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ABSTRACT 
Traditional query optimizers rely on the accuracy of estimated 
statistics to choose good execution plans. This design often leads to 
suboptimal plan choices for complex queries, since errors in 
estimates for intermediate subexpressions grow exponentially in the 
presence of skewed and correlated data distributions. Re-
optimization is a promising technique to cope with such mistakes. 
Current re-optimizers first use a traditional optimizer to pick a 
plan, and then react to estimation errors and resulting 
suboptimalities detected in the plan during execution. The 
effectiveness of this approach is limited because traditional 
optimizers choose plans unaware of issues affecting re-
optimization. We address this problem using proactive re-
optimization, a new approach that incorporates three techniques:     
i) the uncertainty in estimates of statistics is computed in the form of 
bounding boxes around these estimates, ii) these bounding boxes are 
used to pick plans that are robust to deviations of actual values from 
their estimates, and iii) accurate measurements of statistics are 
collected quickly and efficiently during query execution. We present 
an extensive evaluation of these techniques using a prototype 
proactive re-optimizer named Rio. In our experiments Rio 
outperforms current re-optimizers by up to a factor of three. 

1. INTRODUCTION 
Most query optimizers use a plan-first execute-next approach–the 
optimizer enumerates plans, computes the cost of each plan, and 
picks the plan with lowest cost [23]. This approach relies heavily 
on the accuracy of estimated statistics of intermediate 
subexpressions to choose good plans. It is a well-known problem 
that errors in estimation propagate exponentially in the presence 
of skewed and correlated data distributions [8, 14]. Such errors, 
and the consequent suboptimal plan choices, were not a critical 
problem when databases were smaller, queries had few joins and 
simple predicates, and hardware resources were limited. In the last 
two decades, data sizes, query complexity, and the hardware 
resources to manage databases have grown dramatically.  Query 
optimizers have not kept pace with the ability of database systems 
to execute complex queries over very large data sets. 
Several techniques have been proposed to improve traditional query 
optimization. These techniques include better statistics [22], new 

algorithms for optimization [9, 13, 15], and adaptive architectures 
for execution [2]. A very promising technique in this direction is re-
optimization, where the optimization and the execution stages of 
processing a query are interleaved, possibly multiple times, over the 
running time of the query [17, 18, 20, 26]. Reference [20] shows 
that re-optimization can improve the performance of complex 
queries by an order of magnitude. 
Current re-optimizers take a reactive approach to re-optimization: 
they first use a traditional optimizer to generate a plan, and then 
track statistics and respond to estimation errors and resulting 
suboptimalities detected in the plan during execution. Reactive re-
optimization is limited by its use of an optimizer that does not 
incorporate issues affecting re-optimization, and suffers from at least 
three shortcomings: 
• The optimizer may pick plans whose performance depends 

heavily on uncertain statistics, making re-optimization very 
likely. 

• The partial work done in a pipelined plan is lost when re-
optimization is triggered and the plan is changed. 

• The ability to collect statistics quickly and accurately during 
query execution is limited. Consequently, when re-
optimization is triggered, the optimizer may make new 
mistakes, leading potentially to thrashing. 

In this paper we propose proactive re-optimization to address these 
shortcomings. We have implemented a prototype proactive re-
optimizer called Rio that incorporates three new techniques: 
• Bounding boxes are computed around estimates of statistics to 

represent the uncertainty in these estimates. 
• The bounding boxes are used during optimization to generate 

robust and switchable plans that minimize the need for re-
optimization and the loss of pipelined work. 

• Random-sample processing is merged with regular query 
execution to collect statistics quickly, accurately, and 
efficiently at run-time. 

Our experimental results demonstrate that proactive re-optimization 
can provide up to three times improvement over a strictly reactive 
re-optimizer. The rest of this paper is organized as follows. Section 
2 discusses related work. Section 3 uses a series of examples to 
illustrate the problems with reactive re-optimization, and Section 4 
shows how proactive re-optimization addresses these problems. 
Section 5 describes the Rio implementation and Section 6 presents 
an experimental evaluation. We outline future work in Section 7. 
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2. RELATED WORK 
Reference [4] classifies adaptive query processing systems into three 
families: plan-based, routing-based, and continuous-query-based. In 
this paper we focus on plan-based systems, the more closely related 
to Rio being ReOpt [18] and POP [20]. Other related projects 
include Ginga [21], Tukwila [16], query scrambling [26], and 
corrective query processing [17]. ReOpt and POP use a traditional 
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optimizer to pick plans based on single-point estimates of statistics. 
These reactive re-optimizers augment the chosen plan with checks 
that are verified at run-time. The query is re-optimized if a check is 
violated. 
The use of intervals instead of single-point estimates for statistics 
has been considered by least-expected-cost optimization (LEC) [9], 
error-aware optimization (EAO) [27], and parametric optimization 
[13, 15, 21]. LEC treats statistics estimates as random variables to 
compute the expected cost of each plan. Unlike LEC, Rio does not 
assume knowledge about the underlying distribution of statistics. 
Instead, Rio computes the uncertainty in these estimates based on 
how they were derived. Like Rio, EAO considers intervals of 
estimates and proposes heuristics to identify robust plans. However, 
the techniques in EAO assume a single uncertain statistic (memory 
size) and a single join. Furthermore, LEC and EAO do not consider 
re-optimization or the collection of statistics during query execution. 
Therefore, these techniques use execution plans that were picked 
before the uncertainty in statistics is resolved. Parametric 
optimization identifies several execution plans during optimization, 
each of which is optimal for some range of values of run-time 
parameters. Parametric optimization, along with the choose-plan 
operator [11], enables the optimizer to defer the choice of plan to 
run-time. Switchable plans and switch operators in Rio are similar. 
However, unlike choose-plan operators, switch operators may occur 
within pipelines. Furthermore, parametric optimization does not 
consider uncertainty in estimates, collection of statistics during 
execution, robust plans, or re-optimization. 
Rio combines the processing of random samples of tuples with 
regular query processing to obtain quick and accurate estimates of 
statistics during execution. This approach differs from previous uses 
of random samples, e.g., providing continuously-refined answers in 
an online manner [12], computing approximate query results [1, 6], 
or building base relation statistics from samples [8]. Robust 
cardinality estimation (RCE) uses random samples for cardinality 
estimation, to deal with uncertainty, and to explore performance-
predictability tradeoffs [3]. However, RCE does not consider re-
optimization. Furthermore, RCE does not consider techniques such 
as merging random-sample processing with regular query execution, 
or propagating random samples through joins.  

3. PROBLEMS WITH REACTIVE RE-
OPTIMIZATION 
In this section we present a series of examples to highlight the 
problems with current approaches to query re-optimization. One 
known problem with traditional optimizers, e.g. [23], is that they 
rely frequently on outdated statistics or invalid assumptions such as 
independence among attributes. Consequently, they may choose 
suboptimal query plans that degrade performance by orders of 
magnitude [8, 20]. Example 1 illustrates this problem. 

Example 1: Consider the query “select * from R, S where R.a=S.a 
and R.b>K1 and R.c>K2”. Assume the database buffer-cache size is 
200MB, |R|=500MB, |S|=160MB, and |σ(R)|=300MB, where σ(R) 
represents the result of the “R.b>K1 and R.c>K2” selection on R. 
However, because of skew and correlations in the data distributions 
of R.b and R.c, the optimizer underestimates |σ(R)| to be 150MB. 
With this incorrect estimate, the optimizer would pick Plan P1a for 
this query (Figure 1). P1a is a hash join with σ(R) as the build input 
and S as the probe. (Throughout this paper we use the convention 
that the left input of a hash join is the build and the right input is 
the probe.) However, since |σ(R)| is actually 300MB, Plan P1a’s 

hash join requires two passes over R and S. P1a is suboptimal 
because Plan P1b, which builds on S, finishes in one pass over R 
and S.  

 
Figure 1 – Two plans for the σ(R)  S query 

Re-optimization can avoid problems similar to the one i
Example 1. Current systems that use re-optimization first use 
traditional optimizer to pick the best plan, and then add chec
operators to the chosen plan. The check operators detect sub
optimality during execution, and trigger re-optimization if required
For example, the check-placement algorithm used by POP compute
a validity range for each plan [20]. Let P be a left-deep plan. Th
root operator of P is a binary join operator with subtree D and bas
relation R as inputs. Let |D| denote the result size of D. POP define
the validity range of P as the range of values of |D| for which P ha
the lowest cost among all plans P’, where P’ is logically equivalen
to P, P’ is rooted at an operator with the same inputs D and R, an
P’ gives the same interesting orders as P. 
During execution, each check operator collects statistics on i
inputs. If these statistics satisfy the validity ranges for the pla
picked by the optimizer, then execution proceeds as usua
Otherwise, re-optimization is invoked to choose the best plan base
on the statistics collected. The reuse of intermediate results that wer
materialized completely in a previous execution step is considere
during re-optimization. Example 2 illustrates the overall technique.

Example 2: Consider the scenario from Example 1. A re-optimize
like POP will choose the same plan (P1a) as a traditional optimize
Additionally, POP will compute validity ranges for the chosen plan
For example, a validity range for P1a is 100KB≤|σ(R)|≤160MB. 
|σ(R)|<100KB, then it is preferable to use an index nested-loops joi
with tuples in σ(R) probing a covering index on S. If |σ(R)|>160MB
then Plan P1b is optimal. In this example, the check |σ(R)|≤160M
will fail during execution, invoking re-optimization. 

3.1 Limitations of Single-point Estimates 
Although re-optimization preempts the execution of the suboptima
Plan P1a in Example 1 when |σ(R)|>160MB, it incurs the overhea
of calling the optimizer more than once and the cost of repeatin
work. For example, the (partial) scan of R in Plan P1a until re
optimization is lost and must be repeated in P1b. The optimizer ma
be better off picking Plan P1b from the start because P1b is a robu
plan with respect to the uncertainty in |σ(R)|; see Figure 2. 

 
Figure 2 – Cost of plans P1a and P1b as |σ(R)| varies 
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When |σ(R)|≤Memory, both plans finish in one pass and involve the 
same amount of IO. However, when |σ(R)|>Memory, only P1b 
finishes in one pass. 

Current re-optimizers do not account for robustness of plans since 
they consider single-point estimates for all statistics needed to cost 
plans. (To arrive at these single-point estimates, optimizers are often 
forced to make assumptions like uniformity and independence [23].) 
Non-robust plans may lead to extra optimizer invocations and 
wasted work, as we will show in Section 3.3. 

3.2 Limited Information for Re-Optimization 
Current re-optimizers make limited effort to collect statistics quickly 
and accurately during execution. For instance, the validity check in 
Example 2 will fail when |σ(R)|=160MB, and re-optimization will 
be invoked. However, the optimizer does not know |σ(R)| accurately 
at this point–it only knows that |σ(R)|≥160MB–which may cause it 
to chose a suboptimal plan again. Example 3 illustrates an extreme 
instance of the thrashing that can result. 

Example 3:  Consider the query “select * from R, S, T where 
R.a=S.a and S.b=T.b and R.c>K1 and R.d=K2”. Assume that the 
sizes of the tables are known accurately to be |R|=200MB, 
|S|=50MB, and |T|=60MB. Further assume that |σ(R)|=80MB, but 
that the optimizer underestimates it significantly as 40KB.1 Based 
on these statistics, the optimizer chooses Plan P3a. 

 
Figure 3 – Thrashing with reactive re-optimization 

A reactive re-optimizer may compute validity ranges for Plan P3a as 
shown by the gray boxes in this plan. For example, the validity 
range for the index nested-loops join between σ(R) and S in P3a is 
|σ(R)|≤100KB. This validity-range check will fail at run-time, 
triggering re-optimization. Plan P3b will be picked next with a 
validity range as shown in Figure 3. This check will fail and re-
optimization will be triggered again, and so on until the optimal 
Plan P3d is chosen finally. ■ 

3.3 Losing Partial Work in a Pipeline 
In addition to the multiple re-optimization steps as illustrated in 
Example 3, current re-optimizers also lose the partial work done by 
a pipeline in execution when re-optimization is triggered. For 

                                                                 
1 A recent paper from IBM reports cardinality estimation errors on real 

datasets that exceed six orders of magnitude [20]. 

example, Plan P3c in Figure 3 has a pipeline PPL2 (enclosed with 
dotted lines) that scans R, probes S in HashJoin1, and builds joining 
tuples into HashJoin2. The validity-range check before HashJoin2 
will fail before pipeline PPL2 finishes, and the partial work done by 
this pipeline will be lost. On the other hand, work done by 
completed pipelines, like PPL1–scanning and building S–can be 
reused. However, in this example, the build of S in Plan P3c cannot 
be reused in Plan P3d because the hash tables are built on different 
join attributes. 

4. PROACTIVE RE-OPTIMIZATION 
This paper proposes proactive re-optimization, a new paradigm for 
query re-optimization. Proactive re-optimization addresses the 
problems with current reactive approaches that were illustrated in 
Section 3. A proactive re-optimizer incorporates three new 
techniques: 
1. Computing bounding boxes–intervals around estimates–as a 

representation of the uncertainty in estimates of statistics. 
2. Using bounding boxes during optimization to generate robust 

plans and switchable plans that avoid re-optimization and loss 
of pipelined work. 

3. Using randomization to collect statistics quickly, accurately, 
and efficiently as part of query execution. 

Figure 4 shows the architecture of a proactive re-optimizer. In 
Section 5 we introduce Rio, our specific implementation of a 
proactive re-optimizer. 

 
Figure 4 – Proactive re-optimization 

4.1 Representing Uncertainty in Statistics 
Current re-optimizers compute a single-point estimate for any 
statistic needed to cost plans. One way to account for possible errors 
in estimates is to consider intervals, or bounding boxes, around the 
estimates. If the optimizer is very certain of the quality of an 
estimate, then its bounding box should be narrow. If the optimizer is 
uncertain of the estimate’s quality, then the bounding box should be 
wider. There are different ways of computing bounding boxes, e.g., 
using strict upper and lower bounds [7] or by characterizing 
uncertainty in estimates using discrete buckets that depend on the 
way the estimate was derived [18]. Our implementation uses the 
latter approach as described in Section 5.2. 

Example 4: Consider the scenario from Example 1. The costs of 
plans P1a and P1b depend mainly on |σ(R)| and |S|. Suppose a 
recent estimate of |S|=160MB is available in the catalog. 
However, in the absence of a multidimensional histogram on R, 
|σ(R)| must be estimated from the estimated selectivities of 
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R.b>K1 and R.c>K2 and an assumption of independence between 
these predicates. This estimate of |σ(R)|=150MB is thus very 
uncertain. In this case, Figure 5 shows an example bounding box 
around the single-point estimate (|σ(R)|=150MB, |S|=160MB). 

 
Figure 5 – Bounding box around estimates of |σ(R)| and |S| 

4.2 Using Bounding Boxes During Optimization
Since current re-optimizers consider single-point estimates only
their plan choices may lead to extra re-optimization steps and to
the loss of partial pipelined work if actual statistics differ from
their estimates. Bounding boxes can be used during optimization
to address this problem. While there is always one plan that i
optimal for a single-point estimate, one of the following fou
cases can occur with a bounding box B: 
(C.i) Single optimal plan. A single plan is optimal at all point

within B. 
(C.ii) Single robust plan. There is a single plan whose cost i

very close to optimal at all points within B. 
(C.iii) A switchable plan. Intuitively, a switchable plan in B is 

set S of plans with the following properties: a) At each
point pt in B, there is a plan p in S whose cost at pt is clos
to that of the optimal plan at pt; b) The decision of which
plan in S to use can be deferred until accurate estimates o
uncertain statistics are available at query execution time
and c) If the actual statistics lie within B, an appropriat
plan from S can be picked and run without losing any
significant fraction of the execution work done so far. 

(C.iv) None of the above. Different plans are optimal at differen
points in B, but no switchable plan is available. 

A proactive re-optimizer identifies which of the above four case
B falls into. Note that a single optimal plan is also robust, and 
robust plan is a singleton switchable plan. 
Example 5 illustrates how a proactive re-optimizer can exploi
robust plans and switchable plans. Details of how to enumerat
and choose robust and switchable plans are given in Section 0. 

Example 5: Consider the scenario from Example 1. Figure 6 i
the same as Figure 2 except that it considers the bounding box
B=[75MB, 300MB] for |σ(R)|. 

 
Figure 6 – Robust and switchable plans 

As seen, Plan P1a is optimal for the estimated |σ(R)|=150MB, but 
not in the entire bounding box. While Plan P1b is not optimal for 
the estimated |σ(R)|, P1b is robust because its cost is very close to 
optimal at all points in B. Therefore, picking Plan P1b would be a 
safe option. However, as we will see in Section 0, P1a and P1b 
(which are hybrid hash joins with build and probe reversed) are 
switchable. It is preferable to pick the switchable plan P={P1a, 
P1b} instead of the robust P1b because P is guaranteed to run the 
optimal plan as long as |σ(R)| lies within B.  ■ 

4.3 Accurate Run-Time Statistics Collection 
As seen in Example 3, the lack of accurate run-time statistics 
collection can lead to thrashing during re-optimization. In general, 
accurate run-time estimates are needed to pick the right plan from 
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a switchable set, to detect when to trigger re-optimization, and to 
pick a better plan in the next optimization step. 
For efficiency, we hide the cost of collecting accurate statistics by 
combining statistics collection with regular query execution. 
Furthermore, for early detection of the need to re-optimize, the 
run-time estimates must be computed both quickly and accurately. 
We achieve these goals by using a new technique of merging the 
processing of random samples of tuples along with regular query 
execution. Example 6 illustrates this approach. Implementation 
details are given in Section 5.4. 

Example 6: Consider Example 3. Assume that the optimizer had 
picked the suboptimal Plan P3a which contains a pair of index 
nested-loops joins with σ(R) as the outer input. Suppose tuples in 
R are physically laid out in random order on disk. Then, once 5% 
of the R tuples have been scanned and processed, a fairly accurate 
estimate of the selectivity of σ is available. Thus, |σ(R)| can be 
estimated reliably. This estimate enables a proactive re-optimizer 
to detect quickly that P3d is the optimal plan, thereby avoiding 
the thrashing problem in reactive re-optimizers. ■ 

5. PROACTIVE  RE-OPTIMIZATION  WITH  RIO 
Section 4 presented an overview of proactive re-optimization 
without providing specifics about the implementation. We now 
describe our prototype proactive re-optimizer Rio. 

5.1 Building Rio 
Rio was built using the Predator DBMS [24] by extending it as 
follows: 
• Equi-height and end-biased histograms were added [22]. 
• Predator has a traditional cost-based dynamic-programming 

optimizer [23] which we refer to as TRAD. We added: 
• A Validity-Ranges Optimizer (VRO), our implementation 

of the algorithms used by POP [20]. 
• Rio, our proactive re-optimizer. 
• Uncertainty buckets and rules from [18] to generate and 

propagate uncertainty buckets during query optimization. 
• The following operators were added: 

• A hybrid hash join operator [19] that processes tuples 
from two input subtrees. At most one of the subtrees is a 
deep subtree and at least one is a subtree with one base 
relation. Either subtree can be the build input of the hash 
join. Thus, this operator enables us to consider arbitrary 
linear plan shapes, e.g., right-deep join trees like Plan 
P10c in Figure 10. Recall our convention that the left 



input to the hash join is the build and the right input is the 
probe. 

• A switch operator to implement switchable plans. 
• Operators to read random samples from base relations and 

to generate random samples of joins as part of query 
execution. 

• Buffer operators to buffer tuples and delay processing in a 
pipeline until the statistics necessary to choose among the 
set of plans in a switch operator have been collected. 

• Operators to scan previously materialized expressions for 
reuse after re-optimization. Materialized expressions that 
may be reused include completed builds of hash joins and 
the sorted temporary files created by a sort operator. 

• The original validity-ranges algorithm [20] uses checks on 
buffers to trigger re-optimization when the buffers 
overflow or underflow. In our VRO implementation, 
validity ranges are checked by buffer operators placed 
appropriately in the plan which buffer and count incoming 
tuples. The buffer operators trigger re-optimization if any 
validity range is violated. 

• Execution engine: 
• The ability to stop query execution midway, re-optimize, 

and restart execution. 
• An in-memory catalog to track statistics collected at run-

time as well as expressions materialized as part of query 
execution. The optimizer consults this catalog during re-
optimization. 

• An inter-operator communication mechanism based on 
punctuations [25] that, e.g., allows an operator C to signal 
to its parent operator that C has generated a 1% random 
sample of its output. 

5.2 Computing Bounding Boxes 
Recall that a proactive re-optimizer uses bounding boxes instead 
of single-point estimates for statistics needed to cost plans. 
Currently, Rio restricts the computation of bounding boxes to size 
and selectivity estimates. For each such estimate E, a bounding 
box B is computed using a two-step process: 
• An uncertainty bucket U is assigned to the estimate E 
• The bounding box is computed from the (E, U) pair 
To compute U, we adopted a technique from [18] that uses a set 
of rules to compute uncertainty. (We plan to try other techniques 
in the future, e.g., stochastic intervals as in [3].) In the original 
approach [18], the value of U belongs to a three-valued domain 
{small, medium, large} that characterizes the uncertainty in the 
estimate E. The value of U is computed based on the way E is 
derived. For example, if an accurate value of E is available in the 
catalog, then U takes the value small that denotes low uncertainty. 
In Rio, we augmented the domain of U to an integer domain with 
values from 0 (no uncertainty) to 6 (very high uncertainty). 
A bounding box B of an estimated value E is an interval [lo, hi] 
that contains E. The uncertainty value U is used to compute the 
values lo and hi as shown in Figure 7. Example 7 illustrates the 
computation of uncertainty buckets and bounding boxes for our 
running example. 

Example 7: Consider the scenario from Example 1. The optimizer 
needs to cost plans P1a and P1b which depend on |σ(R)| and |S|. 
Recall that σ represents R.b>K1 and R.c>K2. The single-point 

estimates for |S| and |σ(R)| are ES=160MB and ER=150MB 
respectively. Assume that ES was obtained from the catalog. 
Therefore, our rules adapted from [18] for derivation of 
uncertainty set US=1 (low uncertainty in ES). From Figure 7, the 
bounding box for ES is BS=[144, 192]. On the other hand, assume 
that the estimate ER was computed from the estimated selectivities 
of R.b>K1 and R.c>K2 based on the assumption that these 
predicates are independent (no multidimensional histogram was 
available). Thus, the uncertainty in ER is high. Accordingly, our 
rules for derivation of uncertainty set UR=5. From Figure 7, the 
bounding box for ER is BR=[75, 300]. ■ 
 

ComputeBoundingBox(Inputs: estimate E, uncertainty U
Outputs: lo, hi) {

∆+ = 0.2; // increment step
∆- = 0.1; // decrement step
hi = E * (1 + ∆+ * U);
lo = E * (1 - ∆- * U);

}

Figure 7 – Computing bounding boxes for an (E, U) pair 

5.3 Optimizing with Bounding Boxes 
The TRAD optimizer enumerates and groups plans based on their 
join subset (JS) and interesting orders (IO) [23]. For each distinct 
(JS, IO) pair enumerated, TRAD prunes away all plans except the 
plan with the lowest cost, denoted BestPlan. The cost of each plan 
is computed based on estimated statistics. 
VRO takes the same steps as TRAD initially, so VRO will find 
the same optimal plan (BestPlan) for each (JS, IO) pair. However, 
VRO then adds validity ranges on the inputs to the join operators 
in BestPlan [20]. Consider a join operator O with inputs RD and 
RB, where RD is the deep subtree input and RB is the base relation 
input. The validity range of O is the range of values of |RD| where 
operator O has the lowest cost among all join operators with the 
same inputs RD and RB, and giving the same set of interesting 
orders as O. The validity range of O is computed by varying |RD| 
up (and down) until the cost of O is higher than that of some other 
join operator with the same inputs RD and RB and giving the same 
set of interesting orders as O. The Newton-Raphson method can 
be applied to the join cost-functions to compute validity ranges 
more efficiently than linear search; see [20]. 
Unlike TRAD and VRO, Rio computes bounding boxes for all 
input sizes used to cost plans. Then it tries to compute a 
switchable plan (which may also be a single robust plan or a 
single optimal plan) for each distinct (JS, IO) pair based on the 
bounding boxes on the inputs to the plan. If Rio fails to find a 
switchable plan for a (JS, IO) pair, then it picks the optimal plan 
for (JS, IO) based on the single-point estimates of input sizes 
(BestPlan), and adds validity ranges like VRO. 
Rio computes switchable plans in two steps. First, it finds three 
seed plans for each (JS, IO) pair. Then, it creates the switchable 
plan from the seed plans as described next. 

5.3.1 Generating the Seed Plans 
In traditional enumeration, plan cost is computed using single-
point estimates of statistics. In Rio, the enumeration considers 
three different costs for each plan, CLow, CEst, and CHigh. Cost CEst 
is computed using the single-point estimate of statistics exactly 
like in traditional enumeration. Cost CLow (CHigh) is computed at 



the lower left corner (upper right corner) of a bounding box as 
illustrated in Figure 8. 
Rio augments the (JS, IO) pair used during traditional 
enumeration with an extra cost bucket CB that takes values Low, 
Estimated, or High. Like the interesting order concept, the cost 
bucket defines which plans and costs are comparable during cost-
based pruning, e.g., a Plan P for (JS, IO, CB=Low) is pruned if 
and only if there exists a Plan P' for (JS, IO, CB=Low) with a 
lower cost CLow than P. For each distinct (JS, IO) pair, Rio 
enumerates and prunes plans for the three triples (JS, IO, 
CB=Low), (JS, IO, CB=Estimated), and (JS, IO, CB=High). The 
plans that remain after pruning are the three plans corresponding 
to the minimum CLow, CEst, and CHigh for (JS, IO). 

 
Figure 8 – Computing plan costs 

Note that the best plan for (JS, IO, CB=Estimated) is the same 
plan (BestPlan) as computed by TRAD for (JS, IO). Also, the 
addition of the extra cost bucket guarantees that the optimal plan 
for the estimated statistics will not prune away plans that are 
optimal at the upper right or lower left corners of the bounding 
boxes for input sizes. For each (JS, IO) pair, we end up with three 
seed plans from which a switchable plan will be created: 

• BestPlanLow, the plan with minimum cost CLow 
• BestPlanEst, the plan with minimum cost CEst 
• BestPlanHigh, the plan with minimum cost CHigh 

5.3.2 Generating the Switchable Plan 
Given the seeds BestPlanLow, BestPlanEst, and BestPlanHigh, 
one of four cases arises: 
(C.i) The seeds are all the same plan. 
(C.ii) The seeds are not all the same plan, but one of them is a 

robust plan. 
(C.iii) The seeds are not all the same plan, and none of them is 

robust, but a switchable plan can be created from the 
seeds. 

(C.iv) We cannot find a single optimal plan, a single robust plan, 
or a switchable plan from the seeds. 

In Case (C.i), the single optimal plan is the switchable plan. 
(Recall that an optimal plan is also robust and a robust plan is a 
singleton switchable plan.) In Case (C.ii), the optimizer checks if 
any of the seeds is a robust plan. A necessary test to determine 
whether BestPlanLow is robust is to check whether (i) cost CEst of 
BestPlanLow is close to (e.g., within 20% of) CEst of BestPlanEst, 
and (ii) cost CHigh of BestPlanLow is close to CHigh of 
BestPlanHigh. Intuitively, we are testing whether BestPlanLow 
has performance close to optimal at the estimated point and at the 

upper corner of the bounding box as well. While this test is not 
sufficient to guarantee robustness–because we do not check all 
points in the bounding box–Rio currently labels a plan as robust if 
it passes this plan-robustness test. If one of the seeds passes this 
test, then Rio uses that seed as a singleton switchable plan. 

Example 8: Consider the scenario from Example 1. As seen in 
Figure 9, BestPlanLow = BestPlanEst = P1a and BestPlanHigh = 
P1b. The cost of P1a is not within 20% of the cost of P1b at the 
upper corner of the bounding box (|σ(R)|=300MB). Thus, P1a is 
not a robust plan within the bounding box. On the other hand, 
P1b is within 20% of the cost of P1a both at the estimated point 
(|σ(R)|=150MB) and at the lower corner of the bounding box 
(|σ(R)|=75MB). Therefore, P1b passes the plan-robustness test. 

 
Figure 9 – Finding a robust plan in |σ(R)|’s bounding box  

If none of the seeds is a single optimal plan or a single robust plan
(Case (C.iii)), then the optimizer tries to find a switchable plan. A
switchable plan for a (JS, IO) pair is a set of plans S where: 

(i) All plans in S have a different join operator as the roo
operator. (Hybrid hash joins with the build and probe
reversed are treated as different operators.) 

(ii) All plans in S have the same subplan for the deep subtree
input to the root operator. 

(iii) All plans in S have the same base table, but not necessarily
the same access path, as the other input to the root operator.  

Figure 10 contains an example of a switchable plan with three
member plans for (JS={R,S,T}, IO=∅). Any two members of a
switchable plan are said to be switchable with each other. In
Section 5.4 we illustrate how the switchable plan chooses one o
its members at execution time. 

 
Figure 10 – Possible members of a switchable plan 

If the seed plans for a (JS, IO) pair have the same subplan for the
deep subtree, then the seeds themselves constitute a switchable
plan. If these subplans are different, then Rio picks one of the
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seed plans, say BestPlanLow, and enumerates the set SW_Low of 
all plans that are switchable with BestPlanLow based on 
Conditions (i)—(iii) of switchable plans above. Then, among the 
plans in SW_Low, Rio finds the plan, planMinEst, with minimum 
cost at the estimated statistics point, and the plan, planMinHigh, 
with minimum cost at the upper right corner of the bounding box. 
If CEst of planMinEst is close to (e.g., within 20%) CEst of 
BestPlanEst, and CHigh of planMinHigh is close to CHigh of 
BestPlanHigh, then {BestPlanLow, planMinEst, planMinHigh} is 
a switchable plan. If not, Rio tries the same procedure with the 
two other seed plans. 
Example 9: Suppose BestPlanLow = Plan 
P10a, BestPlanEst = Plan P10b  (Figure 10), 
and BestPlanHigh = Plan P11 (Figure 11) for 
R  S  T with no interesting orders. The 
subplan for the deep subtree of the outer join 
is different between P10a and P11, so they 
are not switchable. Thus, Rio enumerates 
SW_Low, which contains Plan P10c. If CHigh 
of Plan P10c is close to that of P11, then 
{P10a, P10b, P10c} is a switchable plan. ■ 

If these techniques fail to find a switchable plan (Case (C.iv)), 
then Rio picks BestPlanEst–the optimal plan for the single-point 
estimates–and adds validity ranges, just like VRO. 

5.4 Extensions to the Query Execution Engine 
A switchable plan S defers the choice of which member plan to 
use for a join until the uncertain input sizes can be estimated 
accurately at run-time. S ensures that no (partial) work done by 
the pipeline containing the join is lost whenever the actual input 
sizes lie within the corresponding bounding box. Our 
implementation of switchable plans uses the following operators 
and communication framework: 

• A switch operator that corresponds to the chosen switchable 
plan. This operator decides which member plan to use based 
on run-time estimates of input sizes, and instantiates the 
appropriate join operator and base relation access path. 

• A buffer operator that buffers tuples until it can compute an 
input-size estimate needed by the switch operator. 

• Randomization-aware operators that prefix their output with 
a random sample of their complete output. 

• An inter-operator communication mechanism based on 
punctuations [25] that allows operators to send size estimates 
and to demarcate random samples in their output stream. 

5.4.1 Implementing Switchable Plans 
For a switchable plan chosen by Rio during optimization, the 
execution-plan generator creates a switch operator and a buffer 
operator. Figure 12 shows these two operators generated for the 
switchable plan in Figure 10. Note that the buffer operator is 
placed above the common subplan for R  S (marked in gray in 
both figures). The switch operator is placed above the buffer 
operator. 
During query execution, the buffer operator buffers tuples from 
the deep subplan until it gets an end-of-sample punctuation eos(f). 
(Generation of such punctuations is described in Section 5.4.2.) 
Punctuation eos(f) signals that the set of tuples buffered so far is 

an f % random sample of the output of the deep subplan. Based on 
the number of buffered tuples n, 100n/f is a fairly accurate 
estimate of the final output cardinality of R  S. The switch 
operator uses this cardinality estimate to compute the total input 
size of R  S, and instantiates the appropriate member plan. 

 
Figure 12–Implementation of switchable plan from Figure 10 

Rio currently uses only the size of the deep subtree input RD to 
the join to choose the best member plan. In terms of Figure 8, this 
limitation means that for a switchable plan P={Plo, Pest, Phi}, 
where Plo, Pest, and Phi were chosen for (loD, loB), (estD, estB), and 
(hiD, hiB) respectively (recall Section 5.3.2), Rio has to choose 
among Plo, Pest, and Phi based solely on the estimate of |RD|. Plo is 
picked if [ ]2)est(lo,lo |R| DDDD +∈ , Pest is picked if 

[ ]2)hi(est,2)est(lo |R| DDDDD ++∈ , and Phi is picked if 
[ ]DDDD hi,2)hi(est |R| +∈ . If |RD| < loD or |RD| > hiD, then the 

switch operator triggers re-optimization after adding the collected 
estimate of |RD| to the catalog. 

5.4.2 Random-Sample Processing During Execution 
To generate eos(f) punctuations required by buffer operators, we 
altered the regular processing of some of Predator’s operators so 
that, with minimal overhead, they can prefix their output with a 
random sample of their entire output. Each such operator O first 
outputs an f % random sample of its entire output. (f is a user-
defined parameter.) Next, O generates an end-of-sample 
punctuation eos(f) to signal the end of the sample. Finally, O 
sends its remaining output tuples. As shown in Figure 13, tuples 
output as part of the random sample are not generated again. 

 
Figure 13 - Random samples in the operator output 

Reordering the output of an operator O is not an option if any of 
the operators above O in the plan depend on the order of O's 
output.  Thus, random sample generation seems inapplicable to 
operators such as sorts and ordered scans from B-trees. However, 
there are ways around this problem. For example, the buffer 
operator above O can regenerate the order using a merge of the 
initial sample with the later output. Furthermore, blocking 
operators2 like sorts provide simpler ways of estimating input 
sizes without requiring random samples or buffering. We plan to 
address these issues in detail in future work. 
                                                                 
2 A blocking operator reads all of its input before producing any output. 
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Next we describe how eos(f) punctuations are generated by table 
scans and certain join operators. Note that our techniques never 
transform a non-blocking operator into a blocking operator. 

5.4.2.1 Randomization in Table-Scan Operators 
We developed two techniques to enable a scan operator over a 
table T to first return a random sample of tuples from T: 
(i) If tuples in T are laid out in random order on disk, a sequential 

scan will produce the tuples in the desired order. Whether T 
has a random layout pattern or not can be a physical property 
of the table, enforced when the table is created and updated. 
Additionally, such a layout pattern can be detected using the 
Kiefer-Kolmogorov-Smirnov test when runstats is invoked to 
collect statistics on T; see [5]. This additional statistic can be 
maintained in the catalog. 

(ii) An f % random sample of T, denoted T_sample, can be 
maintained explicitly as a separate table, e.g., using the 
techniques from [10]. Each tuple in T contains an extra bit to 
denote whether the tuple is also present in T_sample or not. 
At run-time the table scan first returns tuples from T_sample, 
followed by an eos(f). Then it scans T, returning all tuples not 
contained in T_sample. Note that having tuples duplicated in 
T_sample and T allows indexes over T to be built and used 
without any changes. The storage overhead is minimal. 

5.4.2.2 Randomization in Join Operators 
Adding randomization to the nested-loops join operators–tuple, 
block, and index–was straightforward. These operators simply 
pass on the eos(f) punctuations from their outer input, and ignore 
eos(f) from their inner input. A join sample produced in this 
fashion is a true random sample of the join if the outer table’s join 
column is a foreign key referencing the inner table [1]. 
To producing a random sample first from a hybrid hash join, we 
made the following modifications to the standard algorithm: 
(i) First, tuples from the probe input are read into memory until 

an eos(f) punctuation is received. These tuples represent an 
f % sample of the complete probe input. The join operator 
inserts these tuples into an in-memory hash table.  

(ii) Next, the build input is read and partitioned completely. In 
addition, as these tuples are being processed, they are 
immediately joined with the in-memory sample of the probe 
input. Joining tuples are sent in the join output. At the end of 
this phase, an eos(f) punctuation (using the value of f 
received from the probe) is generated, and the in-memory 
sample is discarded. The tuples output so far correspond to 
taking an f % sample from the probe and joining it with the 
complete build. This sample is guaranteed to be a true join 
random sample if the probe input’s join column is a foreign 
key referencing the build input [1].  

(iii) The scan of the probe input, which was paused after the 
eos(f) in Step (i), is resumed. The tuples are partitioned and 
joined with the memory-resident build partitions.  

(iv) The on-disk partitions are joined to complete the join. 

6. EXPERIMENTS 
In this section we describe an extensive experimental evaluation 
of the Rio prototype. We compare Rio with the traditional 
optimizer (termed TRAD in Section 5.1) and with the Validity-

Ranges re-optimizer (termed VRO in Section 5.1) under a variety 
of conditions. In our experiments we used a synthetic data 
generator provided by IBM. The generated dataset has four tables 
whose properties are shown in Table 1. 

Table 1 – Summary of dataset used in the experiments 
Table Size, # of Tuples Sample Correlated Attrs 

Accidents (A) 420 MB, 4.2 M accident_with & damage, 
seat_belt_on & driver_status 

Cars (C) 120 MB, 1.7 M make & model & color 
Owner (O) 228 MB, 1.5 M city & state & country 
Demographics (D) 60 MB, 1.5 M age & salary & assets 

All experiments were done on a 1.7 GHz Pentium machine with 2 
MB L2 cache, 512 MB memory, and a single 5400 rpm disk. The 
buffer cache size is 128 MB. Each hybrid hash join operator is 
allocated a fixed amount of memory which we vary in some of the 
experiments; the default value is 50 MB. Buffer operators in Rio 
and VRO are allocated the same amount of memory as a hybrid 
hash join. The buffers spill to disk when they fill up. B-tree 
indexes were available on all primary-key attributes. Equi-height 
and end-biased histograms were available on all integer attributes. 
The bounding box computation in Rio happens as described in 
Figure 7 with ∆+=0.6 and ∆–=0.1. The cost threshold for 
robustness tests is 20% (Section 5.3.2). The random-sample 
percentage for size estimation is 1% (Section 5.4.2). 

6.1 Two-way Join Queries 
Our first experiment studies the performance of TRAD, VRO, and 
Rio with respect to the error in estimates. We use a query joining 
Accidents (A) with Cars (C) on the car_id attribute. (All joins we 
consider are foreign key to primary key joins.) There is a selection 
predicate on A, denoted σ(A), of the form A.accident_year > 
[year], where [year] is a parameter whose value is varied in this 
experiment. We removed the equi-height histogram on attribute 
A.accident_year from the catalog to force the optimizer to use the 
default selectivity estimate of 0.1. Thus, the optimizer always 
estimates |σ(A)|=42MB. By varying the value of [year], we vary 
the error between the estimate of |σ(A)| and its actual size. 

6.1.1 Using Robust Plans 
The memory limit for a hybrid hash join was set to 150MB in this 
experiment. When |σ(A)| is less than the size of C (120MB), the 
optimal plan is a hybrid hash join with σ(A) as the build, denoted 
Plan PAC. When |σ(A)| > 120MB, the optimal plan is a hybrid hash 
join with C as the build, denoted Plan PCA. (120MB corresponds 
to around 1.8 in Figure 14.) Although B-tree indexes are available 
on the join attributes, index-nested-loop joins never outperform 
hybrid hash joins in our setting.  
Figure 14 shows query completion times, including both 
optimization and execution times,  for TRAD, VRO, and Rio as 
we vary the error in the estimate of |σ(A)|. The error plotted on the 
x-axis is computed as |σ(A)|Actual / |σ(A)|Estimate - 1. A positive error 
indicates an underestimate and a negative indicates an 
overestimate. Figure 14 also shows the performance of the 
optimal plan which we determined manually in each case. 
Since the optimizer's estimate of |σ(A)| is 42MB, TRAD always 
picks Plan PAC which is optimal at |σ(A)|=42MB. As |σ(A)| is 
increased (and the estimation error increases), the cost of Plan PAC 
increases linearly at a small rate until |σ(A)|=150MB. 



(|σ(A)|=150MB corresponds to an error around 2.5 in Figure 14.) 
When |σ(A)|>150MB, the hybrid hash join in Plan PAC starts 
spilling to disk. Because of this extra IO, the cost of Plan PAC 
increases at a steep rate when |σ(A)|>150MB, as shown by the plot 
for TRAD in Figure 14. 
VRO always starts with the same plan as TRAD, i.e., Plan PAC. 
However, VRO adds a validity range to the join and verifies this 
range before starting the join execution. The upper bound of the 
validity range for the hybrid hash join in Plan PAC is 120MB: if 
|σ(A)|>120MB, then Plan PCA performs better. Therefore, as long 
as |σ(A)|≤120MB, the validity range is not violated and the 
performance of VRO matches the performance of the optimal plot 
in Figure 14. When |σ(A)|>120MB, the validity range is violated 
and VRO is forced to re-optimize. Plan PCA is picked on re-
optimization. VRO cannot reuse the work done by the pipeline in 
execution in Plan PAC when re-optimization was invoked, namely 
the scan of A and evaluation of σ(A) up to that point. This loss of 
work results in the region in Figure 14 where VRO performs 
worse than TRAD. However, as the error increases, the re-
optimization pays off quickly because when |σ(A)|>150MB, the 
join in Plan PAC spills to disk while PCA scans A and C only once. 

 
Figure 14 – σ(A)  C, 150MB per hash join 

Rio first computes bounding boxes for |σ(A)| and |C|. Since there 
are no selection predicates on C, the estimate of |C| available from 
the catalog is accurate. To illustrate robust plans, in this 
experiment alone we set ∆+ and ∆– in Figure 7 to very high values 
so that the bounding box on |σ(A)| is [0MB, 420MB]. Rio 
identifies that Plan PCA is a robust plan within this bounding box. 
(Rio identifies Plan PCA to be a robust plan even if the bounding 
box is smaller.) Because the bounding box [0MB, 420MB] covers 
the entire range considered in the experiment, Rio runs Plan PCA 
at all points in Figure 14. Although Plan PCA is not optimal at all 
points in the bounding box, note that Rio’s performance is close 
to the optimal plot at all points in Figure 14, showing the 
robustness of Plan PCA. Since |C| is less than the memory available 
to the hash join, PCA always finishes in one scan of A and C. 

For our default settings of ∆+ and ∆–, the bounding box on |σ(A)| 
is [16.8MB, 193.2MB]. In this case Rio used a combination of 
solutions (re-optimization, switchable plans, and robust plans) to 
provide near-optimal performance. This graph is omitted because 
Section 6.1.2 shows Rio’s performance in a similar situation. 

6.1.2 Using Switchable Plans 
Our next experiment, reported in Figure 15, considers the same 
query as in the previous section, but now hash joins are allocated 
only 50MB of memory for in-memory hash partitions. In this 
experiment, the behavior of Optimal, TRAD, and VRO regarding 
the choices of plans and re-optimization points are the same as in 
the previous section. However, Rio behaves differently. Rio 
computes the bounding box on |σ(A)| to be [16.8MB, 193.2MB]. 
The large width of the box corresponds to the high uncertainty in 
|σ(A)| since this estimate used a default value of selectivity. The 
bounding box on |C| has zero width since an accurate estimate of 
|C| is available from the catalog. Rio finds that Plan PAC is optimal 
at (|σ(A)|,|C|)=(16.8MB, 120MB), which is the lower corner of the 
bounding box, and also at the estimated point (|σ(A)|,|C|) = 
(42MB, 120MB). However, for (|σ(A)|,|C|) = (193.2MB, 120MB), 
which is the upper corner of the bounding box, Plan PCA is 
optimal. Furthermore, neither PAC nor PCA is robust in this case. 
However, Rio identifies that plans PAC and PCA are switchable 
plans (see Section 0). Therefore, for this query, Rio starts with a 
plan containing a switch operator with the two hybrid hash joins 
corresponding to PAC and PCA as member plans. Rio estimates 
|σ(A)| during execution. Based on this estimate, Rio chooses one 
of the two joins or it re-optimizes. 
The accident_year attribute in A is not correlated with the layout 
of A on disk, so a sequential scan of A produces tuples in random 
order to estimate the selectivity of σ(A) (recall Section 5.4.2). Rio 
gets a very accurate estimate of |σ(A)| from the default setting of 
1% sampling. For example, when |σ(A)|=6MB in Figure 15, which 
corresponds to an error of -0.85 and lies outside the bounding 
box, Rio invokes re-optimization. Since the optimizer now has 
accurate estimates of |σ(A)| and |C|, it correctly picks Plan PAC 
which is optimal at this point. Note that Rio’s performance is very 
close to that of the optimal plan for |σ(A)| = 6MB, which shows 
that the overhead incurred by Rio to sample 1% of A, obtain a 
run-time estimate of |σ(A)|, and to re-optimize the query is very 
small. 

 
Figure 15 – σ(A)  C, 50MB per hash join 

When |σ(A)| lies within the bounding box computed by Rio, re-
optimization is avoided. In this case, the switch operator picks 
Plan PAC or Plan PCA appropriately, avoiding loss of work. For 
example, the switch operator picks Plan PAC when |σ(A)|=32MB, 
which corresponds to an error of -0.26 in Figure 15. Plan PCA is 
picked when |σ(A)|=160MB, which corresponds to an error of 
2.84 in Figure 15. When |σ(A)|>193.2, which lies outside the 
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pling the join (recall Section 5.4.2.2). The 

(A)| is the same as that in Section 6.1. The 
|C| and |σ2(O)| effectively have zero width 
tes are known to be accurate. When 
 A in Figure 16 and in Table 2), which 
rror of -0.85 and lies outside the bounding 
e-optimization and picks the optimal Plan 
n |σ1(A)|=160MB (Point C in Figure 16 and 
orresponds to an error of 2.84 and is within 
both switch operators will pick the base 
build, and execute Plan P17d in Figure 17. 
)|=160MB, Rio avoids re-optimization and 

d work which results in the difference of 
tween Rio and VRO in this case. 
io is always close to that of the optimal plan 

or an intermediate range of estimation errors. 
 picks Plan P17d which turns out to be 
d to Plan P17b. This region is a transition 
17d stops being optimal with respect to Plan 
 overestimate of the join selectivity of C  
s to pick Plan P17d as the optimal plan 

beyond the actual transition point. However, as the error in |σ1(A)| 
increases, Rio converges to the optimal plan again around an error 
of 4 in Figure 16. 

 
Figure 16 – σ1(A)  C  σ2(O), 50MB per hash join 

 
Figure 17 – Plans for A  C  O used in experiments 

VRO starts with the same Plan P17a as TRAD, but with validity 
ranges added. When |σ1(A)|≤120MB, none of the validity ranges 
are violated. (|σ1(A)|=120MB corresponds to around 1.8 in Figure 
16.) When |σ1(A)|>120MB, the validity range on σ1(A)  C is 
violated and VRO is forced to re-optimize. Note that at this point, 
VRO does not have an estimate of the actual size of |σ1(A)|. 
Based on the amount of A it has seen so far, VRO always picks 
Plan P17d on re-optimization and adds validity ranges. In 
addition to the overhead of re-optimization and the loss of 
pipelined work, the choice of Plan P17d illustrates one of the big 
problems with VRO. VRO gets stuck in a suboptimal plan as the 
validity ranges in Plan P17d will never fail because of an 
underestimate of |σ1(A)|: there is no better plan to join C and 
σ1(A) for large |σ1(A)| than the hybrid hash join with σ1(A) as the 
probe, even though there is a better plan for the entire query. A 
similar situation arises for the second join since σ1(A) is part of 
the probe input here as well. Hence, as illustrated by the results in 
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Figure 16, VRO performs badly as the estimation error in |σ1(A)| 
increases. This experiment illustrates one of the pitfalls of reactive 
re-optimization where the execution plan is decided before the 
issues affecting re-optimization are considered. 

6.3 Correlation-based Mistakes 
So far the estimation errors we considered were due to selection 
predicates on an attribute on which there was no histogram. A 
more common case of estimation errors is the presence of 
correlated attributes, which we consider in this section. We use a 
three-way join query on A, C, and O with selection predicates 
σ1(A) and σ2(O). Figure 18 shows the performance of three 
queries Q1, Q2, and Q3 which have different sets of correlated 
predicates on A, causing the optimizer to underestimate |σ1(A)| in 
each case. (Correlations usually lead to underestimates [20].) For 
example, Query Q2 contains predicates A.accident_with = "car", 
A.driver_status = "injured", and A.seat_belt_on = "on". |C| and 
|σ2(O)| are always estimated accurately. Figure 18 indicates that 
the estimation errors caused by correlated attributes result in 
performance trends for TRAD, VRO, and Rio similar to those 
shown in Sections 6.1 and 6.2. The reasons for these trends are 
also similar to those observed in Sections 6.1 and 6.2. The 
optimal plan for each query is Plan P17e in Figure 17 which Rio 
picks either because it is a robust plan (Q1) or because Rio 
discovers the estimation error and the actual estimate quickly 
because of randomization (Q2 and Q3).  
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Figure 18 – Errors due to correlated predicates 

6.4 Thrashing 
So far we considered queries where the size of a single input is 
estimated incorrectly. In this section we consider the performance 
of VRO and Rio when the size of more than one input is 
estimated incorrectly. We use a three-way join query on A, C, and 
O with selection predicates σ1(A) and σ2(C). |σ1(A)| is 
underestimated significantly because σ is on an attribute with no 
histograms, while |σ2(C)| is underestimated slightly because the 
histogram on the corresponding attribute was built from a small 
sample of C. For this query, VRO thrashes and takes 690.38 
seconds compared to 327.57 seconds for Rio. VRO starts with the 
optimal plan for the estimated statistics which is similar to Plan 
P17a in Figure 16. Because |σ2(C)| is underestimated, VRO 
computes an incorrect validity range for |σ1(A)|. This validity 
range is violated at run-time, and re-optimization picks Plan P17f. 
Since VRO does not have correct estimates of |σ1(A)| or |σ2(C)| at 
this point, it computes incorrect validity ranges which fail again. 
This thrashing results in the factor two slowdown of VRO 
compared to Rio. Rio invokes re-optimization once for this query 
when its run-time estimate of |σ1(A)| falls outside the bounding 

box. Because Rio estimates |σ1(A)| accurately at run-time using 
sampling, and also uses bounding boxes to allow for error in the 
estimate of |σ2(C)|, it finds the optimal plan in the first re-
optimization step. 

6.5 Increasing Query Complexity 
In this section we compare the relative performance of TRAD, 
VRO, and Rio as we increase the number of joins in the query. 
The results are shown in Figure 19. 
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Figure 19 – Increasing query complexity 

The dataset provided to us had four tables only (the actual dataset 
has around 30 tables [20]). For this experiment, we vertically 
partitioned each table into two and padded each partition with 
string fields to make it the same size as the original table. Each 
query had correlated predicates on half of the joined tables. Figure 
19 shows the same trends observed in previous sections. The 
fraction of time spent by Rio and VRO in optimization steps was 
less than 1.7% in all cases in Figure 19. Roughly, the cost of each 
optimization phase in Rio is three times the cost of the single 
optimization phase in TRAD.  
Figure 19 also shows the relative performance of VRO-R, which 
is the validity-ranges optimizer enhanced with our random-sample 
processing techniques from Section 5.4.2. While randomization 
improved the overall performance of VRO by reducing the time 
required to trigger re-optimization, the amount of wasted work, 
and the number of re-optimization steps, Rio still outperforms 
VRO-R by a significant amount. 

7. FUTURE WORK 
This paper proposes proactive re-optimization as a promising 
approach to deal with optimizer mistakes. We identified the core 
building blocks of proactive re-optimization: i) characterizing 
uncertainty in estimates of statistics using bounding boxes, ii) 
using the bounding boxes to pick robust plans and switchable 
plans, and iii) estimating statistics quickly and efficiently during 
execution. As a next step, we plan to evaluate our specific 
algorithms and implementation decisions against some alternative 
options: 
• Uncertainty and Bounding Boxes. We used the uncertainty 

initialization and propagation rules from [18] to characterize 
the level of uncertainty in estimates and derive bounding 
boxes. An interesting alternative is to characterize uncertainty 
in terms of stochastic intervals [3]. 

• Plan robustness. Currently we characterize a plan as robust if 
its cost is close to optimal at three points in the bounding box. 



Both the location and the number of these points in the 
bounding box require further study. Furthermore, alternative 
notions of plan robustness, e.g., based on expected costs [9] or 
confidence thresholds [3], will be considered. 

• Switchable plans. We considered a fairly restricted notion of 
switchable plans based on the complete reuse of execution 
work. More flexible definitions, e.g., allowing re-ordering of 
operators in a pipeline, may give the optimizer more room to 
find switchable plans. 

• Random-sample processing. Our approach so far is to merge 
random-sample processing with query execution to reduce the 
overhead. Random-sample processing could be used more 
aggressively to reduce the uncertainty in statistics even before 
starting query execution, introducing a new challenge in 
determining how much statistics collection to do in advance. A 
more general area of future work is to explore how 
randomization and ordered output can coexist best in Rio, e.g., 
in the context of Top-K queries. 
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