
log(vd)−

Rd∑
r=1

prvd

2
− vd

2σ2

)
, (5.23)

and taking derivatives, yielding the update

vd = σ2 +

Rd∑
r=1

1

pr
. (5.24)

5.4.3 Parameter estimation

The parameters of the proposed regression model are Θ = {α, τ,η, σ,b,p}. As we

did for the classification model, we shall assume the Dirichlet parameters, α and τ , to

be fixed. Similarly, we shall assume that the variance of the true targets, σ2, to be

constant. The only parameters left to estimate are then the regression coefficients η

and the annotators biases, b = {br}Rr=1, and precisions, p = {pr}Rr=1, which we estimate

using variational Bayesian EM (VBEM).

Since the latent true targets are now linear functions of the documents’ empirical

topic mixtures (i.e. there is no softmax function), we can find a closed-form solution

for the regression coefficients η. Taking derivatives of L w.r.t. η and setting them to

zero, gives the following solution for η

ηT =
D∑
d=1

Eq
[
z̄d(z̄d)T

]−1
(φ̄d)Tmd, (5.25)

where

Eq
[
z̄d(z̄d)T

]
=

1

(Nd)2

(
Nd∑
n=1

Nd∑
m6=n

φdn(φdm)T +
Nd∑
n=1

diag(φdn)

)
.
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We can find maximum likelihood estimates for the annotator biases br by optimizing

the lower bound on the marginal likelihood. The terms in L that involve b are

L[b] =
D∑
d=1

Rd∑
r=1

pr

2

(
2yd,rbr − 2mdbr − (br)2

)
. (5.26)

Taking derivatives with respect to br gives the following estimate for the bias of the rth

annotator

br =
1

Dr

Dr∑
d=1

(
yd,r −md

)
. (5.27)

Similarly, we can find maximum likelihood estimates for the precisions pr of the

different annotators by considering only the terms in L that contain p

L[p] =

D∑
d=1

Rd∑
r=1

(
1

2
log(pr)− prvd

2
− pr

2
(yd,r −md − br)2

)
. (5.28)

The maximum likelihood estimate for the precision (inverse variance) of the rth anno-

tator is then given by

pr =

(
1

Dr

Dr∑
d=1

(
vd + (yd,r −md − br)2

))−1

. (5.29)

Given a set of fitted parameters, it is then straightforward to make predictions for

new documents: it is just necessary to infer the (approximate) posterior distribution

over the word-topic assignments zdn for all the words using the coordinate ascent updates

of standard LDA (Eqs. 5.7 and 5.14), and then use the mean topic assignments φ̄d to

make predictions xd∗ = ηTφ̄d.

5.4.4 Stochastic variational inference

As we did for the classification model from Section 5.3, we can envision developing a

stochastic variational inference for the proposed regression model. In this case, the

only “global” latent variables are the per-topic distributions over words, βk. As for the

“local” latent variables, ignoring the words’ topic assignments φdn, instead of a single

variable λd, we now have two variables per-document: md and vd. The stochastic

variational inference can then be summarized as shown in Algorithm 2. For added

efficiency, one can also perform stochastic updates of the annotators biases br and

precisions pr, by taking a step in the direction of the gradient of the noisy evidence

lower bound scaled by the step-size ρt.
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Algorithm 2 Stochastic variational inference for the proposed regression model

1: Initialize γ
(0)
1:D, φ

(0)
1:D, m(0), v(0) , ζ

(0)
1:K , t = 0

2: repeat

3: Set t = t + 1

4: Sample a document wd uniformly from the corpus

5: repeat

6: Compute φdn using (5.20), for n ∈ {1..Nd}
7: Compute γd using (5.7)

8: Compute md using (5.22)

9: Compute vd using (5.24)

10: until local parameters φdn, γd, md and vd converge

11: Compute step-size ρt = (t+ delay)−κ

12: Update topics variational parameters

ζi,j
(t) = (1− ρt)ζ(t−1)

i,j + ρt

(
τ +D

Nd∑
n=1

wdn,jφ
d
n,i

)
13: until global convergence criterion is met

5.5 Experiments

In this section, the proposed multi-annotator supervised LDA models for classification

and regression (MA-sLDAc and MA-sLDAr, respectively) are validated using both sim-

ulated annotators on popular corpora and using real multiple-annotator labels obtained

from Amazon mechanical turk.1 Namely, we shall consider the following real-world

problems:

• classifying posts and news stories;

• classifying images according to their content;

• predicting the number of stars that a given user gave to a restaurant based on

the review;

• predicting movie ratings using the text of the reviews.

1Source code and datasets used are available at: http://www.fprodrigues.com/ma-slda/
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We will start by evaluating the classification model proposed in Section 5.3 in the first

two problems (see Section 5.5.1) and use the last two regression problems for evaluating

the model proposed in Section 5.4 (see Section 5.5.2).

5.5.1 Classification

Simulated annotators

In order to first validate the proposed model for classification problems in a slightly

more controlled environment, the well-known 20-Newsgroups benchmark corpus (Lang,

1995) was used by simulating multiple annotators with different levels of expertise. The

20-Newsgroups consists of twenty thousand messages taken from twenty newsgroups,

and is divided in six super-classes, which are, in turn, partitioned in several sub-classes.

For this first set of experiments, only the four most populated super-classes were used,

namely “computers”, “science”, “politics” and “recreative”. The preprocessing of the

documents consisted of stemming and stop-words removal. After that, 75% of the

documents were randomly selected for training and the remaining 25% for testing.

The different annotators were simulated by sampling their answers from a multi-

nomial distribution, where the parameters are given by the lines of the annotators’

confusion matrices. Hence, for each annotator r, we start by pre-defining a confusion

matrix πr with elements πrc,l, which correspond to the probability that the annota-

tors’ answer is l given that the true label is c, i.e. p(yr = l|c). Then, the answers are

sampled i.i.d. from yr ∼ Multinomial(yr|πrc,l). This procedure was used to simulate

5 different annotators with the following accuracies: 0.737, 0.468, 0.284, 0.278, 0.260.

In this experiment, no repeated labelling was used. Hence, each annotator only labels

roughly one-fifth of the data. When compared to the ground truth, the simulated an-

swers revealed an accuracy of 0.405. See Table 5.3 for an overview of the details of the

classification datasets used.

Both the batch and the stochastic variational inference (svi) versions of the proposed

model (MA-sLDAc) are compared with the following baselines:

• LDA + LogReg (mv): This baseline corresponds to applying unsupervised LDA to

the data, and learning a logistic regression classifier on the inferred topic distribu-

tions of the documents. The labels from the different annotators were aggregated

using majority voting (mv). Notice that, when there is a single annotator label
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Dataset
Num.

classes

Train/test

sizes

Num. answers

per instance

(± stddev.)

Mean annotators

accuracy

(± stddev.)

Maj. vot.

accuracy

20 Newsgroups 4 11536/3846 1.000 ± 0.000 0.405 ± 0.182 0.405

Reuters-21578 8 1800/5216 3.007 ± 1.019 0.568 ± 0.262 0.710

LabelMe 8 1000/1688 2.547 ± 0.576 0.692 ± 0.181 0.769

Table 5.3: Overall statistics of the classification datasets used in the experiments.

per instance, majority voting is equivalent to using that label for training. This

is the case of the 20-Newsgroups’ simulated annotators, but the same does not

apply for the experiments with AMT.

• LDA + Raykar : For this baseline, the model of Raykar et al. (2010) was applied

using the documents’ topic distributions inferred by LDA as features.

• LDA + Rodrigues: This baseline is similar to the previous one, but uses the

model of Rodrigues et al. (2013a) instead.

• Blei 2003 (mv): The idea of this baseline is to replicate a popular state-of-the-art

approach for document classification. Hence, the approach of Blei et al. (2003) was

used. It consists of applying LDA to extract the documents’ topic distributions,

which are then used to train a support vector machine (SVM). Similarly to the

previous approach, the labels from the different annotators were aggregated using

majority voting (mv).

• sLDA (mv): This corresponds to using the classification version of sLDA (Wang

et al., 2009) with the labels obtained by performing majority voting (mv) on the

annotators’ answers.

For all the experiments the hyper-parameters α, τ and ω were set using a simple grid

search in the collection {0.01, 0.1, 1.0, 10.0}. The same approach was used to optimize

the hyper-parameters of the all the baselines. For the svi algorithm, different mini-

batch sizes and forgetting rates κ were tested. For the 20-Newsgroup dataset, the best

results were obtained with a mini-batch size of 500 and κ = 0.6. The delay was kept

at 1. The results are shown in Figure 5.9 for different numbers of topics, where we can

see that the proposed model outperforms all the baselines, being the svi version the

one that performs best.
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Figure 5.9: Average testset accuracy (over 5 runs; ± stddev.) of the different approaches

on the 20-Newsgroups data.

In order to assess the computational advantages of the stochastic variational in-

ference (svi) over the batch algorithm, the log marginal likelihood (or log evidence)

was plotted against the number of iterations. Figure 5.10 shows this comparison. Not

surprisingly, the svi version converges much faster to higher values of the log marginal

likelihood when compared to the batch version, which reflects the efficiency of the svi

algorithm.

Amazon mechanical turk

In order to validate the proposed classification model in real crowdsourcing settings,

Amazon mechanical turk (AMT) was used to obtain labels from multiple annotators

for two popular datasets: Reuters-21578 (Lewis, 1997) and LabelMe (Russell et al.,

2008).

The Reuters-21578 is a collection of manually categorized newswire stories with
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Figure 5.10: Comparison of the log marginal likelihood between the batch and the

stochastic variational inference (svi) algorithms on the 20-Newsgroups corpus.

labels such as Acquisitions, Crude-oil, Earnings or Grain. For this experiment, only

the documents belonging to the ModApte split were considered with the additional

constraint that the documents should have no more than one label. This resulted in a

total of 7016 documents distributed among 8 classes. Of these, 1800 documents were

submitted to AMT for multiple annotators to label, giving an average of approximately

3 answers per document (see Table 5.3 for further details). The remaining 5216 docu-

ments were used for testing. The collected answers yield an average worker accuracy of

56.8%. Applying majority voting to these answers reveals a ground truth accuracy of

71.0%. Figure 5.11 shows the boxplots of the number of answers per worker and their

accuracies. Observe how applying majority voting yields a higher accuracy than the

median accuracy of the workers.

The results obtained by the different approaches are given in Figure 5.12, where it

can be seen that the proposed model (MA-sLDAc) outperforms all the other approaches.

For this dataset, the svi algorithm is using mini-batches of 300 documents.

The proposed model was also validated using a dataset from the computer vision

domain: LabelMe (Russell et al., 2008). In contrast to the Reuters and Newsgroups

corpora, LabelMe is an open online tool to annotate images. Hence, this experiment

allows us to see how the proposed model generalises beyond non-textual data. Using
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Figure 5.11: Boxplot of the number of answers per worker (a) and their respective

accuracies (b) for the Reuters dataset.
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Figure 5.12: Average testset accuracy (over 30 runs; ± stddev.) of the different ap-

proaches on the Reuters data.

the Matlab interface provided in the projects’ website, we extracted a subset of the

LabelMe data, consisting of all the 256 x 256 images with the categories: “highway”,
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Figure 5.13: Boxplot of the number of answers per worker (a) and their respective

accuracies (b) for the LabelMe dataset.

“inside city”, “tall building”, “street”, “forest”, “coast”, “mountain” or “open coun-

try”. This allowed us to collect a total of 2688 labeled images. Of these, 1000 images

were given to AMT workers to classify with one of the classes above. Each image was

labeled by an average of 2.547 workers, with a mean accuracy of 69.2%. When ma-

jority voting is applied to the collected answers, a ground truth accuracy of 76.9% is

obtained. Figure 5.13 shows the boxplots of the number of answers per worker and their

accuracies. Interestingly, the worker accuracies are much higher and their distribution

is much more concentrated than on the Reuters-21578 data (see Figure 5.11), which

suggests that this is an easier task for the AMT workers.

The preprocessing of the images used is similar to the approach of Fei-Fei & Perona

(2005). It uses 128-dimensional SIFT (Lowe, 1999) region descriptors selected by a

sliding grid spaced at one pixel. This sliding grid extracts local regions of the image

with sizes uniformly sampled between 16 x 16 and 32 x 32 pixels. The 128-dimensional

SIFT descriptors produced by the sliding window are then fed to a k-means algorithm

(with k = 200) in order construct a vocabulary of 200 “visual words”. This allows us

to represent the images with a bag of visual words model.

With the purpose of comparing the proposed model with a popular state-of-the-art

approach for image classification, for the LabelMe dataset, the following baseline was

introduced:

• Bosch 2006 (mv): This baseline is similar to one in Bosch et al. (2006). The
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Figure 5.14: Average testset accuracy (over 30 runs; ± stddev.) of the different ap-

proaches on the LabelMe data.

authors propose the use of pLSA to extract the latent topics, and the use of k-

nearest neighbor (kNN) classifier using the documents’ topics distributions. For

this baseline, unsupervised LDA is used instead of pLSA, and the labels from the

different annotators for kNN (with k = 10) are aggregated using majority voting

(mv).

The results obtained by the different approaches for the LabelMe data are shown in

Figure 5.14, where the svi version is using mini-batches of 200 documents.

Analyzing the results for the Reuters-21578 and LabelMe data, we can observe

that MA-sLDAc outperforms all the baselines, with slightly better accuracies for the

batch version, especially in the Reuters data. Interestingly, the second best results are

consistently obtained by the multi-annotator approaches, which highlights the need

for accounting for the noise and biases of the answers of the different annotators. All

of these are conclusions readable from the figures. Nevertheless, we are interested in

assessing the statistical significance of the results obtained. In order to do so, we
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Figure 5.15: True vs. estimated confusion matrix (cm) of 6 different workers of the

Reuters-21578 dataset.

selected the accuracies of the different models for the number of topics that produced

the best results for the most competitive baseline (LDA+Raykar). Using this data, we

first used a Kolmogorov-Smirnov test to verify that there were statistic facts supporting

that the data was drawn from a normal distribution. Then, a paired t-test was used

to compare that batch version of MA-sLDAc with LDA+Raykar for the three datasets

considered. The highest p-value obtained was 8 × 10−11, from which we can conclude

that all the differences are significantly different.

In order to verify that the proposed model was estimating the (normalized) confu-

sion matrices πr of the different workers correctly, a random sample of them was plotted

against the true confusion matrices (i.e. the normalized confusion matrices evaluated

against the true labels). Figs. 5.15 and 5.16 show the results obtained with 60 topics,

where the colour intensity of the cells increases with the magnitude of the value of

p(yd,r = l|cd) = πrc,l. Using this visualization we can verify that the AMT workers are

quite heterogeneous in their labeling styles and in the kind of mistakes they make, with

several workers showing clear biases (e.g. workers 3 and 4 in Figure 5.15, and workers

1 and 5 in Figure 5.16), while others made mistakes more randomly (e.g. worker 1 in

Figure 5.15, and worker 6 in Figure 5.16). Nevertheless, the proposed is able to capture

these patterns correctly and account for their effect.
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Figure 5.16: True vs. estimated confusion matrix (cm) of 6 different workers of the

LabelMe dataset.

5.5.2 Regression

Simulated annotators

As for the proposed classification model, we start by validating MA-sLDAr using sim-

ulated annotators on a popular corpus where the documents have associated targets

that we wish to predict. For this purpose, we shall consider a dataset of user-submitted

restaurant reviews from the website we8there.com. This dataset was originally intro-

duced by Mauá & Cozman (2009) and it consists of 6260 reviews. For each review,

there is a five-star rating on four specific aspects of quality (food, service, value, and

atmosphere) as well as the overall experience. Our goal is then to predict the over-

all experience of the user based on her comments in the review. We apply the same

preprocessing as in (Taddy, 2013), which consists in tokenizing the text into bigrams

and discarding those that appear in less than ten reviews. The preprocessing of the

documents consisted of stemming and stop-words removal. After that, 75% of the

documents were randomly selected for training and the remaining 25% for testing.

As with the classification model, we seek to simulate an heterogeneous set of an-

notators in terms of reliability and bias. Hence, in order to simulate an annotator r,

we proceed as follows: let xd be the true review of the restaurant; we start by as-
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Table 5.4: Overall statistics of the regression datasets used in the experiments.

Dataset
Train/test

sizes

Num. answers per

instance (± stddev.)

Mean annotators

R2 (± stddev.)

Mean answer

R2

we8there 4624/1542 5.000 ± 0.000 -0.525 ± 1.364 0.798

movie reviews 1500/3506 4.960 ± 0.196 -0.387 ± 1.267 0.830

signing a given bias br and precision pr to the reviewers, depending on what type of

annotator we wish to simulate (see Figure 5.7); we then sample a simulated answer

as yd,r ∼ N(xd + br, 1/pr). Using this procedure, we simulated 5 annotators with the

following (bias, precision) pairs: (0.1, 10), (-0.3, 3), (-2.5, 10), (0.1, 0.5) and (1, 0.25).

The goal is to have 2 good annotators (low bias, high precision), 1 highly biased anno-

tator and 2 low precision annotators where one is unbiased and the other is reasonably

biased. The coefficients of determination (R2) of the simulated annotators are: {0.940,

0.785, -2.469, -0.131, -1.749}. Computing the mean of the answers of the different an-

notators yields a R2 of 0.798. Table 5.4 gives an overview on the statistics of datasets

used in the regression experiments.

We compare the proposed model (MA-sLDAr) with the two following baselines:

• LDA + LinReg (mean): This baseline corresponds to applying unsupervised LDA

to the data, and learning a linear regression model on the inferred topic distribu-

tions of the documents. The answers from the different annotators are aggregated

by computing the mean.

• sLDA (mean): This corresponds to using the regression version of sLDA (Mcauliffe

& Blei, 2008) with the target variables obtained by computing the mean of the

annotators’ answers.

Figure 5.17 shows the results obtained for different numbers of topics. Due to the

stochastic nature of both the annotators simulation procedure and the initialization

of the variational Bayesian EM algorithm, we repeated each experiment 30 times and

report the average R2 obtained with the corresponding standard deviation. Since the

regression datasets that are considered in this chapter are not large enough to justify

the use of a stochastic variational inference (svi) algorithm, we only made experiments
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Figure 5.17: Average testset R2 (over 30 runs; ± stddev.) of the different approaches on

the we8there data.

using the batch algorithm developed in Section 5.4.2. The results obtained clearly

demonstrate the improved performance of MA-sLDAr over the other methods.

Amazon mechanical turk

The proposed multi-annotator regression model (MA-sLDAr) was also validated with

real annotators by using Amazon mechanical turk. For that purpose, the movie reviews

dataset from (Pang & Lee, 2005) was used. This dataset consists of 5006 movie reviews

along with their respective star rating (from 1 to 10). The goal of this experiment is

then to predict how much a person liked a movie based on what she says about it.

Using AMT, we ask workers to guess how much they think the writer of the review

liked the movie based on her comments. An average of 4.96 answers per-review was

collected for a total of 1500 reviews. The remaining reviews were used for testing. In

average, each worker rated a total of approximately 55 reviews. Using the mean answer

as an estimate of the true rating of the movie yields a R2 of 0.830. Table 5.4 gives
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Figure 5.18: Boxplot of the number of answers per worker (a) and their respective biases

(b) and variances (c) for the movie reviews dataset.

an overview of the statistics of this data. Figure 5.18 further shows boxplots of the

number of answers per worker, as well as boxplots of their respective biases (br) and

variances (inverse precisions, 1/pr).

The preprocessing of the text consisted of stemming and stop-words removal. Using

the preprocessed data, the proposed MA-sLDAr model was compared with the same

baselines that were used with the we8there dataset. Figure 5.19 shows the results

obtained for different numbers of topics. These results show that the proposed model

outperforms all the other baselines. As we did with the classification version, the

statistical difference between the proposed model and the best baseline method was

analysed using a paired t-test. For simplicity, we focus only on the number of topics

for which the best baseline method produces its best results. According to the results

of the paired t-test, all the differences were statistically significant on both datasets

(we8there and movie reviews), with the highest p-value being 2× 10−5.

With the purpose of verifying that the proposed model is indeed estimating the bi-

ases and precisions of the different workers correctly, we plotted the true values against

the estimates of MA-sLDAr with 60 topics for a random subset of 10 workers. Fig-

ure 5.20 shows the obtained results, where higher colour intensities indicate higher

values. Ideally, the colour of two horizontally-adjacent squares would then be of similar

shades, and this is indeed what happens in practice for the majority of the workers, as
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Figure 5.19: Average testset R2 (over 30 runs; ± stddev.) of the different approaches on

the movie reviews data.

Figure 5.20 shows. Interestingly, the figure also shows that there are a couple of work-

ers that are considerably biased (e.g. workers 6 and 8) and that those biases are being

correctly estimated, thus justifying the inclusion of a bias parameter in the proposed

model, which, as we earlier mentioned, contrasts with previous works (Raykar et al.,

2010; Groot et al., 2011).

5.6 Conclusion

In this chapter, we proposed two supervised topic models that are able to learn from

multiple annotators and crowds, by accounting for their biases and different levels of

expertise. Given the large sizes of modern datasets, and considering that the majority

of the tasks for which crowdsourcing and multiple annotators are desirable candidates,

generally involve complex high-dimensional data such as text and images, the proposed

model constitutes a strong contribution for the multi-annotator paradigm. These mod-
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Figure 5.20: True vs. predicted biases and precisions of 10 random workers of the movie

reviews dataset.

els are then capable of jointly modeling the words in documents as arising from a

mixture of topics, as well as the latent true target variables and the (noisy) answers of

the multiple annotators. We developed two distinct models, one for classification and

another for regression, that share similar intuitions but that inevitably differ due the

nature of the target variables. We empirically showed, using both simulated and real

annotators from Amazon mechanical turk that the proposed models are able to out-

perform state-of-the-art approaches in several real-world problems, such as classifying

posts, news stories and images, or predicting the number of stars of restaurant and

the rating of movies based on their reviews. For this, we use various popular datasets

from the state of the art, that are commonly used for benchmarking machine learning

algorithms. Finally, efficient stochastic variational inference algorithms were described,

which give the proposed models the ability to scale to large datasets.
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Part II

Using crowds data for

understanding urban mobility
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Chapter 6

Explaining non-habitual

transport overcrowding with

internet data

6.1 Introduction

“We are drowning in information and starving for knowledge.”

– John Naisbitt

In Part I, we discussed how to learn predictive models from the noisy answers of

multiple annotators and crowds. Namely, we saw different ways in which we could

improve the model’s predictions by accounting for the different levels of expertise of

the various annotators, as well as their biases. In this part of the thesis, we shall

take a different perspective on the value of crowds’ data, by considering how it can be

used to improve transportation demand prediction models and to help us understand

urban mobility. In particular, we shall consider data produced by crowds regarding

special events that take place in the city. This kind of data is vastly available on the

web, mostly in textual form. However, turning it into useful knowledge can be very

challenging.

During the last decade, pervasive technologies such as radio-frequency identification,

global positioning systems (GPS), WiFi, NFC and mobile phone communications have

become ubiquitous. These mobility traces are increasingly available for practitioners
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and researchers to provide a better understanding of urban mobility. For example,

using a large cell-phone dataset, Gonzalez et al. (2008) showed that individual mobility

travel patterns generally follow a single spatial probability distribution, indicating that,

despite their inherent heterogeneity, humans follow simple reproducible patterns. In

fact, this asserts the remarkable yet not so surprising fact that human mobility is

habitual for the vast majority of the time. This principle has been behind several other

works, for example, to estimate disease spreading (Adams & Kapan, 2009) or vehicular

network routing protocols (Xue et al., 2009).

Despite other studies that stretch the boundaries of that principle and verify that

it is widely persistent (e.g. Song et al. (2010); Jiang et al. (2013)), mobility behaviour

heterogeneity is recognized to create predictability challenges. This is particularly im-

portant when it involves large crowds. As pointed out by Potier et al. (2003), even

for well-known big events (e.g. olympic games), demand is inevitably more difficult to

forecast than habitual mobility, particularly in the case of open-gate events. When

facing these constraints, authorities tend to rely on trial and error experience (for re-

curring events), checklists (e.g. (FHWA)) and sometimes invest in a reactive approach

rather than planning, as happens in Germany, with the real-time traffic and traveller

information (RTTI) and its active traffic management (Bolte, 2006), and in the Nether-

lands (Middleham, 2006). However, such tools have limited applicability, particularly

for smaller and medium events, which are harder to capture and to evaluate.

Taking advantage of the amount and quality of pervasive technologies such as radio-

frequency identification, smartcards, and mobile phone communications, it is then pos-

sible to detect crowds in almost real time with very low risk for privacy. By itself, crowd

detection can be valuable for safety reasons, as well as for real-time supply/demand

management of transportation, communications, food stock, logistics, water, or any

other system sensitive to aggregated human behaviour. But, although such technolo-

gies help detect and quantify crowds, they have limited power in explaining why they

happen. As previous works show (Potier et al., 2003; Jiang et al., 2013), for recurring

crowds, such as peak-hour commuting, this explanatory challenge is trivial, but the

same cannot be said of non-habitual cases. Without local context knowledge, it is not

possible to discern an explanation.

Fortunately, another pervasive technology exists: the internet, which is rich in local

context information generated by large online crowds. Information about public special
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events, such as sports games, concerts, parades, sales, demonstrations and festivals, is

abundant, and so are social networks (e.g. Twitter, Facebook) and other platforms that

have dynamic contextal content (e.g. news feeds). Using a manually selected subset of

events from the Boston Globe website1 and a massive cell-phone dataset, Calabrese

et al. (2010) studied the public home distributions for different types of special events

(e.g. sports, concerts, theatre). They identified a strong correlation between public

neighborhood distributions and event types. This is a key finding, since it implies

that such heterogeneous cases are still predictable as long as we have sufficient event

information. They did not, however, consider multiple event interactions or deeper

explanatory content (e.g. event description text), as we do in this chapter.

Particularly for public transport operations and management, the treatment of

overcrowding depends on understanding why people are there, and where/when they

will go next. Only then can the manager react accordingly (e.g. add extra buses,

trains, send taxis). For example, by knowing that an overcrowding hotspot is due to a

concert, one can also estimate its duration (until about after the concert begins) and

a possible next hotspot (after the concert ends). If instead it was due to a series of

small scattered events, the treatment may be different (e.g. no single ending hotspot).

Maybe even more importantly, by understanding such impacts on a post-hoc analysis,

one can also better prepare for the next time that similar events happen.

This chapter proposes to solve the following problem: given a non-habitual large

crowd — an overcrowding hotspot — what are its potential causes and how do they in-

dividually contribute to the overall impact? We will focus particularly on the problem

of public transport overcrowding in special events’ areas as the main practical moti-

vation and case study. Given the importance of these social phenomena, many traffic

management centers have teams of people that are responsible for periodically scanning

the internet and newspapers in search for special events. In fact, for very large events,

this problem is generally solved, albeit manually. The challenge comes when multiple

smaller events co-occur in the same area to form a relevant hotspot. It is not only

harder to find them but also extremely difficult to intuitively estimate their aggregated

impact.

Overcrowding hotspots are identified and measured by analyzing 4 months of public

transport data from the city-state of Singapore. During the whole period of the dataset,

1http://www.bostonglobe.com
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we collected special events data from five websites, as well as their Facebook likes and

Google hits. Hence, while in Part I we considered explicit forms of crowdsourcing, such

as Amazon mechanical turk, here we are exploring crowdsourcing in a more implicit

form. Our goal, is then to use this crowd-generated data to break each non-habitual

overcrowding hotspot into a set of explanatory components, along with estimates of

their respective shares in the total overcrowding counts. In order to do so, we propose

an additive model, where each hotspot is formalized as a sum of potential explanatory

components.

This methodology is applicable beyond the specific case of public transport over-

crowding as long as the key research question and ingredients remain. For example,

during special events, cell phone, WiFi network, energy, or catering/logistics systems

may equally suffer from disruptions. If there is both pervasive and explanatory data to

quantify and correlate the impacts, the general procedure remains the same.

6.2 Identifying overcrowding hotspots

There is no golden rule threshold above which we can identify overcrowding. The intu-

ition is that it should happen whenever the supply (e.g. buses) is insufficient to satisfy

the demand (e.g. travelers), which leads to very heavily loaded vehicles or, ultimately,

to denied boardings. The latter are non-observable from the dataset used, and so are

estimates of bus or train loading, therefore we resort to indirect measurements such as

the total number of arrivals.

In order to cope with demand fluctuations, transport systems are generally designed

with reasonable spare capacity, so we need to define the point above which we consider

it under stress. For any given study area and point in time, we define such point to

correspond to the 90% percentile, i.e. whenever the number of arrivals exceeds such

threshold, we consider that overcrowding is occurring. This threshold choice is based

on our intuition and experience together with discussions with local experts, not being

attached to a strong theory or experimental study. However, the main contribution

of this chapter is methodological and all principles should remain the same, either

by choosing another threshold or detecting hotspots differently, like, for example, by

sensing denied boardings or monitoring bus load.
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Figure 6.1: Example of the detection and measurement overcrowding hotspots using real

data from the Singapore’s EZLink system for the Expo area.

We quantify the impact by summing up the excess amount of arrivals above the

median line in a continuous time frame, discretized by 30-minute intervals. Figure 6.1

visualizes this calculation. On the 24th of December 2012, there were 3 hotspots in

this area (Singapore Expo). In fact, there were two simultaneous events during several

hours: Megatex, related to IT and electronics; and Kawin-kawin makan-makan 2012,

an event about Malay food and lifestyle products.

Whenever hotspots are both short in time and with small relative impact (e.g. below

5% of the mean or just 30 minutes in duration), we remove them as they should not

represent a problem from a transportation management perspective.

The dataset used consists of 4 months of smartcard public transport data from

Singapore’s EZLink system. This is a tap-in/tap-out system both for buses and subway

(MRT), which means that we can infer both departure and arrival locations for any trip.

For the purposes of this specific study, we selected trips that start/end in 3 areas that are

sensitive to multiple special events: Stadium, Expo and Esplanade. The Stadium area

has two major venues: the Singapore Indoor Stadium, which is mostly home to music
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Table 6.1: General statistics of the study areas: averages (± std. dev.) and totals.

Area
Average daily Avg. daily Number of Avg. hotspot

arrivals events hotspots impacts

Stadium 4120.4 (± 1015.9) 0.2 (± 0.5) 103 382.9 (± 680.0)

Expo 14797.5 (± 5851.3) 2.5 (± 2.0) 70 2836.7 (± 4846.3)

Esplanade 4788.7 (± 930.5) 17.0 (± 6.4) 102 231.6 (± 430.8)

concerts and sports events, and the Kallang Theatre, which is a 1680-seat auditorium

that usually hosts live theater performances, operas and other cultural shows. Both

venues are then capable of hosting events of various types and with different target

audiences. By having two co-located venues, this area allows us to understand the

effect of concurrent events in close-by venues. As for the Singapore Expo, it does not

have any other significant venues on the vicinity but it has a large area of 123.000m2

with several exhibition halls. Hence, it regularly hosts multiple events at the same time

(usually large exhibitions and conventions), thus making this area far more challenging

to analyze. The Esplanade area has more than 50 venues and is a lively touristic area

near the business district. It has several shopping malls nearby and sits in front of the

iconic marina bay of Singapore. Table 6.1 shows some descriptive statistics of these

areas.

6.3 Retrieving potential causes from the web

For each overcrowding hotspot we want to find a set of candidate explanations from

the web. For this, we mainly take advantage of user-contributed event directories. Two

general techniques exist to capture this crowd-generated data automatically, namely,

application programming interfaces (APIs) and screen scraping. The choice entirely

depends on the website. Some websites provide an exhaustive API that we can use

to retrieve the data, while for others we need to resort to individual calls, page by

page (screen scraping). Either way, access may be restricted or prohibited by terms of

service. Therefore, we implemented individual event data retrievers for each website

whenever it is so permitted. We use 5 different websites: eventful.com, upcoming.org,

last.fm, timeoutsingapore.com and singaporeexpo.com.sg. For potential duplicates that

share the same venue/area and day, we use the Jaro-Winkler string distance (Winkler,
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Table 6.2: General statistics on the data mined from the internet.

Source
Num. events Number of Text description Retrieval

study areas categories size (± std. dev.) type

eventful.com 1221 28 1112.3 (± 1337.1) API

singaporeexpo.com.sg 58 28 124.9 (± 159.5) scrapper

last.fm 11 - 901.2 (± 1037.5) API

timeoutsingapore.com 568 49 411.8 (± 866.6) scraper

1990) with a conservative threshold (e.g. > 85% similarity) to identify and merge them.

Whenever we find different textual descriptions, we concatenate them.

Each event record contains title, venue, web source, date, start time, end time,

latitude, longitude, address, url, description, categories, and when available the event

price. Unfortunately, this information also contains plenty of noise. For example, the

majority of start and end times are absent or “default” (e.g. from 00:00 to 23:59),

and the same sometimes happens with latitude/longitude (e.g. center of the map).

The latter can be corrected by using the venue name, but for the former, we could

not determine any particular times. As a consequence, each such event is potentially

associated to any impact hotspot of the corresponding day and area.

The description texts are run through a topic model, namely latent Dirichlet allo-

cation (see Section 5.2), in order to represent each description as a distribution over

topics. The use of topic models in transportation as been previously studied for exam-

ple by Pereira et al. (2013). One key parameter for this process is the number of topics

K. After trying with a range of values, from 15 to 40, the value that yielded the best

model results was 25. We will assume this value for the remainder of this chapter. The

α prior was set to 1/K. With the purpose of understanding whether this was a safe

choice, we ran several iterations with different initial values for α and they generally

converged to similar outcomes.

For each event, we also capture two online popularity indicators, namely the number

of Facebook likes and the number of hits in Google of the event title query. We retrieve

the Facebook page with a semi-automatic procedure: we follow the event’s url (which

is sometimes a Facebook page) in search of candidate pages. Whenever there is more

than one candidate, we manually select the correct one. For Google hits, we search with
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the event title within and without quotes (yielding two separate features). Table 6.2

summarizes a few statistics of this dataset.

We can see that the most comprehensive sources are eventful and timeout, while

the one with more detailed descriptions is eventful. Expo’s homepage and last.fm have

much less, yet very directed, information. The former contains all events that happen

in Expo (thus a relevant filter in itself) while the latter is only focused on music events.

6.4 Proposed model

The individual event contributions to the hotspots are not observed, i.e. they are latent,

but we do know that they contribute to the global observed impact. We will also assume

that individual impacts are mutually exclusive (e.g. no one attends two events) and

independently distributed, and that there will be a parcel that is unexplainable, i.e.,

some trips will neither be related to the extracted events nor to the usual commuting

patterns. Thus, we say that the nth hotspot impact, hn, is given by

hn = an + bn + ε, (6.1)

where ε ∼ N(ε|0, v) is the observation noise, an is the non-explainable component and

bn is the explainable one. The latter is itself a summation of the En events, {ein}
En
i=1.

Formally, we define an and bn as

an ∼ N(an|ηTa xan, βa) (6.2)

bn =

En∑
i=1

ein, with ein ∼ N(ein|ηTe xein , βe), (6.3)

where xan, ηa, and βa are the attributes, parameter vector, and variance, respectively,

for the non-explainable component an.

The explainable part bn, is determined by a sum of event contributions ein. Each

xein corresponds to the individual attributes of the ith event (e.g. topic-assignments,

categories, Facebook likes, etc.) associated with the nth observation, and ηe and βe

correspond to, respectively, the event attributes’ parameters and the variance associated

with the events’ components. Notice that we assumed a linear-Gaussian model for the

non-explainable and individual event contributions. This linear formulation will be

kept for this chapter, and we will leave the extension to non-linear ones for Chapter 7.

136 Chapter 6



Figure 6.2 shows a representation of the proposed model as a probabilistic graphical

model.

hn

an ein

xa
n xei

n

ηa ηe

En

N

Figure 6.2: Graphical representation of the proposed model.

Our main goal is to estimate the values of an and ein, so that they sum up to hn.

This relationship can be represented through the joint probability distribution

p(hn, an, en|ηa,ηe,Xn) = p(hn|an, en) p(an|ηa,xan)

(
En∏
i=1

p(ein|ηe,xein )

)
, (6.4)

where we defined en = {e1
n, . . . , e

En
n } and Xn = {xan,xe1n , . . . ,xEn

n } for compactness. It

may be helpful to notice the relationship between Figure 6.2 and the expansion on the

right-hand side of the equation, where we can see the conditional dependences.

In order to simplify the notation, let η = (ηa;ηe). Given a dataset D = {hn,Xn}Nn=1

and assuming a zero-mean Gaussian prior p(η) on the regression coefficients, we can

estimate the posterior over η by making use of Bayes’ rule, giving

p(η|D) ∝ p(η)

N∏
n=1

∫
p(hn, an, en|η,Xn) dan den. (6.5)

Using the posterior distribution p(η|D) estimated using the entire dataset, we can

compute the posterior distributions of the latent non-explainable component an, for

each individual observation n, by again making use of Bayes’ rule to give

p(an|hn,Xn) ∝
∫
p(hn, an, en|η,Xn) p(η|D) dη den, (6.6)
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and similarly for the explainable component en.

The proposed model was implemented in the Infer.NET framework1 (Minka et al.,

2012). Infer.NET allows us to specify a probabilistic model programmatically, by

exploring the concept of probabilistic programming. The main idea of probabilistic

programming is to extend common programming languages by introducing random

variables, which are extensions of standard types that can represent uncertain values.

Hence, instead of a single value, each random variable represents a set or range of

possible values, and has an associated distribution that assigns a probability to each

possible value. The Infer.NET framework then provides the necessary approximate

Bayesian inference tools that allow us to compute posterior distributions efficiently.

Notice how, without further assumptions, (6.5) and (6.6) have exact analytical

solutions, which can be obtained by making use of the formulas for the conditional

and marginal distributions of Gaussians in (B.6) and (B.7). In practice, Infer.NET

allows us to constrain variables to be positive, which we do for the explainable and

non-explainable components, an and en, respectively. By doing so, exact inference is

no longer possible. Hence, we instruct Infer.NET to perform approximate Bayesian

inference using expectation propagation (EP) (Minka, 2001).

6.5 Experiments

As it happens in many other cases (e.g. aggregated cell-phone statistics), we have

access to total values but not to the individual contributions. This makes validating

the proposed model a much harder task. Hence, we proceed by first testing it as if we

had observed the individual contributions. We do this by generating simulated data

that complies with our additive assumption. Only afterwards we test how well the

proposed model fits with respect to the real total observed values.

Synthesized data experiments

If we cluster the events dataset from Section 6.3 using the events’ characteristics, we

end up with sets of events that are somehow related. Let’s assume that each cluster

centroid is assigned its own impact, manually or randomly. This value represents the

1The Infer.NET implementation of the proposed model can be found in: http://www.fprodrigues.

com/why-so-many-people/.
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Area CorrCoef MAE RRSE R2

Stadium 0.99 410.3 0.21 0.96

Expo 0.89 145.0 0.45 0.80

Esplanade 0.85 708.1 0.56 0.69

Table 6.3: Results for synthetic data.

impact of a hypothetical event, that does not necessarily exist in the database. Now,

let us assign impacts to the real events using the distance to their cluster centroid, c.

For each event ek, its impact is determined by dist(ek, c)−1.

With this procedure, we are not forcing the structure of the proposed model into

the data, i.e. we are not assigning specific parameter values to the coefficients ηa and

ηe, and using those pre-defined parameters to sample observations according to (6.2)

and (6.3). In fact, we do not even know if there exist such parameters, ηa and ηe,

which are able to fit the simulated values. Instead, we use similarity between events to

introduce consistency, regardless of area or day.

The individual impacts of simultaneously occurring events are added up and the

resulting sum is perturbed according to some percentage of Gaussian noise, N(0, 0.1×
bn). The final result is provided to the proposed model as the observed hotspot impact.

The estimated individual impacts are then compared to the ground truth (simulated)

values according to four error statistics: the correlation coefficient (CorrCoef) gives an

insight on how the results of the proposed model are correlated with the ideal results;

the mean absolute error (MAE) provides the absolute magnitude of the error for each

impact; the root relative squared error (RRSE) shows the quality of the model relative

to a naive predictor based on the average; and the coefficient of determination (R2)

indicates how well the data fits the proposed model. Table 6.3 shows the results for

the Stadium, Expo and Esplanade areas.

As the obtained results show, the proposed model has different performances through-

out the different areas. In Stadium, it is able to replicate particularly well the contri-

butions, which is not surprising since this area is more homogeneous than the others

(often with only one event in a day). Despite being much more heterogeneous, in both

Expo and Esplanade, the model can still achieve a significant correlation coefficient and

considerably outperform the average-based predictor.
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Area CorrCoef MAE RRSE R2

Stadium 0.68 271.7 0.55 0.70

Expo 0.84 2002.7 0.69 0.52

Esplanade 0.41 192.6 0.84 0.29

Table 6.4: Results for real data from Singapore’s EZLink system.

Real data experiments

Our observations consist of total hotspot impacts according to the definition in Sec-

tion 6.2. In this section, we test the capability of the proposed model to recover such

aggregated impacts without knowing the individual impacts. Hence, the model can

only rely on the observed features such as location, day of week, event type, topics,

etc., as represented by the vectors xan and {xein }
En
i=1. This is done by first inferring the

posterior distribution of the coefficients ηa and ηe with a subset of the observations

(trainset) and then estimating the aggregated hotspot impacts for the remaining subset

(testset). We apply 10-fold cross-validation (Bishop, 2006) and report the same error

metrics as in the previous section. Table 6.4 shows a summary of the results.

Since hotspots can span through many consecutive hours, very large arrival totals

can occur, particularly in the Expo and Esplanade areas. Thus, the relevance of MAE

is difficult to assess. On the other hand, for these areas, the values for the correlation

coefficient, RRSE and R2 indicate that the model is able to provide good performance,

while for the Esplanade the results are less conclusive.

Regardless of the fact that this is a more complicated task, the proposed model is

able to approximate the totals well in two of the cases (Stadium and Expo). If the

assumptions of the proposed model were wrong, the predictions should be considerably

off, because the magnitude of the totals varies according to the time duration of the

hotspot and because the individual event proportions could be wrong. The specific

Esplanade case will be analyzed in the following section.

6.6 Explaining hotspots

The ultimate goal of the proposed model is to break down each overcrowding hotspot

into a set of explanatory components. In this section, we present the results for the
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Total hotspot impact

Non explainable component

Figure 6.3: Breakdown of the total arrivals for 16 events from the Expo area.

entire dataset. Before, we have validated individual component predictions through a

synthetic dataset and the aggregated totals with the observations. This time, however,

we do not observe the contributions of individual events. Even if we had access to

individual participation data (e.g. through ticket sale statistics), it would not necessarily

reveal the correct numbers of public transport users for that specific event. Thus, our

evaluation will now be qualitative.

Figures 6.3, 6.4 and 6.5 illustrate some of the results.1 For each hotspot, we show

the global impact (inner circle) and the breakdown (outer circle). The area size of the

1Full set available in http://www.fprodrigues.com/why-so-many-people/.
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Total hotspot impact

Non explainable component

Figure 6.4: Breakdown of the total arrivals for 12 events from Stadium area.

inner circle is relative to the maximum hotspot impact observed in that location in

the dataset. The outer circle will contain as many segments as potential explanatory

events plus the non-explainable component (in red). For example, on November 10,

2012, Expo had a high impact hotspot (top left diagram in Figure 6.3) comprised of

eight different events, with roughly the same size. The non-explainable component was

in fact small (red segment). Differently, on November 19, 2012, the same area had 2

events, one of which explains almost half of a relatively small hotspot, if comparing

with the previous case.

For Stadium and Expo, we can see that the non-explainable component is generally

smaller than the explainable one and that the breakdown is not evenly distributed.

This happens because the model maximizes consistency across different events. For

example, two similar events in two occasions will tend to have similar impacts although

the overall totals and sets of concurrent events may be different.
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Total hotspot impact

Non explainable component

Figure 6.5: Breakdown of the total arrivals for 12 events from Esplanade area.

Cases with multiple hotspots in the same day are interesting to analyse. For exam-

ple, in Figure 6.3, Expo had 3 hotspots on November 11, 2012, with minor fluctuations

on the impacts and individual breakdowns. There were 10 different medium sized events

(3 sale events, 2 movie and anime industry events, 1 parenthood and 1 pet ownership

event, 2 home furniture and decoration related exhibits) that spanned throughout the

day. Differently, in Stadium (Figure 6.4), the hotspots for February 22, 2013, have

totally opposite behaviors. This was a fanmeet event with a Korean music and TV

celebrity, that started at 20:00 (we note that the largest impact is between 17:30 and

21:00). While the model is confident in the first hotspot, it does not assign the same

explanation to the second one and leaves it mostly unexplained.

The case of Esplanade (Figure 6.5) shows unclear patterns as the proposed model

was generally unable to go beyond an even breakdown. In fact, a careful look at the

data shows that there are sometimes multiple small events being announced for that
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Hotspots impact

Event impacts:

Megatex  kawin-kawin 2012 Non-explainable
644   0       0
847   14      0
2159   1326      1032

11:00—12:30
13:00—14:00
15:00—22:00

Time

Figure 6.6: Impact breakdown for Expo on 24th of Dec. 2012 (same as Fig. 6.1).

area, from game watching nights at bars to theatre sessions. Outliers do exist (e.g.

opera concerts) but the algorithm would probably need more such cases to extract

them. Nevertheless, it shows capability of ruling out some as insignificant events by

assigning zero impact to them.

Let us now analyze a few cases in detail. In Figure 6.6, we show the hotspot

breakdown of Figure 6.1 according to the proposed model. We notice that it was

Christmas eve and there were two events: Megatex, an IT and electronics fair; Kawin-

kawin makan-makan, a Malay products event. The model proposes that the majority

of the impacts relate to the electronics event, which is intuitively plausible, particularly

on the day before Christmas and knowing that Singapore has a well-known tech-savvy

culture.

In Figure 6.7, we show the breakdown of a single hotspot, from 12:30 to 14:30 (the

other 2 were filtered out due to small impact and duration). This was a tennis event,
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Hotspot impact

Event impacts: 12:30h—14:30h

Non-explainable
Clash of Continents 2012
Dance Drama Opera Warriors

476
428
0

Event titleQuantity

Figure 6.7: Impact breakdown for Stadium on the 25th of November 2012.

“Clash of Continents 2012”, and people arrived mostly for the last final matches. The

“Dance drama opera warriors” was held at 20:00 at the Kallang theatre. Intuitively,

there is no surprise that an international sports event attracts more people than a clas-

sical music one. In fact, this is an example where the text descriptions play important

roles. If the events were a pop concert (also music) and a local basketball game (also

sports), the results could be drastically different.

Finally, Figure 6.8 represents again the most challenging case for the proposed

model — the Esplanade. Kalaa Utsavam is an Indian arts festival which has sev-

eral events that, aggregated together, generate the largest impact. Intuitively, this

is plausible given the presence of Indian-origin population and culture in Singapore.

However, the results are not very clear. For example, “Ten years shooting home” is a

photography contest event that may not have brought nearly as many people as the

“International Conference on business management and information systems”. Nev-
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Hotspot impact

Event impacts: 9:30h—18:30h

Non-explainable
Kalaa Utsavam 2012
Kuo Pao Kun: A Life of Practice (theatre)
SLO — Mother Daughter Wife and Lover (opera)
SRT Holiday Programme — Fantastic Mr Fox (theatre)
Travel and Make Money Seminar
The Romance of Magno Rubio (theatre)
Ten Years of Shooting Home (photography)
Int. Conf. on Business Management and Information Systems

128
697
247
238
145
128
123
116
115

Event titleQuantity

Figure 6.8: Impact breakdown for Esplanade on the 23th of November 2012.

ertheless, our analysis of the model and data suggests that a longer timeline and an

improved data cleaning/filtering process should increase the quality of these results.

6.7 Conclusion

In this chapter, we presented a probabilistic model that breaks aggregated overcrowd-

ing hotspots into their constituent explanatory components. We extracted candidate

explanations from the internet under the assumption that, except for habitual behavior

(e.g. commuting), such crowds are often motivated by public events announced in the

web. Since we do not observe the individual event’s contributions, we treat them as
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latent variables and rely on the total sum and the event’s features to constrain their

estimation. The proposed model has an additive structure: the observed totals results

from the sum of an explainable and a non-explainable component. The explainable

component is further broken-down into the various candidate explanations retrieved

from the internet.

This model was tested on a public transport dataset from the city-state of Singa-

pore. We identified overcrowding hotspots by comparing the observed arrival counts

(bus or subway arrivals) with a conservative threshold (90% quantile) at 30 minutes in-

tervals. The hotspots were quantified by summing up consecutive excessive counts. For

each such hotspot, we retrieved the potential explanations from several event announce-

ment websites among other crowd-generated online sources, and we extracted relevant

available information such as event title, category, venue, and description. We applied

latent Dirichlet allocation (LDA) to extract topics from the text descriptions, which

were then used to characterize the different events. All these features were organized

together in the proposed model, which was implemented in the Infer.NET framework

(Minka et al., 2012). Results with synthetic data show that the model is able to re-

trieve the correct results with a correlation coefficient (CorrCoef) of at least 85% and

a coefficient of determination (R2) higher than 0.85. The results with real data show

that the same model is able to recover the observed total impacts with a correlation

coefficient from 41.2% to 83.9% and an R2 from 0.41 to 0.68, even though this is a

harder task than what the model was built for. A qualitative analysis on a case study

in Singapore shows that the results of the hotspot impacts’ breakdowns into different

possible explanations are intuitively plausible.
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Chapter 7

Improving transportation

demand prediction using crowds

data

7.1 Introduction

In the previous chapter, we saw how a simple, yet effective, additive model could help us

decompose an observed overcrowding hotspot into the contributions of various special

events, such as sports games, concerts, operas, sales, demonstrations, festivals, etc.

Motivated by the success of that work, in this chapter we apply the concept of additive

models to the more general problem of predicting public transport usage in special

event scenarios, by again correlating smartcard data records with context information

mined from the Web. Hence, instead of just considering overcrowding hotspots, we

now consider the entire time-series of public transport arrivals, which we model as a

sum of a routine time-series component, that captures the routine behavior of a given

place (e.g. commuting), and the contributions of a variable number of components that

correspond to the events that occur in the neighborhood of that place. In doing so,

we develop a general-purpose Bayesian additive framework, which, contrarily to typical

approaches such as linear regression, neural networks or Gaussian process regression,

possesses many interesting properties that make it particularly well suited for modeling

transportation demand.

Unlike the model proposed in Chapter 6, in this chapter we propose a Bayesian
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additive model where the components are non-linear functions of their inputs, which

we model as independent Gaussian processes (GPs) (Rasmussen & Williams, 2005). As

our experiments show, by including additive components (GPs) that rely only on crowd-

generated data regarding events, the proposed model is able to significantly improve

the quality of the predictions. We derive an efficient approximate inference algorithm

using expectation propagation (EP) (Minka, 2001), which, besides making predictions

of the total number of public transport trip arrivals in a given place, it allows us to

breakdown an observed time-series of arrivals into the contributions of the different

components: routine commuting and individual special events. Figure 7.1 illustrates

this application with actual results from the proposed model using real data from the

Singapore’s Indoor Stadium and Kallang Theatre, which share the same subway stop.

On this day (November 25, 2012), the Indoor Stadium had a tennis tournament (“Clash

of Continents”) and the Kallang Theatre had an opera. Within the tennis tournament,

there was a short Leona Lewis concert scheduled between two exhibition matches,

sometime between 15:00 and 16:00. As in the previous chapter, the proposed model

uses multiple features collected from the Web that will be described later, including

start and end times, event venue, results from an automated web search, etc. In this

example, it identifies that the large bulk of trips between 12:00 and 15:00 were arrivals

to the Leona Lewis concert and to the tennis tournament. Then, after 17:00, there

were arrivals to the opera (scheduled for 20:00) together with routine trips.

By applying the proposed framework to the problem of modeling public transport

arrivals under special events scenarios, we are therefore able to (i) predict the distribu-

tion of the total number of arrivals that will be observed in the future considering all

the events that are spatially and temporally close; (ii) disaggregate the time-series of

arrivals into the contributions of a routine component and a variable number of event

components, making predictions about the contribution of each future event separately.

All this information can be of great value not only for public transport operators and

planners, but also for event organizers and public transport users in general. Finally,

by using a Bayesian approach, the proposed model can be easily adapted to perform

online learning. Together with the efficient approximate inference algorithm developed,

it has the ability to scale to very large datasets and to be deployed in practice.

Although we focus on a transportation application, it is important to note that

this is a general-purpose methodology that can be extended to different application
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Figure 7.1: Breakdown of the observed time-series of subway arrivals (black solid line)

into the routine commuting (area in red) and the contributions of events from the Singapore

Indoor Stadium and Kallang Theatre (orange, yellow and green areas). The dotted line

represents the median arrivals over all the days in the observed data that correspond the

same weekday. Events start times are shown in parentheses.

domains, such as electrical signal disaggregation or source separation (Park & Choi,

2008). Indeed, the Bayesian additive framework described in this chapter can be of

great value for any prediction task where knowing the importance (or contribution)

of different inputs is required. For example, when modeling particle emissions, it is

essential to have interpretable systems, so that researchers can understand how each of

the individual factors (traffic, forest fires, kitchens, air conditioning/heating, industry)

contributes to the total emissions values observed or forecasted. The same applies to

transport management challenges, where operators and planners need to understand

what originates demand fluctuations to mitigate them properly.

The remainder of this chapter is organized as follows. In the next section, we contex-
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tualize the proposed Bayesian additive model with Gaussian process components within

the relevant literature. Section 7.3 provides motivation for the proposed Bayesian ad-

ditive model, while the model itself is introduced and explained in Section 7.4. The

corresponding experimental results are presented in Section 7.5. The chapter ends with

the conclusions.

7.2 Additive models

Linear regression models provide an effective and attractively simple framework for un-

derstanding how each input variable relates with the observed target variables. How-

ever, they fail to capture non-linear dependencies between inputs and target variables,

which are recurrent in the real-world. On the other hand, flexible models such as neural

networks or Gaussian processes (GPs) lay on the opposite side of the spectrum, where

the target variables are modeled as complex non-linear functions of all input variables

simultaneously. Unfortunately, due to their black-box nature, the interpretativeness

and the ability to understand how each input is contributing to the observed target

are typically lost. Additive models (Hastie & Tibshirani, 1990) contrast with these

by specifying the target variable to be the result of a linear combination of non-linear

functions of the individual inputs. Due to this structured form, additive models provide

an interesting tradeoff between interpretability and flexibility.

The typical approach in additive models is to rely on scatterplot smoothers for rep-

resenting non-linear effects of the individual inputs in a flexible way (Hastie et al., 2003;

Ravikumar et al., 2009). Additive models can then easily be fitted using a backfitting

procedure (Hastie & Tibshirani, 1990), which iteratively fits each of the scatterplot

smoothers to the residuals of the sum of the estimates of all the other smoothers, until

a convergence criterion is met. The model proposed in this chapter contrasts with

these works in several ways, particularly: (i) we consider the use of Gaussian processes

instead of scatterplot smoothers; and (ii) we propose a fully Bayesian approach for

inferring the posterior distribution of the individual function values using expectation

propagation (Minka, 2001).

From the specific perspective of Gaussian processes, Duvenaud et al. (2011) pro-

posed the additive GP: a GP model for functions that decompose into a sum of other
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low-dimensional functions. This is achieved through the development of a tractable ker-

nel which allows additive interactions of all orders, ranging from univariate functions

of the inputs to multivariate interactions between all input variables simultaneously.

Although efficient in exploring all orders of interaction between inputs, additive GPs do

not support a variable number of interacting functions as we require for our practical

application of public transport demand prediction, where there is a variable number

of events happening. Furthermore, the Bayesian additive framework presented in this

chapter is more flexible, in the sense that it allows to incorporate further restrictions

on the models such as non-negativity constraints, as well as combining linear with

non-linear functions or combining GPs with different covariance functions.

Compared to the ensemble learning literature, the proposed models shares several

characteristics with Bayesian additive regression trees (BART) (Chipman et al., 2010).

Namely, both approaches model the observations as a sum of non-linear functions.

However, in BART these functions are regression trees that depend on all the input

variables simultaneously. By imposing a prior that regularizes the fit by keeping the

individual tree effects small, BART can be seen as combination of “weak learners”,

which are fitted using a Bayesian backfitting procedure based on Markov chain Monte

Carlo methods. Hence, contrarily to the model proposed in this chapter, BART is not

designed for generating interpretable models.

7.3 Problem formulation

Let y be the total number of public transport arrivals at a given time. Perhaps the most

natural approach to model y is to consider it to be a function of time, the day of the

week, whether or not it is a holiday, etc. We refer to these as routine features, xr, as they

characterize the routine behavior of a given place. A wide majority of previous works

focuses solely on these features (e.g. van Oort et al. (2015)). However, as previously

discussed, there are several other dynamic aspects of transportation demand that need

to be accounted for. Particularly, we are interested in the effect of special events. Let

xei be a feature vector characterizing a given event ei, such as the venue, categories,

tags, etc. Since the number of events that occur in a given area varies, we consider
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models of the form

y = fr(x
r) +

E∑
i=1

fe(x
ei) + ε, (7.1)

where ε ∼ N(ε|0, v) is the observation noise and E denotes the number of events that

can affect the observed arrivals y. Hence, the number of events, E, varies between

observations (although we assume it to be constant within each day). However, if

we assume the functions, fr(x
r) and fe(x

ei), to be linear functions of their inputs,

parameterized by a vector of coefficients ηr and ηe respectively, then we can write (7.1)

as

y = (ηr)
Txr + (ηe)

T

(
E∑
i=1

xei

)
+ ε = ηTx + ε, (7.2)

where we defined x , (xr;
∑E

i=1 xei) and η , (ηr;ηe). As we can see, in the case of lin-

ear functions and without further restrictions to the model (e.g. positivity constraints),

the feature vectors of all events can be aggregated by summation, which reduces the

problem to a simple linear regression. However, this allows the functions fr(x
r) and

fe(x
ei) to have arbitrary values, which is not desired, since we know a priori that the

contributions of each component to the observed sum must be non-negative. Therefore,

this formulation does not let us exploit our domain knowledge properly. Furthermore,

for the particular application domain of transportation demand, the functions fr(x
r)

and fe(x
ei) can be highly non-linear, as our experiments demonstrate (see Section 7.5).

As soon as we start considering non-linear models, the distributive law used in (7.2)

can no longer be applied, and the feature vectors of the different events xei cannot be

simply summed up. Moreover, the number of such vectors varies constantly from time

to time. Aggregating these in order to allow a standard regression formulation, such as

Gaussian process regression, to be applied is then a non-trivial research question. In

the following section, we propose a Bayesian additive model that not only allows us to

handle these issues but also leads to other attractive properties.

7.4 Bayesian additive model

7.4.1 Proposed model

The proposed Bayesian additive model builds on the assumption that there is a base

routine component yr = fr(x
r) and a variable number of event components yei =
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fe(x
ei), whose contributions are summed up to obtain the total observed arrivals y in a

given area. Since we want to constrain the values of the individual components, yr and

{yei}Ei=1, to be non-negative, we define the latter to be one-side truncated Gaussians1,

which we denote as

yr ∼ I(yr > 0)N(yr|fr(xr), βr), (7.3)

yei ∼ I(yei > 0)N(yei |fe(xei), βe), (7.4)

where I(a > 0) is an indicator function that takes the value 1 if and only if a > 0, βr

and βe are variances of the routine and events components, respectively. Usually, one

can assume that βr < βe since the routine component is expected to be less noisy. The

observed totals y are then defined to be Gaussian distributed

y ∼ N
(
y
∣∣∣yr +

∑E
i=1 y

ei , v
)
. (7.5)

Having specified the additive structure of the model, the next step is to specify how

to model the individual components fr and fe. In this chapter, we use Gaussian pro-

cesses (GPs) (Rasmussen & Williams, 2005) although the additive framework described

above is general enough to allow a large variety of models to be applied. Nevertheless,

for the sake of comparison and with the purpose of understanding certain aspects of the

additive framework, we also provide a version with linear models for the components

in Appendix C.4.

Letting the vectors fr and fe denote the functions fr(x
r) and fe(x

ei) evaluated for

all feature vectors xr and xei respectively, we proceed by placing a GP prior on fr and

fe, such that fr ∼ GP(mr(x
r) ≡ 0, kr(x

r,xr
′
)) and fe ∼ GP(me(x

e) ≡ 0, ke(x
e,xe

′
)),

where for the sake of simplicity (and without loss of generality), we assumed the GPs

to have zero mean, so that the GPs are completely defined in terms of the covariance

functions kr and ke. The generative process of the proposed Bayesian additive model

can then be summarized as follows:

1. Draw fr|Xr ∼ GP(0, kr(x
r,xr

′
))

2. Draw fe|Xe ∼ GP(0, ke(x
e,xe

′
))

1In principle, any non-negative distribution, e.g. negative binomial or Poisson, can be used. We

chose the truncated Gaussian distribution for the sake of simplicity and because our preliminary ex-

periments showed it to be a good fit.
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Figure 7.2: Factor graph of the proposed Bayesian additive model with Gaussian process

components. The outer plate represents the observations, while the inner plate represents

the events associated with each observation. The blue arrows represent the message-passing

algorithm for performing approximate Bayesian inference. The second flow of messages

starting from the GP factor for the events component that goes in the opposite direction

is not shown.

3. For each observation n ∈ {1, ..., N}

(a) Draw routine component yrn|fr(xrn), βr ∼ I(yrn > 0)N(yrn|fr(xrn), βr)

(b) For each event ei, with i ∈ {1, ..., En}

i. Draw event contribution yein |fe(xein ), βe ∼ I(yein > 0)N(yein |fe(xein ), βe)

(c) Draw total observed arrivals yn|yrn, {yein }
En
i=1 ∼ N(yn|yrn +

∑En
i=1 y

ei
n , v)

where En denotes the number of events that are associated with the nth observation.

Figure 7.2 shows a factor graph representation of the proposed model, which will be

particularly useful in the following section for deriving a message passing algorithm to

perform approximate Bayesian inference using expectation propagation (EP) (Minka,

2001).
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7.4.2 Approximate inference

Let D be a dataset of N observations, each one corresponding to the total number of

arrivals (transportation demand) associated with the bus or subway stations that serve

a certain special events’ area in a given time interval. Formally, D = {xrn,Xe
n, yn}Nn=1,

with Xe
n = {xein }En

i=1, and xrn, xein being the attributes of the routine and events compo-

nents of observation n, respectively.

Given a dataset D, our goal is two-fold: (i) compute the marginal distributions of

the individual components yrn and yein and (ii) make predictions for new input vectors

{xr∗,Xe
∗}. According to the factor graph in Figure 7.2, the joint distribution of the

proposed model is given by

p(fr, fe,yr,Ye,y|{xrn,Xe
n}Nn=1) = N(fr|0,Kr)N(fe|0,Ke)

N∏
n=1

I(yrn > 0)N(yrn|f rn, βr)

×

(
En∏
i=1

I(yein > 0)N(yein |fein , βe)

)
N

(
yn

∣∣∣∣∣yrn +

En∑
i=1

yein , v

)
,

where we defined y , {yn}Nn=1, yr , {yrn}Nn=1 and Ye , {yen}Nn=1, with yen , {yein }
En
i=1.

The covariance matrices Kr and Ke are obtained by evaluating the covariance functions

kr(x
r,xr

′
) and kr(x

e,xe
′
), respectively, between every pair of inputs.

Unfortunately, the non-Gaussian truncation terms, I(yrn > 0) and I(yein > 0), deem

exact Bayesian inference to be computationally intractable. Hence, we proceed by

developing a message-passing algorithm using EP in order to perform approximate

Bayesian inference in the proposed model. In EP, the marginals p(yrn) and p(yein ) are

approximated via moment matching, thus resulting in the Gaussian distributions q(yrn)

and q(yein ) with the same mean and variances as p(yrn) and p(yein ). EP is therefore

able to approximate the non-Gaussian factors by local Gaussian approximations. How-

ever, these approximations are made in the context of all the remaining factors, which

gives EP the ability to make approximations that are more accurate in regions of high

posterior probability (Murphy, 2012).

Let the message sent from factor f to variable x be mf→x(x). Similarly, let mx→f (x)

be the message sent from variable x to factor f . We can obtain a message-passing

viewpoint of EP by defining the following update equations (Murphy, 2012):
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• Messages from factors integrate out all variables except the receiving one

mf→x(x) =

∫
f(x, z)

∏
z∈z

mz→f (z) dz, (7.6)

with the integral being replaced by summation for all the z’s in z which are

discrete instead of continuous random variables.

• Messages from variables are the product of all incoming messages except that

from the receiving factor

mx→f (x) =
∏

h∈Hx\{f}

mh→x(x), (7.7)

where h ∈ Hx\{f} is used to denote all factors h in the neighborhood of x, Hx,

except the factor f .

• Marginals are the product of all incoming messages from neighbor factors

q(x) = proj

[ ∏
f∈Fx

mf→x(x)

]
, (7.8)

where Fx denotes the set of factors in the neighborhood of x and the projection

operation, proj[p(x)], corresponds to finding the approximate distribution q(x)

that matches the moments of p(x). Notice how this updates are the same as in

exact inference with belief propagation (Bishop, 2006; Koller & Friedman, 2009)

except for the projection operation.

Making use of this viewpoint of EP, we derive a message-passing algorithm for

performing approximate Bayesian inference in the proposed model. This algorithm

consists of 12 steps as illustrated in Figure 7.2. The blue arrows represent the direc-

tionality of the message flow and the blue labels denote the step number. Although

not represented, there is a second flow of messages starting from the GP factor for the

event components that goes in the opposite direction of the one depicted. In practice,

these two flows of messages in opposite directions are implemented in parallel for added

efficiency. Also, as the figure suggests, all the messages correspond to 1-dimensional

Gaussians, which allows them to be represented compactly. A detailed derivation of

all the steps of message-passing algorithm is provided in Appendix C.3. As previously

mentioned, a version of the proposed Bayesian additive model with linear components
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instead of GPs is provided in Appendix C.4. In this case, the message-passing algorithm

requires a smaller number of steps.

Two key advantages of the proposed framework are then its general applicability

and extensibility. In fact, the building blocks for many interesting extensions have

already been laid down through the proposed model. For instance, one could extend

the model to account for effects of weather or seasonality in the observed arrivals. This

could simply be done by including seasonality features in the routine component, but

we could go a step further and introduce a new separate GP component, as this would

allow us to estimate the effect of seasonality in the observed transportation demand.

In fact, the equations for the new messages would be similar to the ones for the routine

component, although in this case we would not wish to constrain the marginals to take

only non-negative values. Therefore, there is a wide variety of interesting applications

that could be developed just by making small adaptations to the proposed model and

its inference algorithm in Appendix C.3.

7.4.3 Predictions

In the previous subsection, we discussed how to compute the posterior distribution of

the latent variables given the observed totals using expectation propagation. This al-

lows us to understand how transportation demand breaks down as a sum of a routine

component and the contributions of the various events that take place in the neigh-

borhood of a given bus or subway station. This, by itself, is of great value for public

transport operators, urban planners and event organizers. However, we also want to

make predictions for the “shares” of upcoming events and, ultimately, for the total

estimated demand.

Let xr∗ be the features of the routine component for a given time and date, and

let Xe
∗ = {xein }

En
i=1 be the set of feature vectors characterizing the events that will take

place. The EP algorithm in Appendix C.3 provides us with approximate posterior

distributions for fr and fe given by q(fr) = N(fr|µr,Σr) and q(fe) = N(fe|µe,Σe)

(kindly see Step 1 in Appendix C.3). These estimates can be used to compute the

predictive mean and variance of f r∗ and {fei∗ }E∗i=1, as in standard Gaussian process

regression, classification and GPC-MA (see Eqs. 4.36 and 4.37). The predictive mean
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and variance for f r∗ are then given by (Rasmussen & Williams, 2005)

Eq[f r∗ |fr,xr∗, {xrn}Nn=1] = (kr∗)
T(Kr + Σ̃r)−1µ̃r (7.9)

Vq[f r∗ |fr,xr∗, {xrn}Nn=1] = kr(x
r
∗,x

r
∗)− (kr∗)

T(Kr + Σ̃r)−1kr∗, (7.10)

and similarly for the events variables {fei∗ }E∗i=1. We can then use the predictive mean

and variance for f r∗ to estimate the share of the routine component as

p(yr∗|fr,xr∗, {xrn}Nn=1) = I(yr∗ > 0)

∫
N(yr∗|f r∗ , βr) p(f r∗ |fr,xr∗, {xrn}Nn=1) df r∗

≈ N(yr∗|µr∗, vr∗). (7.11)

This approximation is again made by moment matching (a derivation of these moments

is provided in Appendix C.5), yielding

µr∗ = Eq[f r∗ ] +
√
Vq[f r∗ ]

N(zr∗)

Φ(zr∗)
, (7.12)

vr∗ = Vq[f r∗ ]

(
1− zr∗

N(zr∗)

Φ(zr∗)
−
(
N(zr∗)

Φ(zr∗)

)2
)
, (7.13)

where zr∗ , Eq[f r∗ ]/
√

Vq[f r∗ ] and Φ(·) is the Gaussian cumulative distribution function.

As for the equations for estimating the number of arrivals that will be caused by a given

event yei∗ , they are analogous to the ones presented above for the number of routine

arrivals yr∗.

Finally, the predictive posterior distribution for the transportation demand (total

number of arrivals) is given by

p(y∗|xr∗,Xe
∗,D) =

∫
N

(
y∗

∣∣∣∣yr∗ +

E∗∑
i=1

yei∗ , v

)
N(yr∗|µr∗, vr∗)

×
E∗∏
i=1

N(yei∗ |µei∗ , vei∗ ) dyr∗ dy
e1
∗ · · · dy

eE∗
∗ (7.14)

= N

(
y∗

∣∣∣∣µr∗ +

E∗∑
i=1

µei∗ , v + vr∗ +

E∗∑
i=1

vei∗

)
. (7.15)

7.5 Experiments

The proposed Bayesian additive model with Gaussian process components (BAM-GP)

was implemented in the Julia programming language1 and evaluated in the context of

1Source code is available at: http://www.fprodrigues.com/
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Table 7.1: Descriptive statistics of the two study areas.

Area
Average daily Average daily Maximum Num. days

arrivals ± std. events ± std. daily events without events

Stadium 4101 (± 925) 0.230 (± 0.554) 3 114 (82.014%)

Expo 15027 (± 5515) 2.446 (± 1.986) 8 23 (16.547%)

the public transportation trip arrivals to event areas in Singapore. This dataset differs

from the one used in Chapter 6, by considering one extra month of data: August 2013,

and by only focusing on two study areas: the Stadium and the Expo. Each of these

areas is served by its own subway station, whose number of arrivals we are trying to

predict and dissect. Given this data, our goal is then two-fold:

• predict the total number of arrivals by half-hour in a given area in the presence

of events;

• decompose the observed total of arrivals into the contributions of the routine

component and the various events that took place in that area.

In order to achieve these goals, information about planned events is collected by mining

the Web using the procedure described in Section 6.3. However, as we shall discuss in

the following section, the data preparation procedure is now different.

Data preparation

As previously mentioned, we consider two study areas: the Stadium and the Expo.

For the five months of public transport data, a dataset of events was retrieved from

the Web, either through screen scrapping or, when available, through the direct use of

APIs. Namely, we collected events information from the same sources as in Chapter 6:

eventful.com, singaporeexpo.com.sg, upcoming.org, last.fm and timeoutsingapore.com.

The duplicate event titles that also share the same venue and day were merged by again

making use of the Jaro-Winkler string distance (Winkler, 1990). Table 7.1 provides

some descriptive statistics of the collected data.

The events information consists of the title, venue, date, start time, end time,

latitude, longitude, address, url, text description and categories/tags. From this infor-

mation, we extract features such as the venue, whether the event has started/ended,
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Table 7.2: Five examples of the topics extracted by LDA.

Topic 7 Topic 8 Topic 11 Topic 21 Topic 24

congress food home sale music

event bazaar design book rock

confer fiesta interior adida song

annual hotel live shop michael

mta wine luxuri john learn

health revolut furnitur deal love

fpso modul hous bag john

week analyt renov robinson ford

world event idea beauti live

servic restaur furnish warehous download

the time to the event start/end, the event duration, if it is a multiday event or not,

etc. Since the taxonomies of the different event sources vary significantly, the cate-

gories/tags provided became hard to include in a prediction model. Alternatively, we

propose the use of a web search engine in order to characterize the events according

to their subject. With this aim, we use the event titles and venue names as queries

and then we apply a latent Dirichlet allocation (LDA) topic model (Blei et al., 2003)

to the obtained search results (titles and snippets together). This contrasts with the

approach used in the previous chapter, where we applied LDA to the textual descrip-

tions of the events directly. These descriptions are often very short and uninformative,

and in practice, we found that using a web search engine over event titles and venues

produces better results.

The number of topics in LDA was set to 25 based on an empirical analysis of

the obtained topic distributions. Table 7.2 shows the top ten words for five example

topics extracted by the LDA algorithm. The inferred topic distributions of the different

events (in form of topic weights for each event) are then used as lower-dimensional

representations of their search results.

Figure 7.3 shows a 2-D visualization of the inferred topic proportions for a random

sample of the events using multi-dimensional scaling (MDS) (Borg & Groenen, 2005),

a technique which seeks to find low-dimensional representations of the data while pre-

serving the original distances between the data points. As the figure evidences, events
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Figure 7.3: Visualization of the topic proportions for a sample of the events data using

multidimensional scaling (MDS).
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Figure 7.4: Flowchart of the data preparation process.

with similar characteristics tend to be in the same region of the space. For example, the

two electronics and IT fairs, SITEX and Megatex, are near each other. Similarly, the

John Little and the Robinson (two large department stores) sales also appear together.
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Table 7.3: Results for estimating the total arrivals in the Stadium area using 10-fold

cross-validation.

Evaluation: all times Evaluation: event periods only

Model CorrCoef RAE R2 CorrCoef RAE R2

Linear Reg. (routine only) 0.646 0.642 0.417 0.649 0.735 0.092

Linear Reg. (routine + events) 0.739 0.620 0.543 0.709 0.620 0.502

GP (routine only) 0.667 0.616 0.445 0.654 0.707 0.117

GP (routine + events) 0.777 0.567 0.603 0.751 0.581 0.564

BAM-LR 0.737 0.605 0.544 0.694 0.582 0.474

BAM-GP 0.795 0.556 0.632 0.811 0.503 0.658

Table 7.4: Results for estimating the total arrivals the Expo area using 10-fold cross-

validation.

Evaluation: all times Evaluation: event periods only

Model CorrCoef RAE R2 CorrCoef RAE R2

Linear Reg. (routine only) 0.581 0.723 0.338 0.390 0.816 0.098

Linear Reg. (routine + events) 0.707 0.617 0.500 0.557 0.743 0.300

GP (routine only) 0.718 0.576 0.514 0.621 0.670 0.341

GP (routine + events) 0.750 0.547 0.543 0.676 0.668 0.382

BAM-LR 0.661 0.652 0.436 0.484 0.772 0.229

BAM-GP 0.796 0.472 0.633 0.736 0.565 0.540

More generally, we can notice the majority of the music-related events (e.g. Swedish

House Mafia, SHINee, 2NE1, Leona Lewis, Jam Hsiao, etc.) being in same region of

the space, separated from the rest of the events. Our hypothesis is then that events

with similar topic distributions share similar effects on the observed arrivals and also

on the general mobility patterns of a given place.

As for the routine features, we use the weekday, time (discretized in half-hour bins)

and holiday information. The overall process of retrieval, information extraction and

modeling of the events data is summarized in Figure 7.4.

Since some of the extracted features, especially some of the inferred topics, can

turn out to be redundant for the arrivals prediction task and may actually decrease

performance of the prediction algorithms, a simple feature selection procedure was

used. It consists of a greedy search algorithm that starts with an empty set of features

and then iteratively adds to this set the feature that yields the best improvement for a
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simple linear regression model evaluated using 10-fold cross-validation. This way, the

feature selection process is kept efficient and completely independent from the proposed

models. Using this algorithm, we were able to discard part of the topics that were less

likely related with the impact of events on urban mobility and that could in fact affect

negatively the performance of all the prediction models. Indeed, a manual inspection

of the prediction errors for the Stadium area revealed that the biggest improvement

with the use of events’ information was related to the discrimination between sports

events and different types of concerts (e.g. with different music styles). In this case,

the feature selection algorithm correctly chose topics that could help to discriminate

between these different event types. At the same time, the majority of the time- and

venue-related features were kept by the algorithm.

Arrivals prediction

The proposed model is evaluated using 10-fold cross validation, where the observations

are ordered by time. Furthermore, the samples that belong to the same day are treated

as a whole, so that they are assigned either to the test or train set altogether. This

ensures that the model is only provided with information that is available in practice

(recall that our goal with the prediction model is to make predictions far ahead of time,

so that public transport operators are able to make changes accordingly). Since the

proposed Bayesian additive models have two extra parameters, the variances of the

routine and the events components (βr and βe), an additional 80/20 split is made on

the train set of each fold in order to obtain a separate validation set for optimizing the

values of βr and βe. For the sake of simplicity, a grid search procedure is used to set

these parameters. The proposed model (BAM-GP) is then compared with the following

baselines:

• two Bayesian linear regression models: one that uses only routine features, and

another that corresponds to the model in Eq. 7.2, which uses both routine and

event features;

• two Gaussian process models: one that considers event features and one that

does not; in the case of the GP with information about events, the features of the

multiple events that correspond to each observation are aggregated in the same

way as with linear regression: by summing their values;
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• and a version of the proposed Bayesian additive model that uses linear models for

the routine and the events components (BAM-LR) as described in Appendix C.4.

Notice how this approach is similar in spirit to the model proposed in Chapter 6.

It differs mainly by considering a routine component and by using truncated

Gaussians to model the values of the components.

The likelihood variance v and the strength of the prior over the coefficients of the linear

regression models were set using the same grid search approach used for βr and βe.

All the GPs, including the ones used in BAM-GP, use squared-exponential covariance

functions (Rasmussen & Williams, 2005). The likelihood variance and length-scales of

the GPs were determined by maximizing the marginal likelihood of the observations.

As measures of the quality of the predicted results, we report the following standard

evaluation metrics: correlation coefficient (CorrCoef), relative absolute error (RAE)

and coefficient of determination (R2). Besides a global evaluation, we also provide

error metrics only for the periods when events are about to start (time to event start

is less than an hour) or ongoing, so that the contribution of the models that include

event features can be more evident.

Tables 7.3 and 7.4 show the results obtained for the Stadium and Expo areas,

respectively. As it can be seen, there is a clear advantage in including information

regarding events in the public transport arrivals prediction models, which can lead

to gains in R2 of 42% and 23%, in the Stadium and Expo areas respectively, when

compared to the best model that just uses routine information. If we focus only on

the event periods, then this difference becomes even more significant, yielding gains

of 462% and 54%, respectively. Not surprisingly, the improvements are higher in the

Stadium area, since it has far less concurrent events (see Table 7.1), which makes the

data considerably easier to understand and model. Also, as expected, the GP-based

approaches compare favourably to their linear counterparts showing a clear advantage

especially in the Expo area, which supports our intuition that this is an highly non-

linear problem.

The results in Tables 7.3 and 7.4 show that BAM-GP outperforms all the other

baselines in both areas, where the GP model that uses routine and event features is the

second best approach. Since in the Stadium area there are few simultaneous events,

the feature aggregation problem described in Section 7.3 becomes less severe, and the
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Figure 7.5: Comparison of the predictions of BAM-GP (orange solid line) with the true

observed arrivals (black solid line) and the predictions of the GP model (red dotted line)

on four example days. Events start times are shown in parentheses.

difference between BAM-GP and the GP model becomes less significant when compared

with the Expo area, which has an average of 2.446 daily events that generally overlap

in time.

In order to illustrate some of these differences in their real-world context, we plot-
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ted the predictions of BAM-GP and GP models against the true observed arrivals for

four example days in Figure 7.5. The obtained results highlight the practical implica-

tions of the improvements obtained by the proposed additive model. For example, in

Figure 7.5(a) the GP model over-estimates the transportation demand around 19:00

by approximately 200 people, and it under-estimates the number of arrivals around

the same time in Figure 7.5(b), making an error of the same magnitude again. On

the other hand, the estimates produced by BAM-GP are much closer to the observed

number of arrivals. However, there is a phase shift of half an hour between the true and

estimated peaks before the pop concert at 19:00. We hypothesize that this is due to

the fact that 2NE1 is a very popular band in the southeast Asia and, therefore, people

tend to arrive earlier to the show in order to guarantee a better spot. In fact, findings

like these motivate us to explore the development of online popularity indicators to be

included in the predictions models in our future work. Lastly, Figures 7.5(c) and 7.5(d)

show two additional examples for the Expo area, where we also can see that BAM-GP

provides much more accurate predictions than the GP model. These differences can be

quite significant in terms of magnitude, thus making them likely to have major impacts

in the transportation system.

Arrivals decomposition

In order to analyze decomposition results generated by the additive model, we need

to take a closer look at the posterior marginal distributions on the routine component

yr and on the events components {yei}Ei=1 estimated by BAM-GP by running the EP

inference algorithm on the entire dataset. Since it is impossible to obtain ground truth

for this particular decomposition problem, our analysis will be qualitative rather than

quantitative, and more based on common sense. With this aim, the performance of

BAM-GP will be compared with the following baselines:

• the linear regression model from Eq. 7.2, where the inferred posterior distribution

of the weights η is used to compute the posterior on the components yr and

{yei}Ei=1 for each individual observation by making use of Bayes theorem;

• and BAM-LR, where the EP algorithm described in Appendix C.4 is used to

compute the marginal distributions of the routine and events components.
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((a)) Linear Reg. (routine +

events)

((b)) BAM-LR ((c)) BAM-GP

((d)) Linear Reg. (routine +

events)

((e)) BAM-LR ((f)) BAM-GP

Figure 7.6: Results obtained by 3 different approaches (columns) on two examples days

in two different areas (rows) for disaggregating the total observed arrivals (black solid line)

into the contributions of the routine component and the various nearby events. The dotted

line represents the median arrivals over all the days in the observed data that correspond

to the same weekday. Events start times are shown in parentheses.

Figure 7.6 shows the results obtained by the three different approaches (columns) for

two illustrative example days in the two study areas (rows). Let us start by analyzing

the first row of examples, which correspond to the 10th of November 2012 in the

Stadium area. From Figure 7.6(a) it can be seen that the component values estimated

by the linear regression model do not add up the total observed arrivals, which makes

the output of this approach harder to use in practice. The BAM-LR decomposition

from Figure 7.6(b) matches closer to the observed totals, however still it estimates
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arrivals caused by the Jam Hsiao concert long after that event is over, which is a naive

mistake. Figure 7.6(c) shows that BAM-GP not only overcomes those problems, but it

also provides more intuitive results. It assigns a significantly larger bulk of the demand

to the big concert by Jam Hsiao (a young star mandopop singer widely popular in asian

counties) that took place in the Indoor Stadium, as opposed to the small guitar clinic

in the Kallang Theatre.

The results for the Expo area (Figure 7.6(d)) illustrate another weakness of the

linear regression model. By not incorporating any constraints on the components, the

estimated number of arrivals at 13:00 due to routine commuting becomes negative.

Employing the truncated Gaussians for the components distributions, the Bayesian

additive models do not suffer from this problem. However, as Figure 7.6(e) evidences,

the simpler BAM-LR model is once again suffering from the problem of assigning a

significant share of the arrivals to events when their are about to end (around 21:00).

The proposed non-linear model (BAM-GP) makes a much more reasonable estimate

with that respect. This is a consequence of the fact that the relation between arrivals

to an event and its end time, which is used as one of the model features, is non-linear.

Moreover, it is expected that this relation would be also dependent on the type of event,

which is something that a simple linear model cannot capture.

Finally, Figure 7.7 shows six additional illustrative decompositions produced by

BAM-GP. All these examples further support the idea that BAM-GP is producing

reasonable and well-informed disaggregations of the total observed arrivals into the

contributions of routine commuting and the effects of the various events. For example,

Figure 7.7(c) shows a case where the proposed additive model estimates a very small

localized contribution for the event, which is not surprising because this was a small-

sized event with a very narrow target audience that took place in a not so popular

venue. Similarly, in Figures 7.7(d) and 7.7(e) the model is clearly assigning larger

shares to the “Asia Pacific Food Expo” and “Megatex”, which is reasonable since the

former is a particularly large food festival in Singapore and the latter is a popular

electronics and IT showcase. Another interesting example is shown in Figure 7.7(f).

On that day (January 19, 2013), the Singapore Expo had a concert at night by Sally

Yeh, a cantopop singer and actress from Taiwan. As the figure depicts, the proposed

model is assigning the majority of the late arrivals in this area to the concert.
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7.6 Conclusion

In this chapter, we proposed BAM-GP — a Bayesian additive model (BAM) with

Gaussian process (GP) components that allows for an observed variable to be modeled

as a sum of a variable number of non-linear functions on subsets of the input variables.

We developed an efficient approximate inference algorithm using expectation propa-

gation (EP), which allows us to both make predictions about the unobserved totals

and to estimate the marginal distributions of the additive components. The proposed

model is then capable of being flexible, while retaining its interpretability character-

istics. We apply BAM-GP to the problem of estimating public transport arrivals in

special event scenarios. Using a five months dataset of Singapore’s fare card system

and crowd-generated data about special events mined from the Web, we show that the

model presented not only outperforms others that do not account for information about

events, thus verifying the value of internet-mined data produced by large crowds for

understanding urban mobility, but also outperforms other more general models that do

account for event information. Furthermore, due to its additive nature and Bayesian

formulation, BAM-GP is capable of estimating the posterior marginal distributions that

correspond to routine commuting and the contributions of the various events, which

is of great value for both public transport operators/planners and event organizers.

Finally, we believe that the presented methodology is quite general and that it can be

easily adapted beyond the transportation domain such as, for example, in the analysis

of financial time-series, cell-phone call records or electrical consumption signals.
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((a)) ((b))

((c)) ((d))

((e)) ((f))

Figure 7.7: Results obtained by BAM-GP for disaggregating the total observed arrivals

(black solid line) in 6 example days into the contributions of the routine component and

the various nearby events. The dotted line represents the median arrivals over all the days

in the observed data that correspond the same weekday. Events start times are shown in

parentheses.
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Chapter 8

Conclusions and future work

This thesis presented various probabilistic models for learning from crowdsourced data.

As dataset sizes grow, crowdsourcing provides an attractive solution for efficiently la-

beling large volumes of data, especially due to online work-recruiting platforms such

as Amazon mechanical turk (AMT). At the same time, as people share more and more

information on the internet about what goes on in the real-world, the potential for

solving complex machine learning problems and understanding certain real-world phe-

nomena becomes unique. Unfortunately, the knowledge provided by crowds also brings

many interesting challenges that must be addressed, like how to deal with the noise

and uncertainty in these heterogenous information-sharing environments, how to cope

with the fact that individuals are often biased and differ in terms of expertise, or how

to develop machine learning approaches that make proper use of this data for building

more accurate models of reality.

Making use of the framework of probabilistic graphical models, several solutions

were proposed throughout this thesis in order to address some of these challenges. We

began by considering the labels provided by multiple annotators as noisy replacements

for the true outputs y in situations where these are hard or expensive to obtain, and

developed several probabilistic models of increasing complexity for coping with the dif-

ferent levels of annotator expertise that are commonly encountered in practice when

learning from crowds. First, a new class of models was introduced, in which the relia-

bilities of the different annotators are treated as latent variables. Within this class of

latent expertise models, a classification approach based on logistic regression models

was proposed (MA-LR). This approach was the base for developing MA-CRF — an
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extension of conditional random fields (CRFs) for learning from sequences labeled by

multiple annotators. Using real data from AMT, we saw that the proposed model can

lead to gains up to 22% in F1-score for named entity recognition tasks when compared

to commonly used approaches such as majority voting.

Having clearly demonstrated the importance of annotator-aware models, we moved

on to non-linear classification methods by developing a generalization of Gaussian pro-

cess classifiers to multiple annotator settings — GPC-MA. By treating the unknown

true labels as latent variables, this model is able to estimate the levels of expertise of the

different annotators, thereby allowing it to compensate for their biases and to obtain

better estimates of the ground truth labels. This was empirically validated using AMT

data for a sentiment polarity and a music genre classification task, where the GPC-

MA was shown to outperform traditional approaches by as much as 0.178 in F1-score.

Furthermore, an active learning methodology was developed, which allows us to select

which instance should be labeled next and which annotator should label it. Using this

methodology, the proposed model was shown to clearly improve over random selection

approaches, while producing savings in annotation cost of more than 76%.

Motived by the success of the aforementioned approaches, and also realizing that the

majority of the tasks for which crowdsourcing platforms are most popular belong to the

fields of natural language processing and computer vision, two supervised topic models

for learning from crowds were proposed. The fact that crowdsourcing is particularly

popular within these research communities is easy to understand since the latter seek

to mimic behaviors that are natural and easy for humans, such as understanding the

meaning of a sentence or the content of an image, but that can be quite complex for

machines due to the high dimensionality of the data. Hence, the amount of labeled

data needed to compensate for this issue makes the use of crowdsourcing solutions very

appealing. As it turns out, supervised topic models are particularly good for dealing

with this type of data. Therefore, two supervised topic models were proposed for

learning from complex high-dimensional data labeled by crowds: one for classification

(MA-sLDAc) and another for regression tasks (MA-sLDAr). Using real data from

AMT, MA-sLDAc was empirically shown to significantly outperform state-of-the-art

approaches at classifying news articles and images according to their content. Similarly,

MA-sLDAr demonstrated its superior predictive capabilities over other commonly-used
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approaches at predicting the ratings of movies and restaurants based on the text of the

reviews.

In the second part of this thesis, the use of crowdsourced data as an additional

input for improving machine learning models was considered. Focusing on the prob-

lem of modeling public transportation demand in the presence of special events such

as sports games, concerts or festivals, a probabilistic model was proposed which uses

internet-mined data to explain non-habitual overcrowding hotspots. Given real data

from Singapore’s public transport system and crowd-generated information about spe-

cial events that was collected from the Web, the proposed model was shown to be able

to predict the size of an overcrowding hotspot with a correlation coefficient ranging from

41.2% to 83.9% and an R2 ranging from 0.41 to 0.68, depending on the area of study.

But most importantly, a qualitative analysis of the results showed that the model is

able to breakdown the excess demand into the shares of different possible explanations

in an intuitively plausible manner.

Despite its linear assumptions, the overcrowding model was able to obtain very

promising results. This inspired the development of a Bayesian additive model with

Gaussian process components (BAM-GP) for the more complex task of predicting the

time-series of public transport demand in the presence of special events. As with

the overcrowding model, BAM-GP also relies on crowdsourced data mined from the

Web for explaining the effect of events. However, by using non-linear models (GPs) for

representing the relationship between the input features and the values of the individual

additive components, the proposed model was empirically demonstrated to outperform

state-of-the-art approaches by as much as 41% in R2 during event periods based on

5 months of public transport data from Singapore. Furthermore, due to its additive

nature and Bayesian formulation, BAM-GP was shown to be capable of estimating

the posterior marginal distributions that correspond to routine commuting and the

contributions of the various events, which is of great value for both public transport

operators/planners and event organizers.

In summary, this thesis proposed a collection of probabilistic models for learn-

ing from crowdsourced data. These were validated in various real-world applications,

thereby demonstrating their value and also the wide applicability of crowdsourced data.

Indeed, this type of data is more ubiquitous than it is sometimes realized. For example,
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in websites like IMDb.com, Yelp.com, Booking.com, AirBnB.com, Uber.com and Ama-

zon.com different users provide ratings of movies, restaurants, hotels, accommodations,

drivers and consumer products, respectively. However, these users have different reli-

abilities and some can even be spammers that give either the lowest or highest rating

to all instances. Furthermore, they can have certain biases. For instance, a movie-

goer might not be a fan of a particular genre and therefore rates all movies of that

genre lower than they actually deserve. In fact, the same that happens with movies

and genres happens with products and brands, restaurants and cuisines (e.g. West-

ern, Mediterranean, Japanese, Thai, etc.) or with hotels and guest preferences (e.g.

fast WiFi versus a large TV). Hence, future work could explore the application of the

multiple-annotator models and ideas developed in this thesis to some of these problems,

provided that these companies are willing to share their data. In fact, for many of these

applications the proposed approaches could be extended to also model user tastes, such

that the variables corresponding to the annotators’ biases could be conditioned on their

individual preferences.

Closely related to the idea of modeling users’ individual tastes is another possible

future work direction, which consists in relaxing the assumption that the annotators’

expertise is independent of the instances that they are labeling. In situations where the

task difficulty varies significantly between instances, it might be important to include

such dependence in the annotator-aware models proposed in the first part of this thesis.

For example, in a document classification task, this would allow the model to expect

less reliable answers for documents that are next to the decision boundary between

two classes, even if the annotators are generally reliable. Although conditioning the

annotators’ reliabilities on the instances that they are labeling would increase model

complexity and make inference and learning harder, it could be especially advantageous

in situations where different annotators are more qualified in certain regions of the input

space. An example would be for the task of music genre classification. In this task, it

is intuitive that annotators provide more reliable answers for songs that belong to the

input space regions that correspond to the music styles that they know best. Hence,

for songs with similar characteristics, it is expected that they provide equally reliable

answers.

Another research line that justifies being explored in future work is related to the

development of active learning strategies. In Section 4.5, we saw how active learning

176 Chapter 8



could be used to reduce annotation cost and to get the most out of a given budget, by

cleverly choosing which instance to label next and who is the most qualified annotator to

provide that label. However, although efficient and effective, the methodology proposed

is suboptimal, since it considers each of these selection problems individually. Hence,

the instance-annotator pair found might not necessarily be the best one if we consider

both objectives together. In future work, approaches that jointly select the instances

and the annotators could be explored.

Moving on to the use of crowdsourced data as additional input features, there are

several ideas that deserve to be explored in future work. Perhaps the most obvious

one relates to the application of the proposed models in other similar contexts, such

as traffic and telecommunications data. By making use of information mined from the

Web and text mining techniques, it should be possible to understand disruptions in both

road and telecommunications networks, and to forecast demand under the presence of

events. Indeed, all the methodologies developed for modeling public transportation

demand would be readily applicable to those problems. But the applicability of the

proposed models can go even further. For example, the Bayesian additive framework

developed in this thesis can be of great value for any prediction task where knowing the

importance (or contribution) of different inputs is required, such as in source separation

or electrical signal disaggregation, where the goal is to determine the power usage of

individual home appliances given the whole-home electrical consumption data.

From a more general perspective, the proposed Bayesian additive models could be

applied to any supervised machine learning problem where there is a need for inter-

pretable models. As previously discussed, the proposed additive approaches, namely

BAM-GP, provide an interesting tradeoff between simple linear models and more flex-

ible models such as standards GPs. While fully interpretable, linear models are com-

monly overly simplistic. On the hand, more flexible models such as neural networks or

GPs generally have a more black-box nature. Hence, although their predictions may

be accurate, it is hard to understand what internally is leading the model to predict a

specific result, which for some problems might be crucial. For example, when model-

ing air quality through the presence of pollutants, it is essential to have interpretable

systems, so that researchers can understand how each individual factor (traffic, forest

fires, kitchens, air conditioning/heating, industry, etc.) contributes to the total values

observed or forecasted. Similarly, in computer-aided diagnosis (CAD), it is extremely
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important to have interpretable models in order to understand what drives the system

to make a given diagnosis. Hence, in future work, we would like to explore variants

of BAM-GP in a wide range of machine learning problems that could benefit from

interpretable models and see how they compare to other state-of-the-art approaches.

One last future work direction that is worth mentioning is the relation between

what crowds say online about a given event or its performer and the impact that it ac-

tually causes in transportation systems or urban mobility in general. Using information

mined from the internet about events, we created simple Web-search-based popularity

indicators which improved the proposed models. However, this remains a significant

open question, involving aspects such as time-dependent dynamics, sentiment and social

influence.
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Appendix A

Probability distributions

A.1 Bernoulli distribution

The Bernoulli is a distribution over a binary variable x ∈ {0, 1}. The conjugate prior

to the Bernoulli is the beta distribution. Its parameter is constrained by µ ∈ [0, 1].

Bernoulli(x|µ) = µx(1− µ)1−x (A.1)

E[x] = µ (A.2)

V[x] = µ(1− µ) (A.3)

A.2 Beta distribution

The beta is a distribution over a continuous variable x ∈ [0, 1]. It is the conjugate prior

to the parameters of a Bernoulli. Its parameters α and β are constrained by α > 0 and

β > 0.

Beta(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (A.4)

E[x] =
α

α+ β
(A.5)

V[x] =
αβ

(α+ β)2(α+ β + 1)
(A.6)

Here Γ(·) is the gamma function, defined as Γ(x) =
∫∞

0 ux−1e−u du.
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A.3 Dirichlet distribution

The Dirichlet is a distribution over K random variables xk ∈ [0, 1]. It is the multivariate

generalization of the beta distribution. The Dirichlet is the conjugate prior to the

parameters of a multinomial distribution. Its parameters αk are constrained by αk > 0.

Dirichlet(x|α) =
Γ
(∑K

k=1 αk
)∏K

k=1 Γ(αk)

K∏
k=1

xαk−1
k (A.7)

E[xk] =
αk∑K
j=1 αj

(A.8)

V[x] =
αk
(∑K

j=1 αj − αk
)(∑K

j=1 αj
)2(∑K

j=1 αj + 1
) (A.9)

E[log xk] = Ψ(αk)−Ψ

(
K∑
j=1

αj

)
(A.10)

Here Ψ(·) is the digamma function, defined as

Ψ(x) =
d log Γ(x)

dx
. (A.11)

A.4 Gaussian distribution

The univariate Gaussian is a distribution over a continuous variable x ∈ <. Its param-

eters µ and σ2 are constrained by µ ∈ < and σ2 > 0.

N(x|µ, σ2) =
1

(2πσ2)1/2
exp

(
− 1

2σ2
(x− µ)2

)
(A.12)

E[x] = µ (A.13)

V[x] = σ2 (A.14)

The conjugate prior for the mean µ is another Gaussian, while the conjugate prior to

the inverse variance ρ = 1/σ2, called the precision, is the gamma distribution. The

conjugate prior for both µ and ρ is known as the Gaussian-gamma distribution.

Its multivariate extension for a D-dimensional vector x is given by

N(x|µ,Σ) =
1

(2π)D/2
1

det(Σ)1/2
exp

(
− 1

2
(x− µ)ᵀΣ−1(x− µ)

)
(A.15)

E[x] = µ (A.16)

cov[x] = Σ (A.17)
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In this case, the conjugate prior for the inverse covariance matrix Λ = Σ−1, the pre-

cision matrix, is the Wishart. The conjugate prior for both µ and Λ is then the

Gaussian-Wishart.

A.5 Multinomial distribution

Following part of the literature on machine learning, namely on topic models, in this

thesis we refer to a multinomial distribution when we actually mean a “categorical” or

“discrete” distribution. Notice that the multinomial is the multivariate generalization

of the binomial, and hence it is a distribution over counts. In this thesis, we use the

term “multinomial”, to refer to a multinomial where the number of observations is 1.

In the context of this thesis, the multinomial is a distribution over a K-dimensional

binary variable x, such that xk ∈ {0, 1} and
∑

k xk = 1. The conjugate prior to the

multinomial is the Dirichlet distribution. Its parameters are constrained by µk ∈ [0, 1]

and
∑

k µk = 1.

Multinomial(x|µ) =

K∏
k=1

µxkk (A.18)

E[xk] = µk (A.19)

V[xk] = µk(1− µk) (A.20)

A.6 Uniform distribution

The uniform is a simple distribution over a continuous variable x, such that x ∈ [a, b]

and b > a.

Uniform(x|a, b) =
1

b− a
(A.21)

E[x] =
b+ a

2
(A.22)

V[x] =
(b− a)2

12
(A.23)
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Appendix B

Gaussian identities

B.1 Product and division

Given two (multivariate) Gaussian distributions N(x|µ1,Σ1) and N(x|µ2,Σ2), the

product is given by

N(x|µ1,Σ1)N(x|µ2,Σ2) = Z−1 N(x|µ,Σ), (B.1)

where

µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2)

Σ = (Σ−1
1 + Σ−1

2 )−1.

The normalization constant is given by

Z−1 = (2π)−D/2|Σ1 + Σ2|−1/2 exp
(
− 1

2
(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)

)
=

√
|Σ|

(2π)D|Σ1||Σ2|
exp

(
− 1

2
(µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2 − µTΣ−1µ)

)
. (B.2)

Similarly, for division we have

N(x|µ1,Σ1)

N(x|µ2,Σ2)
= Z−1 N(x|µ,Σ), (B.3)

where

µ = Σ(Σ−1
1 µ1 −Σ−1

2 µ2)

Σ = (Σ−1
1 −Σ−1

2 )−1.

Appendix B 183



The normalization constant is given by

Z−1 =

√
|Σ||Σ2|

(2π)D|Σ1|
exp

(
− 1

2
(µT1 Σ−1

1 µ1 − µT2 Σ−1
2 µ2 − µTΣ−1µ)

)
(B.4)

B.2 Marginal and conditional distributions

On the other hand, if we have a joint Gaussian distribution N(x|µ,Σ) with prevision

matrix Λ , Σ−1 and we define the following partitions

x =

(
xa
xb

)
, µ =

(
µa
µb

)

Σ =

(
Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
,

then the conditional distribution p(xa|xb) is given by

p(xa|xb) = N(xa|µa|b,Σa|b), (B.5)

where

µa|b = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba,

or alternatively, in terms of the precision matrix components

µa|b = µa −Λ−1
aa Λab(xb − µb)

Σa|b = Λ−1
aa .

B.3 Bayes rule

Given a marginal Gaussian distribution for x and a conditional Gaussian distribution

for y given x in the form

p(x) = N(x|µ,Λ−1)

p(y|x) = N(y|Ax + b,L−1),

184 Appendix B



the marginal distribution of y and the conditional distribution of x given y are given

by

p(y) = N(y|Aµ+ b,AΛ−1AT + L−1) (B.6)

p(x|y) = N(x|S{ATL(y− b) + Λµ},S), (B.7)

where

S = (Λ + ATLA)−1.

B.4 Derivatives

Given a (multivariate) Gaussian distributions N(x|µ,Σ), the derivative w.r.t. the mean

µ is given by
dN(x|µ,Σ)

dµ
= −(x− µ)Σ−1 N(x|µ,Σ). (B.8)

Similarly, the derivative w.r.t. the variance Σ is given by

dN(x|µ,Σ)

dΣ
=

[
1

2Σ2
(x− µ)T (x− µ)− D

2Σ

]
N(x|µ,Σ). (B.9)
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Appendix C

Detailed derivations

C.1 Moments derivation for GPC-MA

Recall that the product of the cavity distribution with the exact likelihood term is

given by

q̂(fn) , ẐnN(µ̂n, σ̂
2
n)

' q−n(fn)
∑

cn∈{0,1}

p(yn|cn) p(cn|fn),

which, by making use of the definitions of the different probabilities, can be manipulated

to give

q̂(fn) = bnN(fn|µ−n, σ2
−n) + (an − bn) Φ(fn)N(fn|µ−n, σ2

−n), (C.1)

whose moments we wish to compute for moment matching.

In order to make the notation simpler and the derivation easier to follow, we will

derive the moments using a “generic” distribution q(x)

q(x) =
1

Z

[
bN(x|µ, σ2) + (a+ b) Φ(x)N(x|µ, σ2)

]
. (C.2)

The normalization constant Z is given by

Z =

∫ +∞

−∞
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2) dx

= b+ (a− b)
∫ +∞

−∞
Φ(x)N(x|µ, σ2) dx︸ ︷︷ ︸

=Φ(η)

= b+ (a− b) Φ(η), (C.3)
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where

η =
µ√

1 + σ2
.

Differentiating both sides with respect to µ gives

∂Z

∂µ
=
∂
[
b+ (a− b) Φ(η)

]
∂µ

⇔ b

∫
x− µ
σ2

N(x|µ, σ2) dx+ (a− b)
∫
x− µ
σ2

Φ(x)N(x|µ, σ2) dx =
(a− b)N(η)√

1 + σ2

⇔ b

σ2

∫
xN(x|µ, σ2) dx− b µ

σ2

∫
N(x|µ, σ2) dx

+
(a− b)
σ2

∫
xΦ(x)N(x|µ, σ2) dx− (a− b)µ

σ2

∫
Φ(x)N(x|µ, σ2) dx =

(a− b)N(η)√
1 + σ2

⇔
∫
x
[
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2)

]
dx

− µ
∫
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2) dx︸ ︷︷ ︸

=Z

=
(a− b)σ2 N(η)√

1 + σ2
,

where we made use of the fact that ∂Φ(η)/∂µ = N(η) ∂η/∂µ.

We recognise the first term on the left-hand side to be Z times the first moment of

q, which we are seeking. Dividing through by Z gives

Eq[x] = µ+
(a− b)σ2 N(η)

Z
√

1 + σ2
= µ+

(a− b)σ2 N(η)[
b+ (a− b) Φ(η)

]√
1 + σ2

. (C.4)

Similarly, the second moment can be obtained by differentiating both sides of (C.3)

twice to give

∂2Z

∂2µ
=
∂2
[
b+ (a− b) Φ(η)

]
∂2µ

⇔ b

∫ [x2

σ4
− 2µx

σ4
+
µ2

σ4
− 1

σ2

]
N(x|µ, σ2) dx

+ (a− b)
∫ [x2

σ4
− 2µx

σ4
+
µ2

σ4
− 1

σ2

]
Φ(x)N(x|µ, σ2) dx = −(a− b) ηN(η)

1 + σ2
.
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Multiplying through σ4 and re-arranging gives

⇔ b

∫ [
x2 − 2µx+ µ2 − σ2

]
N(x|µ, σ2) dx

+ (a− b)
∫ [

x2 − 2µx+ µ2 − σ2
]

Φ(x)N(x|µ, σ2) dx = −(a− b)σ4 ηN(η)

1 + σ2

⇔ b

∫
x2N(x|µ, σ2) dx− 2µb

∫
xN(x|µ, σ2) dx

+ µ2b

∫
N(x|µ, σ2) dx− σ2b

∫
N(x|µ, σ2) dx

+ (a− b)
∫
x2Φ(x)N(x|µ, σ2) dx− 2µ(a− b)

∫
xΦ(x)N(x|µ, σ2) dx

+ µ2(a− b)
∫

Φ(x)N(x|µ, σ2) dx

− σ2(a− b)
∫

Φ(x)N(x|µ, σ2) dx = −(a− b)σ4 ηN(η)

1 + σ2

⇔
∫
x2
[
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2)

]
dx

− 2µ

∫
x
[
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2)

]
dx

+ µ2

∫
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2) dx︸ ︷︷ ︸

=Z

− σ2

∫
bN(x|µ, σ2) + (a− b) Φ(x)N(x|µ, σ2) dx︸ ︷︷ ︸

=Z

= −(a− b)σ4 ηN(η)

1 + σ2

⇔ Z Eq[x2]− 2µZ Eq[x] + µ2 Z − σ2 Z = −(a− b)σ4 ηN(η)

1 + σ2
.

Dividing through Z gives

⇔ Eq[x2]− 2µEq[x] + µ2 − σ2 = −(a− b)σ4 ηN(η)

Z (1 + σ2)

⇔ Eq[x2] = 2µEq[x]− µ2 + σ2 − (a− b)σ4 ηN(η)

Z (1 + σ2)
. (C.5)
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The second moment is then given by

Eq[(x− Eq[x])2] = Eq[x2]− Eq[x]2

= 2µEq[x]− µ2 + σ2 − (a− b)σ4 ηN(η)

Z (1 + σ2)
−

(
µ+

(a− b)σ2 N(η)

Z
√

1 + σ2

)2

= 2µ

(
µ+

(a− b)σ2 N(η)

Z
√

1 + σ2

)

− µ2 + σ2 − (a− b)σ4 ηN(η)

Z (1 + σ2)
−

(
µ+

(a− b)σ2 N(η)

Z
√

1 + σ2

)2

= 2µ2 +
2µ (a− b)σ2 N(η)

Z
√

1 + σ2

− µ2 + σ2 − (a− b)σ4 ηN(η)

Z (1 + σ2)
−

(
µ+

(a− b)σ2 N(η)

Z
√

1 + σ2

)2

= µ2 +
2µ (a− b)σ2 N(η)

Z
√

1 + σ2
+ σ2 − (a− b)σ4 ηN(η)

Z (1 + σ2)

−

(
µ+

(a− b)σ2 N(η)

Z
√

1 + σ2

)2

.

Manipulating this expression further, we arrive at

Eq[(x− Eq[x])2] = σ2 − σ4

1 + σ2

(
ηN(η) (a− b)
b+ (a− b) Φ(η)

+
N(η)2 (a− b)2

(b+ (a− b) Φ(η))2

)
. (C.6)

By making use of the moments derived above, the moments of the distribution in

eq. C.1 are then given by

Ẑn = bn + (an − bn) Φ(ηn)

µ̂n = µ−n +
(an − bn)σ2

−nN(ηi)[
bn + (an − bn) Φ(ηn)

]√
1− σ2

−n

σ̂n = σ2
−n −

σ4
−n

1 + σ2
−n

(
ηnN(ηi) (an − bn)

bn + (an − bn) Φ(ηn)
+

N(ηn)2 (an − bn)2

(bn + (an − bn) Φ(ηn))2

)
,

where

ηn =
µ−n√

1 + σ2
−n

.
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C.2 Variational inference for MA-sLDAc

Deriving the lower bound

The variational objective function (or the evidence lower bound) is given by

log p(W,Y|α, τ, ω,η)

= log
∑
z

∑
c

p(θ1:D, z1:D, c,β1:K ,Π1:R,W,Y|Θ) q(θ1:D, z1:D, c,β1:K ,Π1:R)

q(θ1:D, z1:D, c,β1:K ,Π1:R)

> L(W,Y|Θ)

= Eq[log p(θ1:D, z1:D, c,β1:K ,Π1:R,W,Y|Θ)]−Eq[log q(θ1:D, z1:D, c,β1:K ,Π1:R)]︸ ︷︷ ︸
H(q)

=

K∑
i=1

Eq[log p(βi|τ1V )] +

R∑
r=1

C∑
c=1

Eq[log p(πrc |ω1C)]

+
D∑
d=1

(
Eq[log p(θd|α1K)] +

Nd∑
n=1

Eq[log p(zdn|θd)] +
Nd∑
n=1

Eq[log p(wdn|zdn,β1:K)]

+ Eq[log p(cd|z̄d,η)] +

R∑
r=1

Eq[log p(yd,r|cd,Πr)]

)
+ H(q) (C.7)

where the entropy H(q) of the variational distribution is given by

H(q) =−
R∑
r=1

C∑
c=1

Eq[log q(πrc |ξrc)]−
K∑
i=1

Eq[log q(βi|ζi)]

−
D∑
d=1

(
Eq[log q(θd|γd)]−

Nd∑
n=1

Eq[log q(zdn|φdn)]− Eq[log q(cd|λd)]
)
. (C.8)
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The terms needed for the lower bound are given by

Eq[log p(βi|τ1V )] = Eq
[

log
Γ(τV )∏V
j=1 Γ(τ)

V∏
j=1

β
(τ−1)
i,j

]

= log Γ(τV )−
V∑
j=1

log Γ(τ) +
V∑
j=1

(τ − 1)Eq[log βi,j ]

Eq[log p(πrc |ω1C)] = Eq
[

log
Γ(ωC)∏C
l=1 Γ(ω)

C∏
l=1

(
πrc,l
)(ω−1)

]

= log Γ(ωC)−
C∑
l=1

log Γ(ω) +
C∑
l=1

(ω − 1)Eq[log πrc,l]

Eq[log p(θd|α1K)] = Eq
[

log
Γ(αK)∏K
i=1 Γ(α)

K∏
i=1

(θdi )
(α−1)

]

= log Γ(αK)−
K∑
i=1

log Γ(α) +

K∑
i=1

(α− 1)Eq[log θdi ]

Eq[log p(zdn|θd)] = Eq
[

log
K∏
i=1

(
θdi
)zdn,i

]
=

K∑
i=1

φdn,i Eq[log θdi ]

Eq[log p(wdn|zdn,β1:K)] = Eq
[

log
V∏
j=1

(βzdn,j)
wd

n,j

]
=

V∑
j=1

K∑
i=1

wdn,jφ
d
n,i Eq[log βi,j ]

Eq[log p(yd,r|cd,Πr)] = Eq
[

log
C∏
l=1

(πrcd,l)
yd,rl

]
=

C∑
c=1

C∑
l=1

λdcy
d,r
l Eq[log πrc,l]

Eq[log q(πrc |ξrc)] = Eq
[

log
Γ(
∑C

t=1 ξ
r
c,t)∏C

l=1 Γ(ξrc,l)

C∏
l=1

(
πrc,l
)(ξrc,l−1)

]

= log Γ

( C∑
t=1

ξrc,t

)
−

C∑
l=1

log Γ(ξrc,l) +

C∑
l=1

(ξrc,l − 1)Eq[log πrc,l]

Eq[log q(βi|ζi)] = Eq
[

log
Γ(
∑V

k=1 ζi,k)∏V
j=1 Γ(ζi,j)

V∏
j=1

(
βi,j
)(ζi,j−1)

]

= log Γ

( V∑
k=1

ζi,k

)
−

V∑
j=1

log Γ(ζi,j) +

V∑
j=1

(ζi,j − 1)Eq[log βi,j ]

Eq[log q(θd|γd)] = Eq
[

log
Γ(
∑K

j=1 γ
d
j )∏K

i=1 Γ(γdi )

K∏
i=1

(
θdi
)(γdi −1)

]

= log Γ

( K∑
j=1

γdj

)
−

K∑
i=1

log Γ(γdi ) +

K∑
i=1

(γdi − 1)Eq[log θdi ]

Eq[log q(zdn|φdn)] = Eq
[

log

K∏
i=1

(
φdn,i

)zdn,i

]
=

K∑
i=1

φdn,i log φdn,i

Eq[log q(cd|λd)] = Eq
[

log

C∏
l=1

(
λdl
)cdl ] =

C∑
l=1

λdl log λdl ,
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where

Eq[log θdi ] = Ψ(γdi )−Ψ

( K∑
j=1

γdj

)

Eq[log βi,j ] = Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

)

Eq[log πrc,l] = Ψ(ξrc,l)−Ψ

( C∑
t=1

ξrc,t

)
.

Finally, the expectation of the log probability of the latent classes is given by

Eq[log p(cd|z̄d,η)] = Eq
[

log
exp(ηT

cd
z̄d)∑C

l=1 exp(ηTl z̄d)

]

= Eq[ηTcd z̄
d]− Eq

[
log

C∑
l=1

exp(ηTl z̄d)

]
,

where the first term can be easily computed as Eq[ηTcd z̄
d] =

∑C
l=1 λ

d
l η

T
l φ̄

d and the

second term can be lower-bounded by appealing again to the Jensen’s inequality as

follows

−Eq
[

log
C∑
l=1

exp(ηTl z̄d)

]
> − log

C∑
l=1

Eq[exp(ηTl z̄d)]

= − log

C∑
l=1

Eq
[

exp(ηTl
1

Nd

Nd∑
j=1

zdj )

]

= − log

C∑
l=1

Nd∏
j=1

(
φdj
)T

exp
( 1

Nd
ηl

)

= − log

C∑
l=1

(
φdn
)T

exp
( 1

Nd
ηl

) Nd∏
j=1,j 6=n

(
φdj
)T

exp
( 1

Nd
ηl

)

= − log
(
φdn
)T C∑

l=1

exp
( 1

Nd
ηl

) Nd∏
j=1,j 6=n

(
φdj
)T

exp
( 1

Nd
ηl

)
︸ ︷︷ ︸

=a

= − log aTφdn, (C.9)

where we defined

a =
C∑
l=1

exp(
1

Nd
ηl)

Nd∏
j=1,j 6=n

(
φdj
)T

exp
( 1

Nd
ηl

)
.
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Putting all the terms together, the lower-bound becomes

L(w1:D,y1:D|Θ)

=

K∑
i=1

log Γ(τV )−
V∑
j=1

log Γ(τ) +

V∑
j=1

(τ − 1)

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))
+

R∑
r=1

C∑
c=1

(
log Γ(ωC)−

C∑
l=1

log Γ(ω) +

C∑
l=1

(ω − 1)

(
Ψ(ξrc,l)−Ψ

( C∑
t=1

ξrc,t

)))

+

D∑
d=1

log Γ(αK)−
K∑
i=1

log Γ(α) +

K∑
i=1

(α− 1)

Ψ(γdi )−Ψ

( K∑
j=1

γdj

)
+

D∑
d=1

Nd∑
n=1

K∑
i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑
j=1

γdj

))

+
D∑
d=1

Nd∑
n=1

V∑
j=1

K∑
i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))

+
D∑
d=1

(
C∑
l=1

λdl η
T
l φ̄

d − (aT (φdn)old)−1(aTφdn)− log(aT (φdn)old) + 1

)

+

D∑
d=1

R∑
r=1

C∑
c=1

C∑
l=1

λdcy
d,r
l

(
Ψ(ξrc,l)−Ψ

( C∑
t=1

ξrc,t

))

−
R∑
r=1

C∑
c=1

(
log Γ

( C∑
t=1

ξrc,t

)
−

C∑
l=1

log Γ(ξrc,l) +
C∑
l=1

(ξrc,l − 1)

(
Ψ(ξrc,l)−Ψ

( C∑
t=1

ξrc,t

)))

−
K∑
i=1

log Γ

( V∑
k=1

ζi,k

)
−

V∑
j=1

log Γ(ζi,j) +
V∑
j=1

(ζi,j − 1)

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))
−

D∑
d=1

log Γ

( K∑
j=1

γdj

)
−

K∑
i=1

log Γ(γdi ) +
K∑
i=1

(γdi − 1)

Ψ(γdi )−Ψ

( K∑
j=1

γdj

)
−

D∑
d=1

Nd∑
n=1

K∑
i=1

φdn,i log φdn,i

−
D∑
d=1

C∑
l=1

λdl log λdl .

(C.10)
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Optimizing the lower bound (E-step)

Optimizing w.r.t. γdi

Collecting only the terms in the bound that contain γ gives

L[γ] =

D∑
d=1

K∑
i=1

Ψ(γdi )

α+

Nd∑
n=1

φdn,i − γdi

− D∑
d=1

K∑
i=1

Ψ

( K∑
j=1

γdj

)α+
Nd∑
n=1

φdn,i − γdi


−

D∑
d=1

log Γ

( K∑
j=1

γdj

)
+

D∑
d=1

K∑
i=1

log Γ(γdi ).

Taking derivatives w.r.t. γdi gives

∂L[γ]

∂γdi
= Ψ′(γdi )

(
α+

Nd∑
n=1

φdn,i − γdi
)
−Ψ′

( K∑
j=1

γdj

) K∑
j=1

(
α+

Nd∑
n=1

φdn,j − γdj
)
.

Setting this derivative to zero in order to get a maximum, we get the solution

γdi = α+

Nd∑
n=1

φdn,i. (C.11)

Optimizing w.r.t. φdn,i

Collecting only the terms in the bound that contain φ and adding Lagrange multipliers

gives

L[φ] =
D∑
d=1

Nd∑
n=1

K∑
i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑
j=1

γdj

))

+
D∑
d=1

Nd∑
n=1

V∑
j=1

K∑
i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))

+
D∑
d=1

 1

Nd

C∑
l=1

λdl

Nd∑
n=1

ηTl φ
d
n − (aT (φdn)old)−1(aTφdn)− log(aT (φdn)old)


−

D∑
d=1

Nd∑
n=1

K∑
i=1

φdn,i log φdn,i + µ

( K∑
k=1

φdn,k − 1

)
.
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Taking derivatives w.r.t. φdn,i gives

∂L[φ]

∂φdn,i
= Ψ(γdi )−Ψ

( K∑
j=1

γdj

)
+

V∑
j=1

wdn,jΨ(ζi,j)−
V∑
j=1

wdn,jΨ

( V∑
k=1

ζi,k

)

+
1

Nd

C∑
l=1

λdl ηl,i − (aT (φdn)old)−1ai − log φdn,i − 1 + µ.

The updates for φdn,i are then given by

φdn,i ∝ exp

(
Ψ(γi) +

V∑
j=1

wdn,jΨ(ζi,j)−
V∑
j=1

wdn,jΨ

( V∑
k=1

ζi,k

)

+
1

Nd

C∑
l=1

λdl ηl,i − (aT (φdn)old)−1ai

)
. (C.12)

Optimizing w.r.t. λdl

Collecting only the terms in the bound that contain λ and adding Lagrange multipliers

gives

L[λ] =
D∑
d=1

C∑
l=1

λdl η
T
l φ̄

d +

D∑
d=1

R∑
r=1

C∑
l=1

C∑
c=1

λdl y
d,r
c

(
Ψ(ξrl,c)−Ψ

( C∑
t=1

ξrl,t

))

−
C∑
l=1

λdl log λdl + µ

( C∑
k=1

λdk − 1

)
.

Taking derivatives w.r.t. λdl gives

∂L[λ]

∂λdl
= ηTl φ̄

d +
R∑
r=1

C∑
c=1

yd,rc Ψ(ξrl,c)−
R∑
r=1

C∑
c=1

yd,rc Ψ

( C∑
t=1

ξrl,t

)
− log λdl − 1 + µ.

The updates for λdl are then given by

λdl ∝ exp

(
ηTl φ̄

d +

R∑
r=1

C∑
c=1

yd,rc Ψ(ξrl,c)−
R∑
r=1

C∑
c=1

yd,rc Ψ

( C∑
t=1

ξrl,t

))
. (C.13)

196 Appendix C



Optimizing w.r.t. ζi,j

Collecting only the terms in the bound that contain ζ gives

L[ζ] =

K∑
i=1

V∑
j=1

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))τ +

D∑
d=1

Nd∑
n=1

wdn,jφ
d
n,i − ζi,j


−

K∑
i=1

log Γ

( V∑
k=1

ζi,k

)
+

K∑
i=1

V∑
j=1

log Γ(ζi,j).

Taking derivatives w.r.t. ζi,j gives

∂L[ζ]

∂ζi,j
=

(
Ψ′(ζi,j)−Ψ′

( V∑
k=1

ζi,k

))τ +

D∑
d=1

Nd∑
n=1

wdn,jφ
d
n,i − ζi,j

 .

Setting this derivative to zero in order to get a maximum, we get the solution

ζi,j = τ +
D∑
d=1

Nd∑
n=1

wdn,jφ
d
n,i. (C.14)

Optimizing w.r.t. ξrc,l

Collecting only the terms in the bound that contain ξ gives

L[ξ] =
R∑
r=1

C∑
c=1

C∑
l=1

(
Ψ(ξrc,l)−Ψ

( C∑
t=1

ξrc,t

))(
ω +

D∑
d=1

λdcy
d,r
l − ξ

r
c,l

)

−
R∑
r=1

C∑
c=1

log Γ

( C∑
t=1

ξrc,t

)
+

R∑
r=1

C∑
c=1

C∑
l=1

log Γ(ξrc,l).

Taking derivatives w.r.t. ξrc,l gives

∂L[ξ]

∂ξrc,l
=

(
Ψ′(ξrc,l)−Ψ′

( C∑
t=1

ξrc,t

))(
ω +

D∑
d=1

λdcy
d,r
l − ξ

r
c,l

)
.

Setting this derivative to zero in order to get a maximum, we get the solution

ξrc,l = ω +
D∑
d=1

λdcy
d,r
l . (C.15)
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Parameter estimation (M-step)

Given a corpus of D documents labeled by R different annotators, D = {wd,yd}Dd=1,

we find maximum likelihood estimates for the class coefficients η by maximizing the

lower bound on the log-likelihood w.r.t. η. Collecting only the terms in the bound that

contain ηl gives

L[η] =
D∑
d=1

(
C∑
l=1

λdl η
T
l φ̄

d − log
C∑
l=1

Nd∏
j=1

( K∑
i=1

φdj,i exp
( 1

Nd
ηl,i

)))
.

Taking derivatives w.r.t. ηl,i gives

∂L[η]

∂ηl,i
=

D∑
d=1

(
λdl,iφ̄

d
i −

∏Nd

n=1

(∑K
i=1 φ

d
n,i exp

(
1
Nd ηl,i

))
∑C

t=1

∏Nd

n=1

(∑K
i=1 φ

d
n,i exp

(
1
Nd ηt,i

)) Nd∑
n=1

1
Ndφ

d
n,i exp( 1

Nd ηl,i)∑K
j=1 φ

d
n,j exp( 1

Nd ηl,j)

)
.

Setting this derivative to zero does not lead to a closed-form solution, hence a numerical

optimization routine (L-BFGS) is used.

C.3 Expectation propagation for BAM-GP

In this appendix, we exploit the message-passing viewpoint of EP, to present an algo-

rithm for performing approximate inference in the proposed Bayesian additive model

by passing messages in the factor graph of Fig. 7.2. We adopt the following notation for

the messages: we denote the message sent from factor f to variable x in iteration t as

mt
f→x(x); similarly, message sent from variable x to factor f in iteration t is mt

x→f (x).

All messages correspond to the Gaussian distributions with mean µ and variance v such

that, for example, the message mt
x→f (x) = N(x|µtx→f , vtx→f ).

Let us start by assigning names to the factors in Figure 7.2:

gr(fr) = GP(0, kr(x
r,xr

′
))

ge(fe) = GP(0, ke(x
e,xe

′
))

lrn(f rn) = I(yrn > 0)

lein (fein ) = I(yein > 0)

hrn(yrn, f
r
n) = N(yrn|f rn, βr)

hein (yein , f
ei
n ) = N(yein |fein , βe)

kn(yn, y
r
n, {yein }

En
i=1) = N(yn|yrn +

∑En
i=1 y

ei
n , v).
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The steps of the EP algorithm are then the following:

Step 1: Compute message from the gr and ge factors to the f rn and fen variables

respectively

mt
gr→frn(f rn) =

∫
p(fr|X)

∏
j 6=n

mt−1
frj→gr

(f rj ) df rj .

=

∫
p(fr|X)

∏
j 6=i

N
(
f rj

∣∣∣µt−1
frj→gr

, vt−1
frj→gr

)
df rj (C.16)

Conceptually, one can think of the combination of prior p(fr|X) = N(fr|0,Kr) and

the n−1 (approximate) messages in (C.16) in two ways, either by explicitly multiplying

out the factors, or (equivalently) by removing the nth message from the approximate

posterior on fr. Here, we follow the latter approach. The approximate posterior on fr

is given by

q(fr) =
1

ZEP
N(fr|0,Kr)

N∏
n=1

N
(
f rn

∣∣∣µt−1
frn→gr

, vt−1
frn→gr

)
= N(fr|µr,Σr),

with

µr = Σr
(
Σ̃r
)−1
µ̃r,

Σr =
((

Kr
)−1

+
(
Σ̃r
)−1)−1

,

where µ̃r is the vector of µt−1
frn→gr

and Σ̃r is a diagonal matrix with Σ̃r
nn = vt−1

frn→gr
.

Hence, the marginal for f rn from qr(fr) is given by

q(f rn) = N
(
f rn
∣∣µrn,Σr

nn

)
.

The message from the factor gr(fr) to the f rn variables is then given by

mt
gr→frn(f rn) =

q(f rn)

mt−1
frn→gr

(f rn)
=

N
(
f rn

∣∣∣µrn,Σr
nn

)
N
(
f rn

∣∣∣µt−1
frn→gr

, vt−1
frn→gr

) = N
(
fn

∣∣∣µtgr→frn , vtgr→frn),
µtgr→frn = vgr→frn

(
µrn
/

Σr
nn − µt−1

frn→gr
/
vt−1
frn→gr

)
,

vtgr→frn =
(

1
/

Σr
nn − 1

/
vt−1
frn→gr

)−1
.
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Step 2: Compute the posterior on f rn as the product of all incoming messages

qt(f rn) = mt
gr→frn(f rn)mt−1

hrn→frn
(f rn)

= N
(
f rn

∣∣∣µtgr→frn , vtgr→frn)N(f rn∣∣∣µt−1
hrn→frn

, vt−1
hrn→frn

)
= N

(
f rn

∣∣∣µtfrn , vtfrn),
µtfrn = vtfrn

(
µt−1
gr→frn

/
vt−1
gr→frn

+ µt−1
hrn→frn

/
vt−1
hrn→frn

)
,

vtfrn =
(

1
/
vt−1
gr→frn

+ 1
/
vt−1
hrn→frn

)−1
.

Step 3: Compute the message from f rn to the factor hrn

mt
frn→hrn(f rn) =

qt(f rn)

mt−1
hrn→frn

(f rn)
=

N
(
f rn

∣∣∣µtfrn , vtfrn)
N
(
f rn

∣∣∣µt−1
hrn→frn

, vt−1
hrn→frn

) = N
(
f rn

∣∣∣µtfrn→hrn , vtfrn→hrn),
µtfrn→hrn = vtfrn→hrn

(
µtfrn
/
vtfrn − µ

t−1
hrn→frn

/
vt−1
hrn→frn

)
,

vtfrn→hrn =
(

1
/
vtfrn − 1

/
vt−1
hrn→frn

)−1
.

Step 4: Compute the message from the hrn factor to yrn

mt
hrn→yrn(yrn) =

∫
hrn(yrn, f

r
n)mt

frn→hrn(f rn) df rn

=

∫
N
(
yrn

∣∣∣f rn, βr)N(f rn∣∣∣µtfrn→hrn , vtfrn→hrn) df rn
= N

(
yrn

∣∣∣µtfrn→hrn , vtfrn→hrn + βr

)
.

Step 5: Compute the (approximate) posterior on yrn as the product of all incoming

messages

qt(yrn) = mt
lrn→yrn(yrn)mt

hrn→yrn(yrn)mt−1
kn→yrn

(yrn)

= I(yrn > 0)N
(
yrn

∣∣∣µthrn→yrn , vthrn→yrn)N(yrn∣∣∣µt−1
kn→yrn

, vt−1
kn→yrn

)
= I(yrn > 0)N

(
yrn

∣∣∣µ̂tyrn , v̂tyrn),
where

µ̂tyrn = v̂tyrn

(
µthrn→yrn

/
vthrn→yrn + µt−1

kn→yrn

/
vt−1
kn→yrn

)
,

v̂tyrn =
(

1
/
µthrn→yrn + 1

/
vt−1
kn→yrn

)−1
.
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The product I(yrn > 0)N(yrn|µ̂tyrn , v̂
t
yrn

) is approximated by moment matching (see Ap-

pendix C.5 for the derivation of the moments of a truncated Gaussian). The approxi-

mate posterior on yrn is then given by

qt(yrn) = I(yrn > 0)N(yrn|µ̂tyrn , v̂
t
yrn

) ≈ N(yrn|µtyrn , v
t
yrn

),

µtyrn = µ̂tyrn +
√
v̂tyrn

N(zn)

Φ(zn)
,

vtyrn = v̂tyrn

(
1− zn

N(zn)

Φ(zn)
−
(
N(zn)

Φ(zn)

)2
)
,

where zn =
µ̂t
yrn√
v̂t
yrn

.

Step 6: Compute the message from yrn to the factor kn

mt
yrn→kn(yrn) =

qt(yrn)

mt−1
kn→yrn

(yrn)
=

N
(
yrn

∣∣∣µtyrn , vtyrn)
N
(
yrn

∣∣∣µt−1
kn→yrn

, vt−1
kn→yrn

) = N
(
yrn

∣∣∣µtyrn→kn , vtyrn→kn),
µtyrn→kn = vtyrn→kn

(
µtyrn
/
vtyrn − µ

t−1
kn→yrn

/
vt−1
kn→yrn

)
,

vtyrn→kn =
(

1
/
vtyrn − 1

/
vt−1
kn→yrn

)−1
.

Step 7: Compute the message from the kn factor to yein

mt
kn→y

ei
n

(yein ) =

∫
kn(yi, y

r
n, {yein }

En
i=1)mt

yrn→kn(yrn)
∏
j 6=i

mt

y
ej
n →kn

(y
ej
n ) dyrn d{y

ej
n }j 6=i

=

∫
N

(
yein

∣∣∣∣yn − yrn − En∑
j 6=i

y
ej
n , v

)
N
(
yrn

∣∣∣µtyrn→kn , vtyrn→kn)

×
En∏
j 6=i

N
(
y
ej
n

∣∣∣µt
y
ej
n →kn

, vt
y
ej
n →kn

)
dyrn d{y

ej
n }j 6=i

= N
(
yein

∣∣∣µtkn→yein , vtkn→yein ),
where

µt
kn→y

ei
n

= yn − µtyrn→kn −
∑

j 6=i µ
t

y
ej
n →kn

,

vt
kn→y

ei
n

= v + vtyrn→kn +
∑

j 6=i v
t

y
ej
n →kn

.

Step 8: Compute the (approximate) posterior on yein

qt(yein ) = mt
l
ei
n →y

ei
n

(yein )mt
h
ei
n →y

ei
n

(yein )mt
kn→y

ei
n

(yein ).
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This step is identical to step 5, but with the message mt−1
kn→y

ei
n

(yein ) replaced with the

new (updated) message mt
kn→y

ei
n

(yein ).

Step 9: Compute the message from yein to the factor hein

mt
y
ei
n →h

ei
n

(yein ) =
qt(yein )

mt
h
ei
n →y

ei
n

(yein )
=

N(yein |µtyein , v
t
y
ei
n

)

N
(
yein

∣∣∣µt
h
ei
n →y

ei
n
, vt−1
h
ei
n →y

ei
n

) = N
(
yein

∣∣∣µtyein →hein , vtyein →hein ),
µt
y
ei
n →h

ei
n

= vt
y
ei
n →h

ei
n

(
µt
y
ei
n

/
vt
y
ei
n
− µt

h
ei
n →y

ei
n

/
vt
h
ei
n →y

ei
n

)
,

vt
y
ei
n →h

ei
n

=
(

1
/
vt
y
ei
n
− 1
/
vt
h
ei
n →y

ei
n

)−1
.

Step 10: Compute the message from the hein factor to fein

mt
h
ei
n →f

ei
n

(fein ) =

∫
hein (yein , f

ei
n )mt

y
ei
n →h

ei
n

(yein ) dyein

=

∫
N
(
fein

∣∣∣yein , βe)N(yein ∣∣∣µtyein →hein , vtyein →hein ) dyein (C.17)

= N
(
fein

∣∣∣µtyein →hein , vtyein →hein + βe

)
.

Step 11: Compute the (new) posterior on fein

qt(fein ) = mt
ge→fein

(fein )mt
h
ei
n →f

ei
n

(fein ).

This step is identical to step 2, but uses the new (updated) message at time t: mt
h
ei
n →f

ei
n

(fein ).

Step 12: Compute the message from fein to the factor ge

mt
f
ei
n →ge

(fein ) =
qt(fein )

mt
ge→fein

(fein )
=

N
(
fein

∣∣∣µt
f
ei
n
, vt
f
ei
n

)
N
(
fein

∣∣∣µt
ge→fein

, vt
ge→fein

) = N
(
fein

∣∣∣µtfein →ge , vtfein →ge),
µt
f
ei
n →ge

= vt
f
ei
n →ge

(
µt
f
ei
n

/
vt
f
ei
n
− µt

ge→fein

/
vt
ge→fein

)
,

vt
f
ei
n →ge

=
(

1
/
vt
f
ei
n
− 1
/
vt
ge→fein

)−1
.

These steps are then iterated until convergence. All the messages are initialized to

be uniform Gaussians, i.e. zero-mean and infinite variance. Notice that messages above

correspond only to a subset of the all messages passed, since an analogous message

flow, in the opposite direction of the one presented, is required in order for EP to work.
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Figure C.1: Factor graph of the proposed Bayesian additive model with linear compo-

nents. The blue arrows represent the message-passing algorithm for performing approxi-

mate Bayesian inference. The second flow of messages starting from the weights factor for

the events component that goes in the opposite direction is not shown.

C.4 Expectation propagation for BAM-LR

In this appendix, we derive an EP algorithm for performing approximate inference in

a Bayesian additive model where the components are linear functions of the inputs.

Fig. C.1 shows a factor graph representation of this model, where the notation in blue

represents the steps of the EP algorithm.

For notational convenience, let us define the following factors:

gr(ηr) = N(ηr|0,Σ0
r)

ge(ηe) = N(ηe|0,Σ0
e)

hrn(yrn, ,x
r
n,ηr) = N(yrn|(xrn)Tηr, βr)

hein (yein ,x
ei
n ,ηe) = N(yein |(xein )Tηe, βe).

The remaining factors are the same from Appendix C.3. Hence, we only need to revisit

the messages that involve these new factors. The steps 4–8 are then similar to the model

with GP components and correspond to steps 5–9, respectively, of the EP algorithm

described in Appendix C.3. The remaining new steps are the following:
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Step 1: Compute the posteriors over the routine weights qt(ηr) as the the product

of all incoming messages at time t− 1. For both computational and numerical stability

reasons, we parameterize the posterior on ηr and the Gaussian messages that involve it

by their, by their natural parameters: the precision matrix Λ and the precision-adjusted

mean vector θ. The posterior then becomes

qt(ηr) = N(ηr|0,Σ0
r)

N∏
n=1

mt−1
hrn→ηr

(ηr) = N(ηr|θtηr ,Λ
t
ηr),

θtηr =
N∑
n=1

θt−1
hrn→ηr

,

Λt
ηr = Λ0

r +

N∑
n=1

Λt−1
hrn→ηr

.

Step 2: Compute the message from ηr to the factor hrn

mt
ηr→hrn(ηr) =

qt(ηr)

mt−1
hrn→ηr

(ηr)
= N

(
ηr

∣∣∣θtηr→hrn ,Λt
ηr→hrn

)
,

θtηr→hrn = θtηr − θ
t−1
hrn→ηr

,

Λt
ηr→hrn = Λt

ηr −Λt−1
hrn→ηr

.

Step 3: Compute the message from the hrn factor to yrn

mt
hrn→yrn(yrn) =

∫
hrn(yrn,x

r
n,ηr)m

t
ηr→hrn(ηr) dηr

= N
(
yrn

∣∣∣µthrn→yrn , vthrn→yrn),
µthrn→yrn = (xrn)T(Λt

ηr→hrn)−1θtηr→hrn ,

vthrn→yrn = (xrn)T(Λt
ηr→hrn)−1xrn + βr.

Step 9: Compute the message from the hein factor to ηe

mt
h
ei
n →ηe

(ηe) =

∫
hein (yein ,x

ei
n ,ηe)m

t
y
ei
n →h

ei
n

(yein ) dyein

= N
(
ηe

∣∣∣µthein →ηe , vthein →ηe),
θt
h
ei
n →ηe

= Λt
h
ei
n →ηe

(xein )−Tµt
y
ei
n →h

ei
n
,

Λt
h
ei
n →ηe

=
(

(xein )−T(vt
y
ei
n →h

ei
n

+ βe)(x
ei
n )−1

)−1
.
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These steps are then iterated until convergence. All the messages are initialized

to be uniform Gaussians, i.e. zero-mean and infinite variance. As with the message-

passing algorithm for model with GP components, there is a symmetric flow of messages

in the opposite direction of the ones described whose equations are identical to the ones

presented.

C.5 Moments of a one-side truncated Gaussian

In order to make this result more general, we will derive these moments using a general

Gaussian distribution N(x|µ, σ2) and a lower threshold l. The normalization constant,

Z, of this one-side truncated Gaussian is given by

Z =

∫
I(x > l)N(x|µ, σ2) dx

=

∫ +∞

l
N(x|µ, σ2) dx = Φ

(µ− l
σ

)
, (C.18)

where Φ(a) denotes the value of the cumulative distribution functions (CDF) of a

Gaussian distribution evaluated at a. Differentiating both sides w.r.t. µ gives

∫ +∞

l

∂N(x|µ, σ2)

∂µ
dx =

∂
(

Φ(µ−lσ )
)

∂µ

⇔
∫ +∞

l

(x− µ
σ2

)
N(x|µ, σ2) dx =

1

σ
N
(µ− l

σ

)
,

where we made use of the fact that ∂Φ(z)
∂µ = N(z) ∂z∂µ . Continuing developing the expres-

sion gives

⇔ 1

σ2

∫ +∞

l
xN(x|µ, σ2) dx− µ

σ2

∫ +∞

l
N(x|µ, σ2) dx =

1

σ
N
(µ− l

σ

)
⇔
∫ +∞

l
xN(x|µ, σ2) dx− µ

∫ +∞

l
N(x|µ, σ2) dx = σN

(µ− l
σ

)
⇔
∫ +∞

l
xN(x|µ, σ2) dx︸ ︷︷ ︸

=Z·E[x]

−µΦ
(µ− l

σ

)
︸ ︷︷ ︸

=Z

= σN
(µ− l

σ

)

⇔ E[x] Φ
(µ− l

σ

)
− µΦ

(µ− l
σ

)
= σN

(µ− l
σ

)
⇔ E[x] = µ+ σ

N(µ−lσ )

Φ(µ−lσ )
. (C.19)
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In order to determine the second moment, we start by differentiating both sides of

(C.18) twice w.r.t. µ

∫ +∞

l

∂2N(x|µ, σ2)

∂µ2
dx =

1

σ

∂N(µ−lσ )

∂µ

⇔
∫ +∞

l

∂2N(x|µ, σ2)

∂µ2
dx = − 1

σ

(µ− l
σ2

)
N
(µ− l

σ

)
, (C.20)

where we made use of the fact that

∂N(x|µ, σ2)

∂µ
= −(

x− µ
σ2

)N(x|µ, σ2). (C.21)

Continuing differentiating (C.20), we get

⇔
∫ +∞

l

x2 − 2µx+ µ2 − σ2

σ4
N(x|µ, σ2) dx = − 1

σ

µ− l
σ2

N
(µ− l

σ

)
⇔
∫ +∞

l
(x2 − 2µx+ µ2 − σ2)N(x|µ, σ2) dx = −σ(µ− l)N

(µ− l
σ

)
⇔
∫ +∞

l
x2N(x|µ, σ2) dx︸ ︷︷ ︸

=Z E[x2]

−2µ

∫ +∞

l
xN(x|µ, σ2)dx︸ ︷︷ ︸

=Z E[x]

+ (µ2 − σ2)

∫ +∞

l
N(x|µ, σ2)dx︸ ︷︷ ︸

=Z

= −σ(µ− l)N
(µ− l

σ

)

⇔ E[x2]Z − 2µE[x]Z + (µ2 − σ2)Z = −σ (µ− l)N
(µ− l

σ

)
⇔ E[x2]− 2µE[x] + µ2 − σ2 = −σ (µ− l)

N(µ−lσ )

Φ(µ−lσ )

⇔ E[x2]− 2µ

(
µ+ σ

N(µ−lσ )

Φ(µ−lσ )

)
+ µ2 − σ2 = −σ (µ− l)

N(µ−lσ )

Φ(µ−lσ )

⇔ E[x2]− µ2 + 2µσ
N(µ−lσ )

Φ(µ−lσ )
− σ2 = −σ (µ− l)

N(µ−lσ )

Φ(µ−lσ )

⇔ E[x2] = µ2 + σ2 − σ (µ− l)
N(µ−lσ )

Φ(µ−lσ )
− 2µσ

N(µ−lσ )

Φ(µ−lσ )

⇔ E[x2] = µ2 + σ2

(
1− (µ− l)

σ

N(µ−lσ )

Φ(µ−lσ )

)
− 2µσ

N(µ−lσ )

Φ(µ−lσ )
. (C.22)
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We can now make use of the two first moments in order to determine the variance,

which is given by

V[x] = E[x2]− E[x]2

= µ2 + σ2

(
1− (µ− l)

σ

N(µ−lσ )

Φ(µ−lσ )

)
− 2µσ

N(µ−lσ )

Φ(µ−lσ )
−

(
µ+ σ

N(µ−lσ )

Φ(µ−lσ )

)2

= µ2 + σ2 − σ(µ− l)
N(µ−lσ )

Φ(µ−lσ )
− 2µσ

N(µ−lσ )

Φ(µ−lσ )
− µ2 + 2µσ

N(µ−lσ )

Φ(µ−lσ )
− σ2

(
N(µ−lσ )

Φ(µ−lσ )

)2

= σ2 − σ(µ− l)
N(µ−lσ )

Φ(µ−lσ )
− σ2

(
N(µ−lσ )

Φ(µ−lσ )

)2

= σ2

(
1− (µ− l)

σ

N(µ−lσ )

Φ(µ−lσ )
−
(
N(µ−lσ )

Φ(µ−lσ )

)2
)
. (C.23)
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