
Proactive Re-Optimization
Shivnath Babu†
Stanford University

shivnath@cs.stanford.edu

Pedro Bizarro‡
University of Wisconsin – Madison

pedro@cs.wisc.edu

David DeWitt‡
University of Wisconsin – Madison

dewitt@cs.wisc.edu

ABSTRACT
Traditional query optimizers rely on the accuracy of estimated
statistics to choose good execution plans. This design often leads to
suboptimal plan choices for complex queries, since errors in
estimates for intermediate subexpressions grow exponentially in the
presence of skewed and correlated data distributions. Re-
optimization is a promising technique to cope with such mistakes.
Current re-optimizers first use a traditional optimizer to pick a
plan, and then react to estimation errors and resulting
suboptimalities detected in the plan during execution. The
effectiveness of this approach is limited because traditional
optimizers choose plans unaware of issues affecting re-
optimization. We address this problem using proactive re-
optimization, a new approach that incorporates three techniques:
i) the uncertainty in estimates of statistics is computed in the form of
bounding boxes around these estimates, ii) these bounding boxes are
used to pick plans that are robust to deviations of actual values from
their estimates, and iii) accurate measurements of statistics are
collected quickly and efficiently during query execution. We present
an extensive evaluation of these techniques using a prototype
proactive re-optimizer named Rio. In our experiments Rio
outperforms current re-optimizers by up to a factor of three.

1. INTRODUCTION
Most query optimizers use a plan-first execute-next approach–the
optimizer enumerates plans, computes the cost of each plan, and
picks the plan with lowest cost [23]. This approach relies heavily
on the accuracy of estimated statistics of intermediate
subexpressions to choose good plans. It is a well-known problem
that errors in estimation propagate exponentially in the presence
of skewed and correlated data distributions [8, 14]. Such errors,
and the consequent suboptimal plan choices, were not a critical
problem when databases were smaller, queries had few joins and
simple predicates, and hardware resources were limited. In the last
two decades, data sizes, query complexity, and the hardware
resources to manage databases have grown dramatically. Query
optimizers have not kept pace with the ability of database systems
to execute complex queries over very large data sets.
Several techniques have been proposed to improve traditional query
optimization. These techniques include better statistics [22], new

algorithms for optimization [9, 13, 15], and adaptive architectures
for execution [2]. A very promising technique in this direction is re-
optimization, where the optimization and the execution stages of
processing a query are interleaved, possibly multiple times, over the
running time of the query [17, 18, 20, 26]. Reference [20] shows
that re-optimization can improve the performance of complex
queries by an order of magnitude.
Current re-optimizers take a reactive approach to re-optimization:
they first use a traditional optimizer to generate a plan, and then
track statistics and respond to estimation errors and resulting
suboptimalities detected in the plan during execution. Reactive re-
optimization is limited by its use of an optimizer that does not
incorporate issues affecting re-optimization, and suffers from at least
three shortcomings:
• The optimizer may pick plans whose performance depends

heavily on uncertain statistics, making re-optimization very
likely.

• The partial work done in a pipelined plan is lost when re-
optimization is triggered and the plan is changed.

• The ability to collect statistics quickly and accurately during
query execution is limited. Consequently, when re-
optimization is triggered, the optimizer may make new
mistakes, leading potentially to thrashing.

In this paper we propose proactive re-optimization to address these
shortcomings. We have implemented a prototype proactive re-
optimizer called Rio that incorporates three new techniques:
• Bounding boxes are computed around estimates of statistics to

represent the uncertainty in these estimates.
• The bounding boxes are used during optimization to generate

robust and switchable plans that minimize the need for re-
optimization and the loss of pipelined work.

• Random-sample processing is merged with regular query
execution to collect statistics quickly, accurately, and
efficiently at run-time.

Our experimental results demonstrate that proactive re-optimization
can provide up to three times improvement over a strictly reactive
re-optimizer. The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 uses a series of examples to
illustrate the problems with reactive re-optimization, and Section 4
shows how proactive re-optimization addresses these problems.
Section 5 describes the Rio implementation and Section 6 presents
an experimental evaluation. We outline future work in Section 7.

P
p
n
c
o
r

S
C

†

‡

 Supported by NSF grants IIS-0118173 and IIS-0324431.
 Supported by NSF grant IIS-0086002.
2. RELATED WORK
Reference [4] classifies adaptive query processing systems into three
families: plan-based, routing-based, and continuous-query-based. In
this paper we focus on plan-based systems, the more closely related
to Rio being ReOpt [18] and POP [20]. Other related projects
include Ginga [21], Tukwila [16], query scrambling [26], and
corrective query processing [17]. ReOpt and POP use a traditional

ermission to make digital or hard copies of all or part of this work for
ersonal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that
opies bear this notice and the full citation on the first page. To copy
therwise, or republish, to post on servers or to redistribute to lists,
equires prior specific permission and/or a fee.

IGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
opyright 2005 ACM 1-59593-060-4/05/06 $5.00

optimizer to pick plans based on single-point estimates of statistics.
These reactive re-optimizers augment the chosen plan with checks
that are verified at run-time. The query is re-optimized if a check is
violated.
The use of intervals instead of single-point estimates for statistics
has been considered by least-expected-cost optimization (LEC) [9],
error-aware optimization (EAO) [27], and parametric optimization
[13, 15, 21]. LEC treats statistics estimates as random variables to
compute the expected cost of each plan. Unlike LEC, Rio does not
assume knowledge about the underlying distribution of statistics.
Instead, Rio computes the uncertainty in these estimates based on
how they were derived. Like Rio, EAO considers intervals of
estimates and proposes heuristics to identify robust plans. However,
the techniques in EAO assume a single uncertain statistic (memory
size) and a single join. Furthermore, LEC and EAO do not consider
re-optimization or the collection of statistics during query execution.
Therefore, these techniques use execution plans that were picked
before the uncertainty in statistics is resolved. Parametric
optimization identifies several execution plans during optimization,
each of which is optimal for some range of values of run-time
parameters. Parametric optimization, along with the choose-plan
operator [11], enables the optimizer to defer the choice of plan to
run-time. Switchable plans and switch operators in Rio are similar.
However, unlike choose-plan operators, switch operators may occur
within pipelines. Furthermore, parametric optimization does not
consider uncertainty in estimates, collection of statistics during
execution, robust plans, or re-optimization.
Rio combines the processing of random samples of tuples with
regular query processing to obtain quick and accurate estimates of
statistics during execution. This approach differs from previous uses
of random samples, e.g., providing continuously-refined answers in
an online manner [12], computing approximate query results [1, 6],
or building base relation statistics from samples [8]. Robust
cardinality estimation (RCE) uses random samples for cardinality
estimation, to deal with uncertainty, and to explore performance-
predictability tradeoffs [3]. However, RCE does not consider re-
optimization. Furthermore, RCE does not consider techniques such
as merging random-sample processing with regular query execution,
or propagating random samples through joins.

3. PROBLEMS WITH REACTIVE RE-
OPTIMIZATION
In this section we present a series of examples to highlight the
problems with current approaches to query re-optimization. One
known problem with traditional optimizers, e.g. [23], is that they
rely frequently on outdated statistics or invalid assumptions such as
independence among attributes. Consequently, they may choose
suboptimal query plans that degrade performance by orders of
magnitude [8, 20]. Example 1 illustrates this problem.

Example 1: Consider the query “select * from R, S where R.a=S.a
and R.b>K1 and R.c>K2”. Assume the database buffer-cache size is
200MB, |R|=500MB, |S|=160MB, and |σ(R)|=300MB, where σ(R)
represents the result of the “R.b>K1 and R.c>K2” selection on R.
However, because of skew and correlations in the data distributions
of R.b and R.c, the optimizer underestimates |σ(R)| to be 150MB.
With this incorrect estimate, the optimizer would pick Plan P1a for
this query (Figure 1). P1a is a hash join with σ(R) as the build input
and S as the probe. (Throughout this paper we use the convention
that the left input of a hash join is the build and the right input is
the probe.) However, since |σ(R)| is actually 300MB, Plan P1a’s

hash join requires two passes over R and S. P1a is suboptimal
because Plan P1b, which builds on S, finishes in one pass over R
and S.

Figure 1 – Two plans for the σ(R) S query

Re-optimization can avoid problems similar to the one i
Example 1. Current systems that use re-optimization first use
traditional optimizer to pick the best plan, and then add chec
operators to the chosen plan. The check operators detect sub
optimality during execution, and trigger re-optimization if required
For example, the check-placement algorithm used by POP compute
a validity range for each plan [20]. Let P be a left-deep plan. Th
root operator of P is a binary join operator with subtree D and bas
relation R as inputs. Let |D| denote the result size of D. POP define
the validity range of P as the range of values of |D| for which P ha
the lowest cost among all plans P’, where P’ is logically equivalen
to P, P’ is rooted at an operator with the same inputs D and R, an
P’ gives the same interesting orders as P.
During execution, each check operator collects statistics on i
inputs. If these statistics satisfy the validity ranges for the pla
picked by the optimizer, then execution proceeds as usua
Otherwise, re-optimization is invoked to choose the best plan base
on the statistics collected. The reuse of intermediate results that wer
materialized completely in a previous execution step is considere
during re-optimization. Example 2 illustrates the overall technique.

Example 2: Consider the scenario from Example 1. A re-optimize
like POP will choose the same plan (P1a) as a traditional optimize
Additionally, POP will compute validity ranges for the chosen plan
For example, a validity range for P1a is 100KB≤|σ(R)|≤160MB.
|σ(R)|<100KB, then it is preferable to use an index nested-loops joi
with tuples in σ(R) probing a covering index on S. If |σ(R)|>160MB
then Plan P1b is optimal. In this example, the check |σ(R)|≤160M
will fail during execution, invoking re-optimization.

3.1 Limitations of Single-point Estimates
Although re-optimization preempts the execution of the suboptima
Plan P1a in Example 1 when |σ(R)|>160MB, it incurs the overhea
of calling the optimizer more than once and the cost of repeatin
work. For example, the (partial) scan of R in Plan P1a until re
optimization is lost and must be repeated in P1b. The optimizer ma
be better off picking Plan P1b from the start because P1b is a robu
plan with respect to the uncertainty in |σ(R)|; see Figure 2.

Figure 2 – Cost of plans P1a and P1b as |σ(R)| varies

HashJoin

σ(R) S

Plan P1a:

HashJoin

S σ(R)

Plan P1b:

Size of σ(R) (in MB)

Cost of plans

P1a

P1a

P1b

P1b

|σ(R)|=Memory
|σ(R)|=|S|

200 160 150
Estimated |σ(R)|

■

n
a
k
-
.
s
e
e
s
s
t
d

ts
n
l.
d
e
d

r
r.
.

If
n
,

B
■

l
d
g
-
y
st

When |σ(R)|≤Memory, both plans finish in one pass and involve the
same amount of IO. However, when |σ(R)|>Memory, only P1b
finishes in one pass.

Current re-optimizers do not account for robustness of plans since
they consider single-point estimates for all statistics needed to cost
plans. (To arrive at these single-point estimates, optimizers are often
forced to make assumptions like uniformity and independence [23].)
Non-robust plans may lead to extra optimizer invocations and
wasted work, as we will show in Section 3.3.

3.2 Limited Information for Re-Optimization
Current re-optimizers make limited effort to collect statistics quickly
and accurately during execution. For instance, the validity check in
Example 2 will fail when |σ(R)|=160MB, and re-optimization will
be invoked. However, the optimizer does not know |σ(R)| accurately
at this point–it only knows that |σ(R)|≥160MB–which may cause it
to chose a suboptimal plan again. Example 3 illustrates an extreme
instance of the thrashing that can result.

Example 3: Consider the query “select * from R, S, T where
R.a=S.a and S.b=T.b and R.c>K1 and R.d=K2”. Assume that the
sizes of the tables are known accurately to be |R|=200MB,
|S|=50MB, and |T|=60MB. Further assume that |σ(R)|=80MB, but
that the optimizer underestimates it significantly as 40KB.1 Based
on these statistics, the optimizer chooses Plan P3a.

Figure 3 – Thrashing with reactive re-optimization

A reactive re-optimizer may compute validity ranges for Plan P3a as
shown by the gray boxes in this plan. For example, the validity
range for the index nested-loops join between σ(R) and S in P3a is
|σ(R)|≤100KB. This validity-range check will fail at run-time,
triggering re-optimization. Plan P3b will be picked next with a
validity range as shown in Figure 3. This check will fail and re-
optimization will be triggered again, and so on until the optimal
Plan P3d is chosen finally. ■

3.3 Losing Partial Work in a Pipeline
In addition to the multiple re-optimization steps as illustrated in
Example 3, current re-optimizers also lose the partial work done by
a pipeline in execution when re-optimization is triggered. For

1 A recent paper from IBM reports cardinality estimation errors on real

datasets that exceed six orders of magnitude [20].

example, Plan P3c in Figure 3 has a pipeline PPL2 (enclosed with
dotted lines) that scans R, probes S in HashJoin1, and builds joining
tuples into HashJoin2. The validity-range check before HashJoin2
will fail before pipeline PPL2 finishes, and the partial work done by
this pipeline will be lost. On the other hand, work done by
completed pipelines, like PPL1–scanning and building S–can be
reused. However, in this example, the build of S in Plan P3c cannot
be reused in Plan P3d because the hash tables are built on different
join attributes.

4. PROACTIVE RE-OPTIMIZATION
This paper proposes proactive re-optimization, a new paradigm for
query re-optimization. Proactive re-optimization addresses the
problems with current reactive approaches that were illustrated in
Section 3. A proactive re-optimizer incorporates three new
techniques:
1. Computing bounding boxes–intervals around estimates–as a

representation of the uncertainty in estimates of statistics.
2. Using bounding boxes during optimization to generate robust

plans and switchable plans that avoid re-optimization and loss
of pipelined work.

3. Using randomization to collect statistics quickly, accurately,
and efficiently as part of query execution.

Figure 4 shows the architecture of a proactive re-optimizer. In
Section 5 we introduce Rio, our specific implementation of a
proactive re-optimizer.

Figure 4 – Proactive re-optimization

4.1 Representing Uncertainty in Statistics
Current re-optimizers compute a single-point estimate for any
statistic needed to cost plans. One way to account for possible errors
in estimates is to consider intervals, or bounding boxes, around the
estimates. If the optimizer is very certain of the quality of an
estimate, then its bounding box should be narrow. If the optimizer is
uncertain of the estimate’s quality, then the bounding box should be
wider. There are different ways of computing bounding boxes, e.g.,
using strict upper and lower bounds [7] or by characterizing
uncertainty in estimates using discrete buckets that depend on the
way the estimate was derived [18]. Our implementation uses the
latter approach as described in Section 5.2.

Example 4: Consider the scenario from Example 1. The costs of
plans P1a and P1b depend mainly on |σ(R)| and |S|. Suppose a
recent estimate of |S|=160MB is available in the catalog.
However, in the absence of a multidimensional histogram on R,
|σ(R)| must be estimated from the estimated selectivities of

 Query

Catalog

1. Compute
bounding boxes

for estimates

2. Use bounding
boxes to pick robust
or switchable plans

3. Execute query;
Collect accurate

statistics estimates

No, re-optimize

Yes, use
robust or

switchable
plan

Estimate within
the bounding

box?

Execution

Optimization

Run-time estimates

IndexNL1

σ(R) S

Plan P3a:
IndexNL2

T

|σ(R)|≤100KB

HashJoin1

HashJoin2

T
…

HashJoin1

S T

σ(R) HashJoin1

S σ(R)

T

Re-optimized when
σ(R)>100KB

σ(R) S

100KB<|σ(R)|≤50MB

Plan P3b:

Plan P3c: Plan P3d: HashJoin2

|σ(R)|≤60MB

HashJoin2

…

Re-optimized when
σ(R)>50MB

Re-optimized when
σ(R)>60MB

Pipeline PPL2

Pipeline PPL1

R.b>K1 and R.c>K2 and an assumption of independence between
these predicates. This estimate of |σ(R)|=150MB is thus very
uncertain. In this case, Figure 5 shows an example bounding box
around the single-point estimate (|σ(R)|=150MB, |S|=160MB).

Figure 5 – Bounding box around estimates of |σ(R)| and |S|

4.2 Using Bounding Boxes During Optimization
Since current re-optimizers consider single-point estimates only
their plan choices may lead to extra re-optimization steps and to
the loss of partial pipelined work if actual statistics differ from
their estimates. Bounding boxes can be used during optimization
to address this problem. While there is always one plan that i
optimal for a single-point estimate, one of the following fou
cases can occur with a bounding box B:
(C.i) Single optimal plan. A single plan is optimal at all point

within B.
(C.ii) Single robust plan. There is a single plan whose cost i

very close to optimal at all points within B.
(C.iii) A switchable plan. Intuitively, a switchable plan in B is

set S of plans with the following properties: a) At each
point pt in B, there is a plan p in S whose cost at pt is clos
to that of the optimal plan at pt; b) The decision of which
plan in S to use can be deferred until accurate estimates o
uncertain statistics are available at query execution time
and c) If the actual statistics lie within B, an appropriat
plan from S can be picked and run without losing any
significant fraction of the execution work done so far.

(C.iv) None of the above. Different plans are optimal at differen
points in B, but no switchable plan is available.

A proactive re-optimizer identifies which of the above four case
B falls into. Note that a single optimal plan is also robust, and
robust plan is a singleton switchable plan.
Example 5 illustrates how a proactive re-optimizer can exploi
robust plans and switchable plans. Details of how to enumerat
and choose robust and switchable plans are given in Section 0.

Example 5: Consider the scenario from Example 1. Figure 6 i
the same as Figure 2 except that it considers the bounding box
B=[75MB, 300MB] for |σ(R)|.

Figure 6 – Robust and switchable plans

As seen, Plan P1a is optimal for the estimated |σ(R)|=150MB, but
not in the entire bounding box. While Plan P1b is not optimal for
the estimated |σ(R)|, P1b is robust because its cost is very close to
optimal at all points in B. Therefore, picking Plan P1b would be a
safe option. However, as we will see in Section 0, P1a and P1b
(which are hybrid hash joins with build and probe reversed) are
switchable. It is preferable to pick the switchable plan P={P1a,
P1b} instead of the robust P1b because P is guaranteed to run the
optimal plan as long as |σ(R)| lies within B. ■

4.3 Accurate Run-Time Statistics Collection
As seen in Example 3, the lack of accurate run-time statistics
collection can lead to thrashing during re-optimization. In general,
accurate run-time estimates are needed to pick the right plan from

Size of σ(R)
(in MB)

Cost of plans

P1a

P1a

P1b
P1b

150
Estimate

300 75
Potential Min Potential Max

Bounding box for |σ(R)|

|S| (in MB)

Estimated Potential Max

Potential
Min

Potential
Max

160
192

144 |σ(R)|
(in MB)

Potential Min
15075 300

Estimated
Bounding box

■

,

s
r

s

s

a

e

f
;
e

t

s
a

t
e

s

a switchable set, to detect when to trigger re-optimization, and to
pick a better plan in the next optimization step.
For efficiency, we hide the cost of collecting accurate statistics by
combining statistics collection with regular query execution.
Furthermore, for early detection of the need to re-optimize, the
run-time estimates must be computed both quickly and accurately.
We achieve these goals by using a new technique of merging the
processing of random samples of tuples along with regular query
execution. Example 6 illustrates this approach. Implementation
details are given in Section 5.4.

Example 6: Consider Example 3. Assume that the optimizer had
picked the suboptimal Plan P3a which contains a pair of index
nested-loops joins with σ(R) as the outer input. Suppose tuples in
R are physically laid out in random order on disk. Then, once 5%
of the R tuples have been scanned and processed, a fairly accurate
estimate of the selectivity of σ is available. Thus, |σ(R)| can be
estimated reliably. This estimate enables a proactive re-optimizer
to detect quickly that P3d is the optimal plan, thereby avoiding
the thrashing problem in reactive re-optimizers. ■

5. PROACTIVE RE-OPTIMIZATION WITH RIO
Section 4 presented an overview of proactive re-optimization
without providing specifics about the implementation. We now
describe our prototype proactive re-optimizer Rio.

5.1 Building Rio
Rio was built using the Predator DBMS [24] by extending it as
follows:
• Equi-height and end-biased histograms were added [22].
• Predator has a traditional cost-based dynamic-programming

optimizer [23] which we refer to as TRAD. We added:
• A Validity-Ranges Optimizer (VRO), our implementation

of the algorithms used by POP [20].
• Rio, our proactive re-optimizer.
• Uncertainty buckets and rules from [18] to generate and

propagate uncertainty buckets during query optimization.
• The following operators were added:

• A hybrid hash join operator [19] that processes tuples
from two input subtrees. At most one of the subtrees is a
deep subtree and at least one is a subtree with one base
relation. Either subtree can be the build input of the hash
join. Thus, this operator enables us to consider arbitrary
linear plan shapes, e.g., right-deep join trees like Plan
P10c in Figure 10. Recall our convention that the left

input to the hash join is the build and the right input is the
probe.

• A switch operator to implement switchable plans.
• Operators to read random samples from base relations and

to generate random samples of joins as part of query
execution.

• Buffer operators to buffer tuples and delay processing in a
pipeline until the statistics necessary to choose among the
set of plans in a switch operator have been collected.

• Operators to scan previously materialized expressions for
reuse after re-optimization. Materialized expressions that
may be reused include completed builds of hash joins and
the sorted temporary files created by a sort operator.

• The original validity-ranges algorithm [20] uses checks on
buffers to trigger re-optimization when the buffers
overflow or underflow. In our VRO implementation,
validity ranges are checked by buffer operators placed
appropriately in the plan which buffer and count incoming
tuples. The buffer operators trigger re-optimization if any
validity range is violated.

• Execution engine:
• The ability to stop query execution midway, re-optimize,

and restart execution.
• An in-memory catalog to track statistics collected at run-

time as well as expressions materialized as part of query
execution. The optimizer consults this catalog during re-
optimization.

• An inter-operator communication mechanism based on
punctuations [25] that, e.g., allows an operator C to signal
to its parent operator that C has generated a 1% random
sample of its output.

5.2 Computing Bounding Boxes
Recall that a proactive re-optimizer uses bounding boxes instead
of single-point estimates for statistics needed to cost plans.
Currently, Rio restricts the computation of bounding boxes to size
and selectivity estimates. For each such estimate E, a bounding
box B is computed using a two-step process:
• An uncertainty bucket U is assigned to the estimate E
• The bounding box is computed from the (E, U) pair
To compute U, we adopted a technique from [18] that uses a set
of rules to compute uncertainty. (We plan to try other techniques
in the future, e.g., stochastic intervals as in [3].) In the original
approach [18], the value of U belongs to a three-valued domain
{small, medium, large} that characterizes the uncertainty in the
estimate E. The value of U is computed based on the way E is
derived. For example, if an accurate value of E is available in the
catalog, then U takes the value small that denotes low uncertainty.
In Rio, we augmented the domain of U to an integer domain with
values from 0 (no uncertainty) to 6 (very high uncertainty).
A bounding box B of an estimated value E is an interval [lo, hi]
that contains E. The uncertainty value U is used to compute the
values lo and hi as shown in Figure 7. Example 7 illustrates the
computation of uncertainty buckets and bounding boxes for our
running example.

Example 7: Consider the scenario from Example 1. The optimizer
needs to cost plans P1a and P1b which depend on |σ(R)| and |S|.
Recall that σ represents R.b>K1 and R.c>K2. The single-point

estimates for |S| and |σ(R)| are ES=160MB and ER=150MB
respectively. Assume that ES was obtained from the catalog.
Therefore, our rules adapted from [18] for derivation of
uncertainty set US=1 (low uncertainty in ES). From Figure 7, the
bounding box for ES is BS=[144, 192]. On the other hand, assume
that the estimate ER was computed from the estimated selectivities
of R.b>K1 and R.c>K2 based on the assumption that these
predicates are independent (no multidimensional histogram was
available). Thus, the uncertainty in ER is high. Accordingly, our
rules for derivation of uncertainty set UR=5. From Figure 7, the
bounding box for ER is BR=[75, 300]. ■

ComputeBoundingBox(Inputs: estimate E, uncertainty U
Outputs: lo, hi) {

∆+ = 0.2; // increment step
∆- = 0.1; // decrement step
hi = E * (1 + ∆+ * U);
lo = E * (1 - ∆- * U);

}

Figure 7 – Computing bounding boxes for an (E, U) pair

5.3 Optimizing with Bounding Boxes
The TRAD optimizer enumerates and groups plans based on their
join subset (JS) and interesting orders (IO) [23]. For each distinct
(JS, IO) pair enumerated, TRAD prunes away all plans except the
plan with the lowest cost, denoted BestPlan. The cost of each plan
is computed based on estimated statistics.
VRO takes the same steps as TRAD initially, so VRO will find
the same optimal plan (BestPlan) for each (JS, IO) pair. However,
VRO then adds validity ranges on the inputs to the join operators
in BestPlan [20]. Consider a join operator O with inputs RD and
RB, where RD is the deep subtree input and RB is the base relation
input. The validity range of O is the range of values of |RD| where
operator O has the lowest cost among all join operators with the
same inputs RD and RB, and giving the same set of interesting
orders as O. The validity range of O is computed by varying |RD|
up (and down) until the cost of O is higher than that of some other
join operator with the same inputs RD and RB and giving the same
set of interesting orders as O. The Newton-Raphson method can
be applied to the join cost-functions to compute validity ranges
more efficiently than linear search; see [20].
Unlike TRAD and VRO, Rio computes bounding boxes for all
input sizes used to cost plans. Then it tries to compute a
switchable plan (which may also be a single robust plan or a
single optimal plan) for each distinct (JS, IO) pair based on the
bounding boxes on the inputs to the plan. If Rio fails to find a
switchable plan for a (JS, IO) pair, then it picks the optimal plan
for (JS, IO) based on the single-point estimates of input sizes
(BestPlan), and adds validity ranges like VRO.
Rio computes switchable plans in two steps. First, it finds three
seed plans for each (JS, IO) pair. Then, it creates the switchable
plan from the seed plans as described next.

5.3.1 Generating the Seed Plans
In traditional enumeration, plan cost is computed using single-
point estimates of statistics. In Rio, the enumeration considers
three different costs for each plan, CLow, CEst, and CHigh. Cost CEst
is computed using the single-point estimate of statistics exactly
like in traditional enumeration. Cost CLow (CHigh) is computed at

the lower left corner (upper right corner) of a bounding box as
illustrated in Figure 8.
Rio augments the (JS, IO) pair used during traditional
enumeration with an extra cost bucket CB that takes values Low,
Estimated, or High. Like the interesting order concept, the cost
bucket defines which plans and costs are comparable during cost-
based pruning, e.g., a Plan P for (JS, IO, CB=Low) is pruned if
and only if there exists a Plan P' for (JS, IO, CB=Low) with a
lower cost CLow than P. For each distinct (JS, IO) pair, Rio
enumerates and prunes plans for the three triples (JS, IO,
CB=Low), (JS, IO, CB=Estimated), and (JS, IO, CB=High). The
plans that remain after pruning are the three plans corresponding
to the minimum CLow, CEst, and CHigh for (JS, IO).

Figure 8 – Computing plan costs

Note that the best plan for (JS, IO, CB=Estimated) is the same
plan (BestPlan) as computed by TRAD for (JS, IO). Also, the
addition of the extra cost bucket guarantees that the optimal plan
for the estimated statistics will not prune away plans that are
optimal at the upper right or lower left corners of the bounding
boxes for input sizes. For each (JS, IO) pair, we end up with three
seed plans from which a switchable plan will be created:

• BestPlanLow, the plan with minimum cost CLow
• BestPlanEst, the plan with minimum cost CEst
• BestPlanHigh, the plan with minimum cost CHigh

5.3.2 Generating the Switchable Plan
Given the seeds BestPlanLow, BestPlanEst, and BestPlanHigh,
one of four cases arises:
(C.i) The seeds are all the same plan.
(C.ii) The seeds are not all the same plan, but one of them is a

robust plan.
(C.iii) The seeds are not all the same plan, and none of them is

robust, but a switchable plan can be created from the
seeds.

(C.iv) We cannot find a single optimal plan, a single robust plan,
or a switchable plan from the seeds.

In Case (C.i), the single optimal plan is the switchable plan.
(Recall that an optimal plan is also robust and a robust plan is a
singleton switchable plan.) In Case (C.ii), the optimizer checks if
any of the seeds is a robust plan. A necessary test to determine
whether BestPlanLow is robust is to check whether (i) cost CEst of
BestPlanLow is close to (e.g., within 20% of) CEst of BestPlanEst,
and (ii) cost CHigh of BestPlanLow is close to CHigh of
BestPlanHigh. Intuitively, we are testing whether BestPlanLow
has performance close to optimal at the estimated point and at the

upper corner of the bounding box as well. While this test is not
sufficient to guarantee robustness–because we do not check all
points in the bounding box–Rio currently labels a plan as robust if
it passes this plan-robustness test. If one of the seeds passes this
test, then Rio uses that seed as a singleton switchable plan.

Example 8: Consider the scenario from Example 1. As seen in
Figure 9, BestPlanLow = BestPlanEst = P1a and BestPlanHigh =
P1b. The cost of P1a is not within 20% of the cost of P1b at the
upper corner of the bounding box (|σ(R)|=300MB). Thus, P1a is
not a robust plan within the bounding box. On the other hand,
P1b is within 20% of the cost of P1a both at the estimated point
(|σ(R)|=150MB) and at the lower corner of the bounding box
(|σ(R)|=75MB). Therefore, P1b passes the plan-robustness test.

Figure 9 – Finding a robust plan in |σ(R)|’s bounding box

If none of the seeds is a single optimal plan or a single robust plan
(Case (C.iii)), then the optimizer tries to find a switchable plan. A
switchable plan for a (JS, IO) pair is a set of plans S where:

(i) All plans in S have a different join operator as the roo
operator. (Hybrid hash joins with the build and probe
reversed are treated as different operators.)

(ii) All plans in S have the same subplan for the deep subtree
input to the root operator.

(iii) All plans in S have the same base table, but not necessarily
the same access path, as the other input to the root operator.

Figure 10 contains an example of a switchable plan with three
member plans for (JS={R,S,T}, IO=∅). Any two members of a
switchable plan are said to be switchable with each other. In
Section 5.4 we illustrate how the switchable plan chooses one o
its members at execution time.

Figure 10 – Possible members of a switchable plan

If the seed plans for a (JS, IO) pair have the same subplan for the
deep subtree, then the seeds themselves constitute a switchable
plan. If these subplans are different, then Rio picks one of the

Plan P10a

HashJoin1

HashJoin2

HashJoin1

IndexNL HashJoin3

Different root
operator

Reversed build
and probe

Plan P10b Plan P10c

HashJoin1

Scan S Scan R

Scan T Scan T Index
Seek on T

Scan S Scan R Scan S Scan R

Join J

Plan P

Base relation
RB

|RD| |RB|

|RB|

estB

Bounding box for input
sizes for J

|RD|

CLow = cost of P at (loD, loB)
CEst = cost of P at (estD, estB)
CHigh = cost of P at (hiD, hiB)

loB

hiB

hiD estD loD

… …

Deep
subtree RD |σ(R)|

(in MB)

Cost of plans

P1a

P1a

P1b
P1b

150
Estimated

30075
Potential Min Potential Max

BestPlanLow=P1a
is best plan here

BestPlanEst=P1a
is best plan here

BestPlanHigh=P1b
is best plan here

Bounding box for |σ(R)|

■

t

f

seed plans, say BestPlanLow, and enumerates the set SW_Low of
all plans that are switchable with BestPlanLow based on
Conditions (i)—(iii) of switchable plans above. Then, among the
plans in SW_Low, Rio finds the plan, planMinEst, with minimum
cost at the estimated statistics point, and the plan, planMinHigh,
with minimum cost at the upper right corner of the bounding box.
If CEst of planMinEst is close to (e.g., within 20%) CEst of
BestPlanEst, and CHigh of planMinHigh is close to CHigh of
BestPlanHigh, then {BestPlanLow, planMinEst, planMinHigh} is
a switchable plan. If not, Rio tries the same procedure with the
two other seed plans.
Example 9: Suppose BestPlanLow = Plan
P10a, BestPlanEst = Plan P10b (Figure 10),
and BestPlanHigh = Plan P11 (Figure 11) for
R S T with no interesting orders. The
subplan for the deep subtree of the outer join
is different between P10a and P11, so they
are not switchable. Thus, Rio enumerates
SW_Low, which contains Plan P10c. If CHigh
of Plan P10c is close to that of P11, then
{P10a, P10b, P10c} is a switchable plan. ■

If these techniques fail to find a switchable plan (Case (C.iv)),
then Rio picks BestPlanEst–the optimal plan for the single-point
estimates–and adds validity ranges, just like VRO.

5.4 Extensions to the Query Execution Engine
A switchable plan S defers the choice of which member plan to
use for a join until the uncertain input sizes can be estimated
accurately at run-time. S ensures that no (partial) work done by
the pipeline containing the join is lost whenever the actual input
sizes lie within the corresponding bounding box. Our
implementation of switchable plans uses the following operators
and communication framework:

• A switch operator that corresponds to the chosen switchable
plan. This operator decides which member plan to use based
on run-time estimates of input sizes, and instantiates the
appropriate join operator and base relation access path.

• A buffer operator that buffers tuples until it can compute an
input-size estimate needed by the switch operator.

• Randomization-aware operators that prefix their output with
a random sample of their complete output.

• An inter-operator communication mechanism based on
punctuations [25] that allows operators to send size estimates
and to demarcate random samples in their output stream.

5.4.1 Implementing Switchable Plans
For a switchable plan chosen by Rio during optimization, the
execution-plan generator creates a switch operator and a buffer
operator. Figure 12 shows these two operators generated for the
switchable plan in Figure 10. Note that the buffer operator is
placed above the common subplan for R S (marked in gray in
both figures). The switch operator is placed above the buffer
operator.
During query execution, the buffer operator buffers tuples from
the deep subplan until it gets an end-of-sample punctuation eos(f).
(Generation of such punctuations is described in Section 5.4.2.)
Punctuation eos(f) signals that the set of tuples buffered so far is

an f % random sample of the output of the deep subplan. Based on
the number of buffered tuples n, 100n/f is a fairly accurate
estimate of the final output cardinality of R S. The switch
operator uses this cardinality estimate to compute the total input
size of R S, and instantiates the appropriate member plan.

Figure 12–Implementation of switchable plan from Figure 10

Rio currently uses only the size of the deep subtree input RD to
the join to choose the best member plan. In terms of Figure 8, this
limitation means that for a switchable plan P={Plo, Pest, Phi},
where Plo, Pest, and Phi were chosen for (loD, loB), (estD, estB), and
(hiD, hiB) respectively (recall Section 5.3.2), Rio has to choose
among Plo, Pest, and Phi based solely on the estimate of |RD|. Plo is
picked if []2)est(lo,lo |R| DDDD +∈ , Pest is picked if

[]2)hi(est,2)est(lo |R| DDDDD ++∈ , and Phi is picked if
[]DDDD hi,2)hi(est |R| +∈ . If |RD| < loD or |RD| > hiD, then the

switch operator triggers re-optimization after adding the collected
estimate of |RD| to the catalog.

5.4.2 Random-Sample Processing During Execution
To generate eos(f) punctuations required by buffer operators, we
altered the regular processing of some of Predator’s operators so
that, with minimal overhead, they can prefix their output with a
random sample of their entire output. Each such operator O first
outputs an f % random sample of its entire output. (f is a user-
defined parameter.) Next, O generates an end-of-sample
punctuation eos(f) to signal the end of the sample. Finally, O
sends its remaining output tuples. As shown in Figure 13, tuples
output as part of the random sample are not generated again.

Figure 13 - Random samples in the operator output

Reordering the output of an operator O is not an option if any of
the operators above O in the plan depend on the order of O's
output. Thus, random sample generation seems inapplicable to
operators such as sorts and ordered scans from B-trees. However,
there are ways around this problem. For example, the buffer
operator above O can regenerate the order using a merge of the
initial sample with the later output. Furthermore, blocking
operators2 like sorts provide simpler ways of estimating input
sizes without requiring random samples or buffering. We plan to
address these issues in detail in future work.

2 A blocking operator reads all of its input before producing any output.

a b c d e

h a e

Normal output order without randomization

Output order with randomization

f g h i j

b c d f g i j

Followed by the
rest of the output

A random sample
of the output

Emits punctuation eos(30%)

HashJoin4

HashJoin5

Plan P11

Scan R

Scan T Scan S

Figure 11

HashJoin1

Switchable
(sub) plan

T

Scan R Scan S

IndexNL, Index Seek on T (P10a)
Buffer

Op

Switch Op
? HashJoin2, Scan T (P10b)

HashJoin3, Scan T (P10c)

Next we describe how eos(f) punctuations are generated by table
scans and certain join operators. Note that our techniques never
transform a non-blocking operator into a blocking operator.

5.4.2.1 Randomization in Table-Scan Operators
We developed two techniques to enable a scan operator over a
table T to first return a random sample of tuples from T:
(i) If tuples in T are laid out in random order on disk, a sequential

scan will produce the tuples in the desired order. Whether T
has a random layout pattern or not can be a physical property
of the table, enforced when the table is created and updated.
Additionally, such a layout pattern can be detected using the
Kiefer-Kolmogorov-Smirnov test when runstats is invoked to
collect statistics on T; see [5]. This additional statistic can be
maintained in the catalog.

(ii) An f % random sample of T, denoted T_sample, can be
maintained explicitly as a separate table, e.g., using the
techniques from [10]. Each tuple in T contains an extra bit to
denote whether the tuple is also present in T_sample or not.
At run-time the table scan first returns tuples from T_sample,
followed by an eos(f). Then it scans T, returning all tuples not
contained in T_sample. Note that having tuples duplicated in
T_sample and T allows indexes over T to be built and used
without any changes. The storage overhead is minimal.

5.4.2.2 Randomization in Join Operators
Adding randomization to the nested-loops join operators–tuple,
block, and index–was straightforward. These operators simply
pass on the eos(f) punctuations from their outer input, and ignore
eos(f) from their inner input. A join sample produced in this
fashion is a true random sample of the join if the outer table’s join
column is a foreign key referencing the inner table [1].
To producing a random sample first from a hybrid hash join, we
made the following modifications to the standard algorithm:
(i) First, tuples from the probe input are read into memory until

an eos(f) punctuation is received. These tuples represent an
f % sample of the complete probe input. The join operator
inserts these tuples into an in-memory hash table.

(ii) Next, the build input is read and partitioned completely. In
addition, as these tuples are being processed, they are
immediately joined with the in-memory sample of the probe
input. Joining tuples are sent in the join output. At the end of
this phase, an eos(f) punctuation (using the value of f
received from the probe) is generated, and the in-memory
sample is discarded. The tuples output so far correspond to
taking an f % sample from the probe and joining it with the
complete build. This sample is guaranteed to be a true join
random sample if the probe input’s join column is a foreign
key referencing the build input [1].

(iii) The scan of the probe input, which was paused after the
eos(f) in Step (i), is resumed. The tuples are partitioned and
joined with the memory-resident build partitions.

(iv) The on-disk partitions are joined to complete the join.

6. EXPERIMENTS
In this section we describe an extensive experimental evaluation
of the Rio prototype. We compare Rio with the traditional
optimizer (termed TRAD in Section 5.1) and with the Validity-

Ranges re-optimizer (termed VRO in Section 5.1) under a variety
of conditions. In our experiments we used a synthetic data
generator provided by IBM. The generated dataset has four tables
whose properties are shown in Table 1.

Table 1 – Summary of dataset used in the experiments
Table Size, # of Tuples Sample Correlated Attrs

Accidents (A) 420 MB, 4.2 M accident_with & damage,
seat_belt_on & driver_status

Cars (C) 120 MB, 1.7 M make & model & color
Owner (O) 228 MB, 1.5 M city & state & country
Demographics (D) 60 MB, 1.5 M age & salary & assets

All experiments were done on a 1.7 GHz Pentium machine with 2
MB L2 cache, 512 MB memory, and a single 5400 rpm disk. The
buffer cache size is 128 MB. Each hybrid hash join operator is
allocated a fixed amount of memory which we vary in some of the
experiments; the default value is 50 MB. Buffer operators in Rio
and VRO are allocated the same amount of memory as a hybrid
hash join. The buffers spill to disk when they fill up. B-tree
indexes were available on all primary-key attributes. Equi-height
and end-biased histograms were available on all integer attributes.
The bounding box computation in Rio happens as described in
Figure 7 with ∆+=0.6 and ∆–=0.1. The cost threshold for
robustness tests is 20% (Section 5.3.2). The random-sample
percentage for size estimation is 1% (Section 5.4.2).

6.1 Two-way Join Queries
Our first experiment studies the performance of TRAD, VRO, and
Rio with respect to the error in estimates. We use a query joining
Accidents (A) with Cars (C) on the car_id attribute. (All joins we
consider are foreign key to primary key joins.) There is a selection
predicate on A, denoted σ(A), of the form A.accident_year >
[year], where [year] is a parameter whose value is varied in this
experiment. We removed the equi-height histogram on attribute
A.accident_year from the catalog to force the optimizer to use the
default selectivity estimate of 0.1. Thus, the optimizer always
estimates |σ(A)|=42MB. By varying the value of [year], we vary
the error between the estimate of |σ(A)| and its actual size.

6.1.1 Using Robust Plans
The memory limit for a hybrid hash join was set to 150MB in this
experiment. When |σ(A)| is less than the size of C (120MB), the
optimal plan is a hybrid hash join with σ(A) as the build, denoted
Plan PAC. When |σ(A)| > 120MB, the optimal plan is a hybrid hash
join with C as the build, denoted Plan PCA. (120MB corresponds
to around 1.8 in Figure 14.) Although B-tree indexes are available
on the join attributes, index-nested-loop joins never outperform
hybrid hash joins in our setting.
Figure 14 shows query completion times, including both
optimization and execution times, for TRAD, VRO, and Rio as
we vary the error in the estimate of |σ(A)|. The error plotted on the
x-axis is computed as |σ(A)|Actual / |σ(A)|Estimate - 1. A positive error
indicates an underestimate and a negative indicates an
overestimate. Figure 14 also shows the performance of the
optimal plan which we determined manually in each case.
Since the optimizer's estimate of |σ(A)| is 42MB, TRAD always
picks Plan PAC which is optimal at |σ(A)|=42MB. As |σ(A)| is
increased (and the estimation error increases), the cost of Plan PAC
increases linearly at a small rate until |σ(A)|=150MB.

(|σ(A)|=150MB corresponds to an error around 2.5 in Figure 14.)
When |σ(A)|>150MB, the hybrid hash join in Plan PAC starts
spilling to disk. Because of this extra IO, the cost of Plan PAC
increases at a steep rate when |σ(A)|>150MB, as shown by the plot
for TRAD in Figure 14.
VRO always starts with the same plan as TRAD, i.e., Plan PAC.
However, VRO adds a validity range to the join and verifies this
range before starting the join execution. The upper bound of the
validity range for the hybrid hash join in Plan PAC is 120MB: if
|σ(A)|>120MB, then Plan PCA performs better. Therefore, as long
as |σ(A)|≤120MB, the validity range is not violated and the
performance of VRO matches the performance of the optimal plot
in Figure 14. When |σ(A)|>120MB, the validity range is violated
and VRO is forced to re-optimize. Plan PCA is picked on re-
optimization. VRO cannot reuse the work done by the pipeline in
execution in Plan PAC when re-optimization was invoked, namely
the scan of A and evaluation of σ(A) up to that point. This loss of
work results in the region in Figure 14 where VRO performs
worse than TRAD. However, as the error increases, the re-
optimization pays off quickly because when |σ(A)|>150MB, the
join in Plan PAC spills to disk while PCA scans A and C only once.

Figure 14 – σ(A) C, 150MB per hash join

Rio first computes bounding boxes for |σ(A)| and |C|. Since there
are no selection predicates on C, the estimate of |C| available from
the catalog is accurate. To illustrate robust plans, in this
experiment alone we set ∆+ and ∆– in Figure 7 to very high values
so that the bounding box on |σ(A)| is [0MB, 420MB]. Rio
identifies that Plan PCA is a robust plan within this bounding box.
(Rio identifies Plan PCA to be a robust plan even if the bounding
box is smaller.) Because the bounding box [0MB, 420MB] covers
the entire range considered in the experiment, Rio runs Plan PCA
at all points in Figure 14. Although Plan PCA is not optimal at all
points in the bounding box, note that Rio’s performance is close
to the optimal plot at all points in Figure 14, showing the
robustness of Plan PCA. Since |C| is less than the memory available
to the hash join, PCA always finishes in one scan of A and C.

For our default settings of ∆+ and ∆–, the bounding box on |σ(A)|
is [16.8MB, 193.2MB]. In this case Rio used a combination of
solutions (re-optimization, switchable plans, and robust plans) to
provide near-optimal performance. This graph is omitted because
Section 6.1.2 shows Rio’s performance in a similar situation.

6.1.2 Using Switchable Plans
Our next experiment, reported in Figure 15, considers the same
query as in the previous section, but now hash joins are allocated
only 50MB of memory for in-memory hash partitions. In this
experiment, the behavior of Optimal, TRAD, and VRO regarding
the choices of plans and re-optimization points are the same as in
the previous section. However, Rio behaves differently. Rio
computes the bounding box on |σ(A)| to be [16.8MB, 193.2MB].
The large width of the box corresponds to the high uncertainty in
|σ(A)| since this estimate used a default value of selectivity. The
bounding box on |C| has zero width since an accurate estimate of
|C| is available from the catalog. Rio finds that Plan PAC is optimal
at (|σ(A)|,|C|)=(16.8MB, 120MB), which is the lower corner of the
bounding box, and also at the estimated point (|σ(A)|,|C|) =
(42MB, 120MB). However, for (|σ(A)|,|C|) = (193.2MB, 120MB),
which is the upper corner of the bounding box, Plan PCA is
optimal. Furthermore, neither PAC nor PCA is robust in this case.
However, Rio identifies that plans PAC and PCA are switchable
plans (see Section 0). Therefore, for this query, Rio starts with a
plan containing a switch operator with the two hybrid hash joins
corresponding to PAC and PCA as member plans. Rio estimates
|σ(A)| during execution. Based on this estimate, Rio chooses one
of the two joins or it re-optimizes.
The accident_year attribute in A is not correlated with the layout
of A on disk, so a sequential scan of A produces tuples in random
order to estimate the selectivity of σ(A) (recall Section 5.4.2). Rio
gets a very accurate estimate of |σ(A)| from the default setting of
1% sampling. For example, when |σ(A)|=6MB in Figure 15, which
corresponds to an error of -0.85 and lies outside the bounding
box, Rio invokes re-optimization. Since the optimizer now has
accurate estimates of |σ(A)| and |C|, it correctly picks Plan PAC
which is optimal at this point. Note that Rio’s performance is very
close to that of the optimal plan for |σ(A)| = 6MB, which shows
that the overhead incurred by Rio to sample 1% of A, obtain a
run-time estimate of |σ(A)|, and to re-optimize the query is very
small.

Figure 15 – σ(A) C, 50MB per hash join

When |σ(A)| lies within the bounding box computed by Rio, re-
optimization is avoided. In this case, the switch operator picks
Plan PAC or Plan PCA appropriately, avoiding loss of work. For
example, the switch operator picks Plan PAC when |σ(A)|=32MB,
which corresponds to an error of -0.26 in Figure 15. Plan PCA is
picked when |σ(A)|=160MB, which corresponds to an error of
2.84 in Figure 15. When |σ(A)|>193.2, which lies outside the

0

50

100

150

200

250

300

-2 0 2 4 6 8 10

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

TRAD
VRO
Rio
Optimal

1
|)A(
|)A(

Estimated

Actual −
σ
σ=

|
|estimate inError

Underestimate Overestimate

0

50

100

150

200

250

300

350

400

-2 0 2 4 6 8 10

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

TRAD
VRO
Rio
Optimal

1
|)A(
|)A(

Estimated

Actual −
σ
σ=

|
| estimate inError

Underestimate Overestimate

bounding box, Rio w
|σ(A)| estimated via
gets picked. Therefo
of the optimal plan fo

6.2 Three-way
We now repeat the
joining A, C, and
A.accident_year (σ1
height histogram on
default estimate, and
6.1. The results are s
is estimated accuratel
The optimal plan for
P17a shown in Figu
Figure 17 becomes o
the single-point esti
picks Plan P17a. Th
performs as well as t
more and more from
Rio starts with the P
two switch operator
operators are not sho
the first switch oper
build and C as probe
σ1(A) as probe. The
plans based on a run-
sample of A. The two
are (i) hybrid hash j
probe, and (ii) hybrid
C as probe. The cho
based on an estimate

 C obtained by sam
bounding box on |σ1
bounding boxes on
since these estima
|σ1(A)|=6MB (Point
corresponds to an e
box, Rio invokes r
P17a. Similarly, whe
in Table 2), which c
the bounding box,
relation input as the
Thereby, when |σ1(A
the loss of pipeline
around 72 seconds be
The performance of R
in Figure 16 except f
In this region, Rio
suboptimal compare
region where Plan P
P17b. Because of an
σ2(O), Rio continue

Point |σ1(A)|
A 6 MB
B 80 MB
C 160 MB
D 310 MB
Table 2 – Plans used by different optimizers at sample points A, B, C, and D in Figure 16
TRAD VRO Rio Optimal
P17a Inside validity range, runs Plan P17a Outside bounding box, re-optimize, picks Plan P17a P17a
P17a Inside validity range, runs Plan P17a Inside bounding box, switch operator picks P17a P17a
P17a Outside validity range, re-optimize, picks P17d Inside bounding box, switch operator picks P17d P17b
P17a Outside validity range: re-optimize, picks P17d Outside bounding box, re-optimize, picks Plan P17b P17b
ill re-optimize with a fairly accurate value of
sampling. In this case, the optimal Plan PCA
re, Rio’s performance is always close to that
r this query.

 Join Queries
 experiments in Section 6.1 with a query
 O. There are selection predicates on

) and O.cars (σ2). We removed the equi-
A.accident_year so that the optimizer uses a
 we vary the estimation error as in Section
hown in Figure 16. The cardinality of σ2(O)
y from an equi-height histogram.
 this query for low values of |σ1(A)| is Plan
re 17. For higher values of A, Plan P17b in
ptimal. Plan P17a is also the optimal plan for
mates of input sizes, hence TRAD always
erefore, in the left part of Figure 16, TRAD
he optimal plan, but its performance deviates
the optimal as the error increases.
lan P17c shown in Figure 17. This plan has
s corresponding to the two joins. (Buffer
wn in Figure 17.) The two member plans in
ator are (i) hybrid hash join with σ1(A) as
, and (ii) hybrid hash join with C as build and
 switch operator will choose between these
time estimate of |σ1(A)| computed from a 1%
 member plans in the second switch operator
oin with σ1(A) C as build and σ2(O) as
 hash join with σ2(O) as build and σ1(A)
ice between these two plans will be made

 of |σ1(A) C| from a 1% sample of σ1(A)
pling the join (recall Section 5.4.2.2). The

(A)| is the same as that in Section 6.1. The
|C| and |σ2(O)| effectively have zero width
tes are known to be accurate. When
 A in Figure 16 and in Table 2), which
rror of -0.85 and lies outside the bounding
e-optimization and picks the optimal Plan
n |σ1(A)|=160MB (Point C in Figure 16 and
orresponds to an error of 2.84 and is within
both switch operators will pick the base
build, and execute Plan P17d in Figure 17.
)|=160MB, Rio avoids re-optimization and

d work which results in the difference of
tween Rio and VRO in this case.
io is always close to that of the optimal plan

or an intermediate range of estimation errors.
 picks Plan P17d which turns out to be
d to Plan P17b. This region is a transition
17d stops being optimal with respect to Plan
 overestimate of the join selectivity of C
s to pick Plan P17d as the optimal plan

beyond the actual transition point. However, as the error in |σ1(A)|
increases, Rio converges to the optimal plan again around an error
of 4 in Figure 16.

Figure 16 – σ1(A) C σ2(O), 50MB per hash join

Figure 17 – Plans for A C O used in experiments

VRO starts with the same Plan P17a as TRAD, but with validity
ranges added. When |σ1(A)|≤120MB, none of the validity ranges
are violated. (|σ1(A)|=120MB corresponds to around 1.8 in Figure
16.) When |σ1(A)|>120MB, the validity range on σ1(A) C is
violated and VRO is forced to re-optimize. Note that at this point,
VRO does not have an estimate of the actual size of |σ1(A)|.
Based on the amount of A it has seen so far, VRO always picks
Plan P17d on re-optimization and adds validity ranges. In
addition to the overhead of re-optimization and the loss of
pipelined work, the choice of Plan P17d illustrates one of the big
problems with VRO. VRO gets stuck in a suboptimal plan as the
validity ranges in Plan P17d will never fail because of an
underestimate of |σ1(A)|: there is no better plan to join C and
σ1(A) for large |σ1(A)| than the hybrid hash join with σ1(A) as the
probe, even though there is a better plan for the entire query. A
similar situation arises for the second join since σ1(A) is part of
the probe input here as well. Hence, as illustrated by the results in

0

200

400

600

800

1000

1200

1400

-2 0 2 4 6 8 10

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

TRAD
VRO
Rio
Optimal

Point A

1
|)A(
|)A(

Estimated

Actual −
σ
σ=

|
| estimate inError

Underestimate Overestimate

Point C Point B Point D

Plan P17a

HHJ

σ2(O) HHJ

C σ1(A)

HHJ

σ1(A) HHJ

σ2(O) C

Switch

σ2(O) Switch

C σ1(A)

Plan P17b Plan P17c

Plan P17d

HHJ

σ2(O) HHJ

σ1(A) C

HHJ

O HHJ

σ1(A) σ2(C)

Plan P17e Plan P17f

HHJ

σ1(A) HHJ

C σ2(O)

Figure 16, VRO performs badly as the estimation error in |σ1(A)|
increases. This experiment illustrates one of the pitfalls of reactive
re-optimization where the execution plan is decided before the
issues affecting re-optimization are considered.

6.3 Correlation-based Mistakes
So far the estimation errors we considered were due to selection
predicates on an attribute on which there was no histogram. A
more common case of estimation errors is the presence of
correlated attributes, which we consider in this section. We use a
three-way join query on A, C, and O with selection predicates
σ1(A) and σ2(O). Figure 18 shows the performance of three
queries Q1, Q2, and Q3 which have different sets of correlated
predicates on A, causing the optimizer to underestimate |σ1(A)| in
each case. (Correlations usually lead to underestimates [20].) For
example, Query Q2 contains predicates A.accident_with = "car",
A.driver_status = "injured", and A.seat_belt_on = "on". |C| and
|σ2(O)| are always estimated accurately. Figure 18 indicates that
the estimation errors caused by correlated attributes result in
performance trends for TRAD, VRO, and Rio similar to those
shown in Sections 6.1 and 6.2. The reasons for these trends are
also similar to those observed in Sections 6.1 and 6.2. The
optimal plan for each query is Plan P17e in Figure 17 which Rio
picks either because it is a robust plan (Q1) or because Rio
discovers the estimation error and the actual estimate quickly
because of randomization (Q2 and Q3).

0

50

100

150

200

250

Q1 Q2 Q3

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s) TRAD

VRO
Rio

Figure 18 – Errors due to correlated predicates

6.4 Thrashing
So far we considered queries where the size of a single input is
estimated incorrectly. In this section we consider the performance
of VRO and Rio when the size of more than one input is
estimated incorrectly. We use a three-way join query on A, C, and
O with selection predicates σ1(A) and σ2(C). |σ1(A)| is
underestimated significantly because σ is on an attribute with no
histograms, while |σ2(C)| is underestimated slightly because the
histogram on the corresponding attribute was built from a small
sample of C. For this query, VRO thrashes and takes 690.38
seconds compared to 327.57 seconds for Rio. VRO starts with the
optimal plan for the estimated statistics which is similar to Plan
P17a in Figure 16. Because |σ2(C)| is underestimated, VRO
computes an incorrect validity range for |σ1(A)|. This validity
range is violated at run-time, and re-optimization picks Plan P17f.
Since VRO does not have correct estimates of |σ1(A)| or |σ2(C)| at
this point, it computes incorrect validity ranges which fail again.
This thrashing results in the factor two slowdown of VRO
compared to Rio. Rio invokes re-optimization once for this query
when its run-time estimate of |σ1(A)| falls outside the bounding

box. Because Rio estimates |σ1(A)| accurately at run-time using
sampling, and also uses bounding boxes to allow for error in the
estimate of |σ2(C)|, it finds the optimal plan in the first re-
optimization step.

6.5 Increasing Query Complexity
In this section we compare the relative performance of TRAD,
VRO, and Rio as we increase the number of joins in the query.
The results are shown in Figure 19.

0

100

200

300

400

500

600

700

4 5 6 7 8

Number of tables Joined

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

TRAD
VRO
VRO-R
Rio

Figure 19 – Increasing query complexity

The dataset provided to us had four tables only (the actual dataset
has around 30 tables [20]). For this experiment, we vertically
partitioned each table into two and padded each partition with
string fields to make it the same size as the original table. Each
query had correlated predicates on half of the joined tables. Figure
19 shows the same trends observed in previous sections. The
fraction of time spent by Rio and VRO in optimization steps was
less than 1.7% in all cases in Figure 19. Roughly, the cost of each
optimization phase in Rio is three times the cost of the single
optimization phase in TRAD.
Figure 19 also shows the relative performance of VRO-R, which
is the validity-ranges optimizer enhanced with our random-sample
processing techniques from Section 5.4.2. While randomization
improved the overall performance of VRO by reducing the time
required to trigger re-optimization, the amount of wasted work,
and the number of re-optimization steps, Rio still outperforms
VRO-R by a significant amount.

7. FUTURE WORK
This paper proposes proactive re-optimization as a promising
approach to deal with optimizer mistakes. We identified the core
building blocks of proactive re-optimization: i) characterizing
uncertainty in estimates of statistics using bounding boxes, ii)
using the bounding boxes to pick robust plans and switchable
plans, and iii) estimating statistics quickly and efficiently during
execution. As a next step, we plan to evaluate our specific
algorithms and implementation decisions against some alternative
options:
• Uncertainty and Bounding Boxes. We used the uncertainty

initialization and propagation rules from [18] to characterize
the level of uncertainty in estimates and derive bounding
boxes. An interesting alternative is to characterize uncertainty
in terms of stochastic intervals [3].

• Plan robustness. Currently we characterize a plan as robust if
its cost is close to optimal at three points in the bounding box.

Both the location and the number of these points in the
bounding box require further study. Furthermore, alternative
notions of plan robustness, e.g., based on expected costs [9] or
confidence thresholds [3], will be considered.

• Switchable plans. We considered a fairly restricted notion of
switchable plans based on the complete reuse of execution
work. More flexible definitions, e.g., allowing re-ordering of
operators in a pipeline, may give the optimizer more room to
find switchable plans.

• Random-sample processing. Our approach so far is to merge
random-sample processing with query execution to reduce the
overhead. Random-sample processing could be used more
aggressively to reduce the uncertainty in statistics even before
starting query execution, introducing a new challenge in
determining how much statistics collection to do in advance. A
more general area of future work is to explore how
randomization and ordered output can coexist best in Rio, e.g.,
in the context of Top-K queries.

8. ACKNOWLEDGEMENTS
We are extremely grateful to Jennifer Widom for helpful feedback
and discussions. We would like to thank Guy Lohman and Volker
Markl for providing us the DMV data and workload generator.

REFERENCES
[1] S. Acharya et al. Join Synopses for Approximate Query

Answering. In Proc. of the 1999 ACM SIGMOD Intl. Conf.
on Management of Data, June 1999.

[2] R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, May 2000.

[3] B. Babcock and S. Chaudhuri. Towards a Robust Query
Optimizer: A Principled and Practical Approach. In Proc. of
the 2005 ACM SIGMOD Intl. Conf. on Management of Data,
June 2005.

[4] S. Babu and P. Bizarro. Adaptive Query Processing in the
Looking Glass. In Proc. of Second Biennial Conf. on
Innovative Data Systems Research (CIDR), Jan. 2005.

[5] H. Brönnimann et al. Efficient data reduction with EASE. In
Proc. of the Ninth ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, Aug. 2003.

[6] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random
Sampling over Joins. In Proc. of the 1999 ACM SIGMOD
Intl. Conf. on Management of Data, June 1999.

[7] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating
Progress of Long Running SQL Queries. In Proc. of the
2004 ACM SIGMOD Intl. Conf. on Management of Data,
June 2004.

[8] S. Christodoulakis. Implications of Certain Assumptions in
Database Performance Evaluation. ACM Trans. on Database
Systems, 9(2): 163-186, 1984.

[9] F. Chu, J. Halpern, and P. Seshadri. Least Expected Cost
Query Optimization: An Exercise in Utility. In Proc. of the
1999 ACM Symp. on the Principles of Database Systems,
May 1999.

[10] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. ACM Trans. on
Database Systems, 27(3): 261-298, 2002.

[11] G. Graefe and K. Ward. Dynamic Query Evaluation Plans. In
Proc. of the 1989 ACM SIGMOD Intl. Conf. on Management
of Data, May 1989.

[12] J. Hellerstein, R. Avnur, and V. Raman. Informix Under
CONTROL: Online Query Processing. Data Mining and
Knowledge Discovery Journal, 4(4), Oct. 2000.

[13] A. Hulgeri and S. Sudarshan. AniPQO: Almost Non-
intrusive Parametric Query Optimization for Nonlinear Cost
Functions. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, Jun. 2003.

[14] Y. Ioannidis and S. Christodoulakis. On the Propagation of
Errors in the Size of Join Results. In Proc. of the 1991 ACM
SIGMOD Intl. Conf. on Management of Data, May 1991.

[15] Y. Ioannidis et al. Parametric Query Optimization. In Proc.
of the 1992 Intl. Conf. on Very Large Data Bases, Aug.
1992.

[16] Z. Ives et al. An Adaptive Query Execution System for Data
Integration. In Proc. of the 1999 ACM SIGMOD Intl. Conf.
on Management of Data, June 1999.

[17] Z. Ives, A. Halevy, and D. Weld. Adapting to Source
Properties in Processing Data Integration Queries. In Proc.
of the 2004 ACM SIGMOD Intl. Conf. on Management of
Data, June 2004.

[18] N. Kabra and D. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management
of Data, June 1998.

[19] M. Kitsuregawa, M. Nakayama, and M. Takagi. The Effect
of Bucket Size Tuning in the Dynamic Hybrid GRACE Hash
Join Method. In Proc. of the 1989 Intl. Conf. on Very Large
Data Bases, Aug. 1989.

[20] V. Markl et al. Robust Query Processing through Progressive
Optimization. In Proc. of the 2004 ACM SIGMOD Intl.
Conf. on Management of Data, June 2004.

[21] H. Paques, L. Liu, and C. Pu. Distributed Query Adaptation
and Its Trade-offs. In Proc. of 2003 ACM Symp. on Applied
Computing, March 2003.

[22] V. Poosala et al. Improved Histograms for Selectivity
Estimation of Range Predicates. In Proc. of the 1996 ACM
SIGMOD Intl. Conf. on Management of Data, June 1996.

[23] P. Selinger et al. Access Path Selection in a Relational
Database Management System. In Proc. of the 1979 ACM
SIGMOD Intl. Conf. on Management of Data, May 1979.

[24] P. Seshadri. Predator: A Resource for Database Research.
SIGMOD Record, 27(1): 16-20, 1998.

[25] P. Tucker et al. Exploiting Punctuation Semantics in
Continuous Data Streams. Transactions on Knowledge and
Data Engineering, 15(3): 555-568, 2003.

[26] T. Urhan, M. Franklin, and L. Amsaleg. Cost Based Query
Scrambling for Initial Delays. In Proc. of the 1998 ACM
SIGMOD Intl. Conf. on Management of Data, June 1998.

[27] S. Viglas. Novel Query Optimization and Evaluation
Techniques, Ph.D. Thesis, Department of Computer
Sciences, University of Wisconsin-Madison, Jun 2003.

	INTRODUCTION
	RELATED WORK
	PROBLEMS WITH REACTIVE RE-OPTIMIZATION
	Limitations of Single-point Estimates
	Limited Information for Re-Optimization
	Losing Partial Work in a Pipeline

	PROACTIVE RE-OPTIMIZATION
	Representing Uncertainty in Statistics
	Using Bounding Boxes During Optimization
	Accurate Run-Time Statistics Collection

	PROACTIVE RE-OPTIMIZATION WITH RIO
	Building Rio
	Computing Bounding Boxes
	Optimizing with Bounding Boxes
	Generating the Seed Plans
	Generating the Switchable Plan

	Extensions to the Query Execution Engine
	Implementing Switchable Plans
	Random-Sample Processing During Execution
	Randomization in Table-Scan Operators
	Randomization in Join Operators

	EXPERIMENTS
	Two-way Join Queries
	Using Robust Plans
	Using Switchable Plans

	Three-way Join Queries
	Correlation-based Mistakes
	Thrashing
	Increasing Query Complexity

	FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

