
Computing BIG data cubes with hybrid memory

1 Rodrigo Rocha Silva, 2Celso Massaki Hirata, 3Joubert de Castro Lima
1,2 Electronic Engineering and Computer Science Division, Department of Computer Science,

Aeronautics Institute of Technology, São José dos Campos, BR, 1rrochas@gmail.com,
2hiratacm@gmail.com

3Department of Computer Science, Federal University of Ouro Preto, Ouro Preto, BR,

joubertlima@gmail.com

Abstract
Nowadays, analysis data volumes are reaching critical sizes challenging traditional data

warehousing approaches. Cubing methods based on inverted indices, such as Frag-Cubing,

are efficient alternatives to conventional approaches of computing OLAP data cubes over Big

Data. However, similar to other memory-based cube solutions, the efficiency of such methods

is constrained by available dynamic random-access memory (DRAM). In this paper, we

implement and test the hybrid inverted cubing (HIC) method, which adopts a hybrid memory

system, with main goal of able to compute and update BIG data cubes (with high

dimensionality and high number of tuples). HIC stores the most frequent attribute values in

DRAM; the remaining attribute values are retained in external memory. Tests using a

relation with 480 dimensions and 107 tuples show that HIC is three times slower than Frag-

Cubing when computing a data cube, and approximately 13 times faster than Frag-Cubing

when answering complex cube queries. A BIG data cube with 60 dimensions and 109 tuples

was computed by HIC using 110 GB of RAM and 286 GB of external memory, while Frag-

Cubing could not compute such a cube in same machine.

Keywords: Online analytical processing (OLAP), data cube, big data

1. Introduction

With the advent of the Big Data research context, it is natural to think of the problem of
computing OLAP data cubes over Big Data as one of the top-interesting challenges in the
research community, with also powerful technological achievements to be reached within the
scope of real-life large-scale data-intensive applications and systems.

Current implemented solutions are mainly based on relational databases (using R-OLAP
approaches) that are no longer adapted to these data volumes [15, 21, 22]. Unfortunately, these
solutions are not capable to deal with computing OLAP data cubes over Big Data, mainly due to
two intrinsic factors of Big Data repositories:

(i) size, which becomes really explosive in such data sets;
(ii) complexity (of multidimensional data models), which can be very high in such data sets

(e.g., cardinality mappings, irregular hierarchies, dimensional attributes etc.).

Therefore, there emerge the forceful needs of designing novel mode ls, techniques, algorithms
and computational platforms for supporting the problem of computing OLAP data cubes over
Big Data, which, indeed, literally represents an effective call to arms for next -generation Data
Warehousing and OLAP research.

The data cube relational operator [4] pre-computes and stores multidimensional aggregations,
thereby enabling users to perform multidimensional analysis on the fly. A data cube has

exponential storage and runtime complexity in terms of the number of dimensions. Moreover, it
is a generalization of the group-by relational operator over all possible combinations of
dimensions with various granularity aggregates [5]. Each group-by, called a cuboid or view,
corresponds to a set of cells described as tuples over cuboid dimensions.

mailto:rrochas@gmail.com
mailto:hiratacm@gmail.com
mailto:joubertlima@gmail.com

A data cube has base cells and aggregate cells. Suppose input relation R with three
dimensions (A, B, and C) and a unique tuple, t1 = (a1, b1 , c1, m), where a1, b1, and c1 are attribute
values and m is a numerical value representing a measurement value of t1. Given R, a full data
cube has eight tuples representing all possible R aggregations: t1, t2 = (a1 , b1, ∗, m), t3 = (a1 , ∗, c1,

m), t4 = (∗, b1, c1, m), t5 = (a1, ∗, ∗, m), t6 = (∗, b1 , ∗, m), t7 = (∗, ∗, c1 , m), and t8 = (∗, ∗, ∗, m),

where the asterisk “*” denotes a wildcard representing all values of a cube dimension.
Generally speaking, a cube computed from R with cardinalities Ca = Cb = Cc = 1 can have 23 or
(Ca + 1) x (Cb + 1) x (Cc + 1) tuples. In this example, t1 is a base cell and t2 , t3 , t4 , t5, t6, t7, and t8

are aggregate cells.
If we consider relation ABCD instead of relation ABC, and Ca = Cb = Cc = Cd = 2, there can be

16 ABCD base cells and 81 aggregate cells in a full data cube. However, most cubing
approaches are not designed for high-dimensional data cubes.

Frag-Cubing [7] is the first efficient high-dimensional data cubing solution. Frag-Cubing
implements an inverted index of tuples; i.e., each attribute value of a tuple is associated with 1 -
n tuple identifiers. Point queries with two or more attribute values are answered by intersecting
tuple identifiers of these attribute values. Unfortunately, Frag-Cubing only implements equal
and sub-cube query operators. A sub-cube query operator selects several aggregations of a data
cube; accordingly, its complexity is also exponential. Frag-Cubing is an internal memory-based
approach. Therefore, high-dimensional cubes with hundreds of millions or even billions of

tuples may not be efficiently computed.
This renders Frag-Cubing impracticable in many important areas, such as social media,

bioinformatics, and geosciences, in which data exists in high-dimensional BIG databases with
online updates. Formally, suppose a database has T tuples, C cardinalities, and D dimensions. In
the algorithm Frag-Cubing each tuple ID is associated with D attributes and thus will appear D
times in the inverted index. Since there are T tuple IDs in total, the entire inverted index will

still need D × T integers [11]. For example, for a cube with 60-dimensional base cuboids of T
tuples, the amount of space to store the fragment of size 3 is on the order of T (60/3)(23 − 1) =
140T . Suppose there are 106 tuples in the database and each tuple ID takes 4 bytes. The space
needed to store the fragments of size 3 is roughly estimated as 140 × 10 6 × 4 = 560MB. In this
expression, 140 indicates the number of the cuboids, and the 10 6 × 4 is the byte number of the
index of each cuboid occupied. In this context emerges the motivation to propose an approach
that takes a hybrid memory system.

H-Frag [12] implements a hybrid memory system to store cube partitions in external
memory. Frequent attributes are stored in RAM and low frequency attributes are stored in
external memory. H-Frag introduces a second partition level, where a frequent attribute value
can be associated to several sub-lists of tuple identifiers. These sub-lists are stored in external
memory according to an end user threshold, i.e., the end user defines how many tuples per cube
portion. Attribute values above 50% of a portion size are stored in complementary sub-lists in
external memory. In extreme scenarios, where skew is uniform and cardinality is high, H-Frag

can use all work memory, so it flushes all cube portions to the external memory and continues
indexing. H-Frag proves to be faster than Frag-Cubing in answer queries with multiple
summarized results.

In this paper, a new approach named hybrid inverted cubing (HIC), able to compute and
update BIG data cubes (with high dimensionality and high number of tuples) is implemented
and tested. HIC outperforms Frag-Cubing and H-Frag on both memory consumption and query

response time. HIC eliminates H-Frag end user thresholds, i.e., it introduces a new property,
named critical cumulative frequency, to define which attribute values will be stored in RAM or
in external memory. HIC calculates the cube size and collects the work memory to define a
cube portion. Attribute values with a critical cumulative frequency above a baseline defined by
HIC are stored in external memory. In extreme scenarios, where skew is uniform and cardinality
is high HIC can use all work memory, so it flushes all attribute values above the critical
cumulative frequency to the external memory and continues indexing.

No swaps are required during HIC cube computation and updates because the method adopts
a complementary external storage solution. As mentioned above, attribute values are associated
with tuple identifiers. Frequent attribute values have large tuple identifier (TID) lists because
they occur in almost all tuples. HIC partitions the TID list, associated with each attribute value,

into several sub-lists as the indexing phase traverses a base relation. This strategy is useful for
avoiding swaps; moreover, it improves HIC query response times because it is not necessary to
swap in the entire TID list of a single attribute value. Complementary stor age is likewise useful
for storing tuple identifiers in DRAM because, unlike Frag-Cubing, HIC does not require a

significant number of continuous addresses for attribute values.
The above phenomenon was observed during an experiment we conducted using a BIG data

cube with 60 dimensions, cardinality of 104
,
 and 109 tuples. HIC computed it in 28 hours, using

110 GB of RAM and 286 GB of external storage. Frag-Cubing could not compute the cube
because of lack of contiguous memory space. In addition, we tested HIC using other base
relations and compared it with Frag-Cubing. In general, the results demonstrated that HIC is

three times slower in computing a data cube than Frag-Cubing; however, it is approximately 13
times faster than Frag-Cubing in answering complex cube queries.

The remainder of this paper is organized as follows. In the following section, we discuss
related work in terms of Frag-Cubing and some promising high-dimensional approaches. We
describe the benefits and limitations of these approaches. In the next section, the “HIC
Approach,” we detail HIC in terms of architecture and algorithms. In “Experiments,” we
describe our HIC experiments and results. We summarize our work, present conclusions, and

suggest future HIC improvements in “Conclusions.”

2. Related Work

Several cubing methods exist; however, few implement a sequential high-dimensional cubing
solution. In Li et al. [7], Leng et al. [6], Wu et al. [19], Ferro et al. [3], and Silva et al. [11, 12],
the authors investigate inverted index and bitmap index solutions to reduce the curse of
dimensionality. In Li et al. [7], the authors illustrate the exponential storage impact of different

cubing approaches using only 12 dimensions. Moreover, clear curve saturation exists when
using full, iceberg, dwarf, multidimension cyclic graph (MCG), closed, or quot ient approaches
[1; 8; 10; 13; 20] for cubes with 20, 50, or 100 dimensions.

Frag-Cubing implements the inverted tuple concept. Each tuple iT has an attribute value, a
TID list, and a corresponding set of measures. For instance, we consider four tuples: t1 = (tid1,
a1, b2, c2 , m1), t2 = (tid2, a1, b3 , c3 , m2), t3 = (tid3, a1 , b4 , c4, m3), and t4 = (tid4 , a1, b4, c1 , m4).
These four tuples produce eight inverted tuples: iTa1, iTb2, iTb3 , iTb4 , iTc1 , iTc2 , iTc3, and iTc4.

For each attribute value, we build an occurrences list; i.e., for a1 we have iTa1 = (a1, tid1 , tid2,
tid3 , tid4 , m1, m2 , m3, m4), where the attribute value a1 is associated with tuple identifiers tid1,
tid2 , tid3, and tid4. Tuple identifier tid1 has measure value m1 , tid2 has measure value m2, tid3 has
measure value m3, and tid4 has measure value m4. Query q = (a1 , b4, COUNT) can be answered
by iTa1∩iTb4 = (a1b4, tid3 , tid4, COUNT (m3 , m4)). In q , iTa1∩iTb4 denotes the common tuple
identifiers in iTa1 and iTb4.

The intersection complexity is proportional to the number of occurrences of an attribute
value; more precisely, it is equal to the size of the smallest list. In our example, iTb4 with two
tuple identifiers is the smallest list; therefore, iTb4∩iTa1 is more efficient than iTa1∩iTb4 . The
number of tuple identifiers associated with each attribute value can be large; therefore, relations
with low cardinality dimensions and a high number of tuples require high processing capacity.
As TID lists become smaller, the Frag-Cubing query becomes faster; consequently, relations
with low skew and both high cardinalities and dimensions are more suitable to Frag-Cubing

computation.
Leng et al. [6] replace the inverted index with a bitmap index. Each attribute value at has a

set of bits B, indicating whether it is found at each tuple. A clear limitation exists in the number
of tuples as B becomes greater. The authors propose a compact index, thereby eliminating
sequences of zeros and ones from B; nevertheless, their approach is useful only for small
relations. The cardinality imposes a new hard problem because, for each new attribute value at′,
a new set of bits B′ must be created with a size equal to the number of tuples. Relations with

thousands of different attribute values per dimension and hundreds of millions of tuples cannot
be efficiently computed using a bitmap index, even if it is not a high-dimensional relation. For
Frag-Cubing, the authors reinforce these limitations of a bitmap index technique [7].

Wu et al. [19] introduced the word-aligned hybrid (WAH) bitmap compression scheme.
WAH is considered one of the most efficient compression strategies for bitmap indexes. It is a
hybrid solution based on run-length encoding and literal bitmaps [16; 17], wherein a sequence
of bits of the same type is represented by a bit value and quantity [14]. WAH response time for

a range query using a bitmap compression strategy is optimal; i.e., in the worst case, the
response time is proportional to the number of hits returned by the query.

Wu et al. [19] additionally proposed an order-preserving bin-based clustering structure
(OrBiC). This binning technique [19] involves grouping various keys in common bitmap
structures called “bins.” It therefore demands fewer bitmaps to code a certain attribute. For
example, consider a numeric dimension with attribute values ranging from 0 to 100. Instead of

100 bit values, it would create 10 maps (or bins) containing the bits for attribute values in the
intervals (0, 10], (10, 20], and so on. This arrangement enables the exclusion of many bins and
the saving of processing time. The drawback, however, is that false candidates can be
introduced, requiring further refinement of results.

Ferro et al. [3] proposed a very efficient method for cube computation using a bitmap index.
That approach is similar to Frag-Cubing; i.e., it horizontally partitions data according to the
attribute values of one dimension. In addition, it computes group-bys in a bottom-up manner for

each partition. The authors demonstrate the possibility of computing, querying, and indexing
distributive measures, such as sum, max, and min. However, it can only be applied to lo w-
cardinality relations because the internal memory used for both building and updating bitmaps
may be insufficient. To solve the high-cardinality limitation, the developers of BitCube [3]
propose an extension using the WAH compression technique. Unfortunately, the proposed
compression technique does not solve the cube update problem and does not enable accurate
distributive, algebraic, and holistic measures calculus, due to loss of precision required for

compression.
In qCube, Silva et al. [11] adopt the benefits of an inverted index to provide a solution to

range queries. Range queries implement operators like greater than, between, similar, distinct,
some, fewer than and many others. These query types are extensions of classical cube queries,
where only equal operators are used. Accordingly, qCube implements a high-dimensional range
cube approach with efficient computation runtimes and query response times. However, qCube
is also an internal memory based approach; therefore, some cubes cannot fit in memory

(DRAM) and require operating system swaps, which are often inefficient.

3. HIC Approach

Data input for cube computation in the HIC approach is d-dimensional relation R with n
tuples, where n ⊂ [1 , ∞] . Formally, R is a set of tuples, wherein each tuple t is defined as t =

(tid, D1 , D2, ..., Dz, M1 , M2 , ..., Mk). In t, the TID is a unique tuple identifier; therefore, in a
relation, there are no equal tuples, as proposed by Codd [2]. The number o f dimensions is
represented by z, D is a specific dimension defined as Di = (att1 + att2 + ... + attn), and att is the
attribute value of dimension Di. The number of measures is represented by k, M is a specific

measure defined as Mi = (mea1 + mea2 + ... + mean), and mea is the measure value of Mi. The
plus symbol “+” denotes the logical OR operator.

HIC architecture has three main components: computation, query, and measure calculus. The
computation component handles the base relation reading and producing the data cube. Table 1
outlines the relation R used to exemplify data cube computation with HIC. R is comprised of
attributes A, B, and C and measure M. Three phases for computing a data cube exist in HIBC.

They are outlined in the following paragraphs .

Table 1. Base Relation R

tid A B C M

1 a1 b1 c1 2.56

2 a2 b2 c2 3.14

3 a1 b3 c2 2.45

4 a3 b1 c2 6.7

5 a1 b1 c1 88.9

6 a1 b1 c2 1.5

7 a1 b2 c2 3.65

8 a2 b2 c2 14.9

9 a3 b3 c2 75.9

10 a3 b1 c2 76.9

11 a1 b1 c1 65.3

12 a1 b3 c1 44.5

First Phase: The objective of this phase is to determine which attribute values are retained in
external storage. The HIC approach uses the frequency of each attribute value to compute the

cumulative frequencies. The aim is to store in DRAM the most frequent attribute values whose
frequencies are higher than the critical cumulative frequency. The definition of critical
cumulative frequency depends on the memory available and the cube size allocated to memory.
Table 2 outlines the attribute value occurrences of R dimensions.

Table 2 lists R dimension frequencies in descending order. For dimension A, because a1 has
the highest frequency (7), attribute value a1 appears in the first entry of the table. Attribute

value a3, which has a frequency of 3, is next. Finally, a2, with a frequency of 2, is registered in
the table. Cumulative frequencies are shown in the third row of the table. The sum occurs as the
row is traversed from left to right. For example, to compute the cumulative frequency of a3, it is
necessary to sum the frequencies from a1 to a3 , which results in 10. The last attribute value of
each dimension (a2, b3, and c1 in the ABC data cube example) has a cumulative frequency equal
to the number of tuples.

Table 2. Cumulative Frequencies

Attribute Value a1 a3 a2 b1 b2 b3 c2 c1

Frequency 7 3 2 6 3 3 8 4

Accumulated Frequency 7 10 12 6 9 12 8 12

The following rules are defined for determining which attributes are stored in DRAM:

• All dimensions should have approximately the same amount of information in memory.

If the memory size available for cube storage is MS, then each dimension must use at
most MS/Z of that space. Therefore, dimensions with low cardinality will have fewer
attribute values stored in memory.

• The estimated size of the cube partition that can be stored in memory must be

considered. Suppose CS is the size of the cube, which includes its occurrence
information. The most frequent attribute values must be stored in memory. To this end,
HIC considers memory capacity; it builds a list of attribute values using their frequency
descending order. In addition, it computes the accumulated frequency for the list. The
aim is to use the accumulated frequency to determine which attributes are chosen. The
fraction between the critical accumulated frequency and number of tuples indicates
which of the most frequent attribute values are stored in memory. The critical

accumulated frequency must be sufficiently large to store the most frequent attribute
values; therefore, sufficient memory must exist. If CS is one-third larger than MS, the
most frequent attribute values up to the critical value of the critical accumulated
frequency must have free space in memory.

In our example, suppose that CS is one-third larger than MS and external storage is therefore
required. For each dimension, the memory available for storing attribute values is the same; i.e.,

MS/3. Because CS is larger than MS, some attribute values of dimensions A, B, and C are stored

in both memory and external storage. Because the size of the cube (CS) is one-third larger than
that of memory (MS), and the number of tuples in R is 12, the critical cumulative frequency is
therefore 9 because CS = 12/4. Only attribute values whose accumulated frequencies are lower
than or equal to 8 can be stored in DRAM.

As a result of the above phase, HIC identifies the memory attribute value set (MAVS) and
storage attribute value set (SAVS). The MAVS is comprised of attribute values with the highest
frequencies whose cumulative frequencies are lower than the critical cumulative frequency. In
our example, MAVS = {a1 , b1, c2} and SAVS = {a3 , a2, b2, b3, c1}.

Second Phase: In this phase, at each dimension, the TID lists of attribute values with lower
frequencies—i.e., whose accumulated frequencies are greater than the critical accumulated

frequency (the list is in frequency descending order)—are retained in external storage.
The HIC implementation includes a buffering schema; therefore, when a TID list reaches a

threshold, TIDs are propagated to external storage. At the algorithm execution end, all
remaining TID lists, which are buffered in memory, are propagated to external storage. The
measure values of each R attribute value are likewise retained in external storage using a similar
buffering schema.

In general, the HIC approach continually maintains high DRAM usage and postpones SAVS

persistence in external storage. Owing to an inverted index technique, an attribute value can
have n complementary TID lists; therefore, it can be stored in complementary binary files in
external storage. Consequently, all TID lists of SAVS are stored in HDD. The results of partial
cube computation in external storage are presented in Table 3 and Table 4. Table 3 outlines all
attribute values retained in external storage; each row represents a stored fi le. Table 3 lists cube
measure values with inverted tuples propagated to external storage. For each measure value, a

directory is created with one binary file for each TID .

Third Phase: In this phase, at each dimension, the TID lists of attribute values with the
highest frequencies—whose cumulative frequencies are less than the critical cumulative
frequency (belonging to MAVS)—are stored in DRAM. This phase requires a complete R scan.
HIC experiments demonstrate that this phase is faster than the two last phases because there is
no data to be propagated to external storage. As a result of this phase, all TID lists of MAVS are
stored in memory and are ready for query submissions. In our example, MAVS = {a1, b1 , c2};
the result of partial cube computation in e xternal storage is presented in Table 5.

The query component receives a user query and performs intersections and unions with TIDs
stored in memory. After obtaining the TIDs of the frequent attribute values, the attribute values
retained in external storage are obtained and processed. The query final TID list is used to
obtain the numerical measure values, thereby enabling statistical functions, such as average,
sum, variance, rank, and many others, to be calculated by the measure calculus component.

Roll-up operations can be performed by attribute value removal; therefore, part of a new
rolled up query Q′ must be reprocessed because query Q ⊂ Q′. Drill-down is the reverse of roll-

up. It navigates from less detailed data to more detailed data. A drill -down can be performed
either by stepping down a concept hierarchy for a given dimension, or by introducing additional
dimensions. In a drill -down scenario, Q′ ⊂ Q, where Q′ is a drilled query from Q.

Table 3. Infrequent Attribute Values in External Memory

Dimension Attribute Value tids

A
a2 2, 8
a3 4, 9
a3 10

B
b2 2, 7
b2 8
b3 3, 9

C c1 1, 5
c1 11, 12

Table 4. Measure Values Relation in External Memory
Measure tid Measure Value

M 1 2.56

2 3.14

3 2.45

4 6.7

5 88.9

6 1.5

7 3.65

8 14.9

9 75.9

Table 5. Partial Cube Representation in DRAM
Dimension Attribute Value tids

A a1 1,3,5,6,7,11,12

B b1 1,4,5,6,10,11

C c2 2,3,4,6,7,8,9,10

3.1. HIC Computation Algorithm

From the computation (CO) algorithm and input relation R, HIC obtains a data cube — HIC

= ({iTati1, iTati2 , ..., iTatin}, {[iEati1, iEati2 , ..., iEatin], [im1 , im2 , ..., imx]})—wherein each
internal element, iTati and iEati, represents a list of inverted tuples of a specific dimension.
This specific dimension is illustrated by att i, with iTati in memory and iEati in external storage.

Each iTat and iEat element is defined as as = (tid1 , ..., tidp), representing the TIDs associated
with attribute value atti of R, whose cardinality is p. In addition, the HIC approach includes
inverted measure values (im1, im2, ..., imx), where each im is defined as im = (tid, mv), tid is a
tuple identifier, and mv is a numerical measure value. The CO algorithm is introduced in the
next paragraph and its method is presented in Algorithm 1.

The CO algorithm collects the DRAM available in Line 1. The occurrences of each

dimensional attribute value are calculated and stored in the atts variable (Lines 3-6). At each
tuple, the cumulative frequency of each attribute value (Lines 7 and 8) is calculated. Then, the
critical cumulative frequency (Line 10) is calculated and set to the CCF variable. Values to be
propagated to external storage and stored in DRAM are defined; i.e., the SAVS and MAVS
variables are listed (Lines 11 and 13). The MAVS and SAVS cardinalities are defined by the
respective sets of attribute values, which are attributed to each variable (MAVS = {a1, b1 , c2}
and SAVS = {a3, a2 , b2, b3 , c1}). In the example of relation R, MAVS cardinality is three and

SAVS cardinality is five.
For each attribute value of R (Line 15), HIC builds the inverted index and stores it as an

entry in hicDiM (Line 16) when the size of the TID list of each attribute value reaches the
buffer size. The attribute values and their TID lists are propagated to external s torage (Lines 18
and 19). The same idea is used for each measure value of R, which is stored in the hicDiM
variable (Lines 20 and 23). In Line 23, the measure and attribute values that are in the hicM
variable are propagated to external storage. The same occurs with the hicDiT variable. Finally,

HIC propagates to external storage the TID list of attribute values present in the MAVS variable
that remains in memory (Lines 25 and 26).

Algorithm 1 (Computation (CO)): HIC cube computation based on inverted tuples and
inverted measures;
Input: (1) R with set of tuples t is defined as t = (tid, D1 , D2 , ..., Dn);

Output : an HIC data cube.

Method:

1. MMS <- get memory available

2. op <- available memory

3. while R has tuples{

4. check the frequency aatribute values in each dimension

5. for each dimension in tuple{

6. atts{di, {att, count}} <- tuple.attributeValue and count the attribute

 value in dimension

 }

7. CS <- calculate cube size

8. CF <- cumulative frequencies per attribute value

 }

9. if CS > MMS {

10. CCF <- CS+1

 }

11. for each dimension in tuple {

 for each attribute value in atts{

12. if attributeValue.count >= CCF{ //SAVS <- with cumulative critical

frequency

 SAVS[i] <- attribute value

 }else { //MAVS <- with cumulative frequency less than critical

frequency

13. MAVS[i] <- attribute.value

 }

 }

 }

14. while R has tuple{

15. if SAVS contains attribute value{

16. build inverted index in an entry in hicDiT: {att, tids}

17. if the size hicDiT is OP compared to CS {

18. storage hicDiT.att

 }

 }

19. for each measure value in tuple {

20. build inverted index in an entry in hicDiM: {mi, {tid, mv}}

21. if the size the measure values is OP compared to CS{

22. storage hicDiM

 }

 }

23. storage hicDiT and hicDiM

 }

24. while R has tuple {

25. if MAVS contains attribute values{

26. build inverted index in an entry in hicMiT: {att, tids}} //in main

memory

 }

 }

3.2. HIC Update Algorithm

Four types of updates can occur in an HIC data cube: (1) a new tuple is added to R;

(2) R attribute values can be merged; (3) new dimensions and new measures can be

added to R; and (4) dimensional hierarchies can be rearranged. In summary, the

inverted index technique is an excellent strategy for these types of updates.

The CO algorithm is used with no changes in update of Type (1). For updates of

Type (2), when the attribute values to be merged are in external storage, each TID list

(physical file) must be loaded into memory to be merged. In general, u pdates of Type

(2) are trivial; computational cost depends on the attribute value frequency in R.

Updates of Type (3) require that the new dimension or measure is traversed so that the

attribute values are associated with TID lists. A complete scan of new dimensions and

measures is mandatory. Updates of Type (4) do not impact the data cube because a

query can proceed in any order. In the HIC approach, it makes no difference if a query

uses ABC or CBA attributes of R. HIC performs optimizations based on attr ibute

cardinality and frequency; therefore, HIC always strives to anticipate how many times

an attribute value occurs in R. The frequencies are fundamental to performing fast

intersection and union algorithms. Detailed explanations of HIC query optimizatio ns

are provided in the following section.

3.3. HIC Query Algorithm

The HIC data cube can answer queries of type Q, thereby generating as output three or more

TID sub-lists, which are derived from two possible sub-types of queries: (1) point queries, and
(2) queries with multiple aggregations. A point query is performed by using a filter with an
equality operator. Queries that have resulting multiple aggregations are those in which range
filters or inquire filters are used. Filters with different operators can be used in Q; each filter is
applied to one dimension or measure of R. Thus, three possible sub-queries are generated from
Q: pQ (queries with equality filters), rQ (queries with range filters), and iQ (queries with

inquire filters). A single result from Q consolidates the results of the three possible sub-queries
with an intersection algorithm with complexity O(n), where n is the number of elements in the
smallest list.

For pQ queries, the HIC approach produces a TID list. rQ ∈ Q represents range queries in

different dimensions. Query rQ may have a resulting set of aggregations from attribute values
present in R. An inquire sub-query iQ results in the combination of different dimensions. iQ ∈

Q represents an inquiry in which two operators, iOp (subcube + distinct), are defined for
different dimensions. Range operator rQ is defined as rOp = (greater than + less than +
between + some + different + similar (v1, v2, ..., vn)) . As mentioned earlier, the plus “+” symbol

represents the logical OR operator. The values defined by the user for a range operator are
represented by (v1 , v2, ..., vn).

For an HIC cube, filter F is executed in query pQ. F is defined as F: {op1 ∩ op2 ∩ ... ∩ opn},
where opi is the ith equal operator of F applied to dimension i of HIC. In query rQ from the data
cube, HIC executes filter F′. Accordingly, the TIDs of pQ are intersected with those of rQ. The

definition of F′ is given by F′: {œ1 ∩ œ2 ∩ ... ∩œn}, where œ i is the operator ith range of F′
applied to dimension i of HIC. F and F′ are filters applied to different dimensions. Each œi

returns a TID list for the attribute values that meet the criteria defined by operator rOp. Thus,
several intersections of TID lists are executed for each possible association among attribute
values instantiated in each sub-query. These intersections are always initiated from the attribute
values with the smallest TID list. Dimensions with frequent attribute values in R have low
cardinality. Therefore, dimensions with infrequent attribute values are queried before high

frequent attribute values because high cardinality dimensions have attribute values that are
associated with fewer TIDs. The size of a TID list is used to efficiently perform intersections
and unions.

In addition, queries iQ are combinatorial; therefore, query iQ receives an HIC data cube and
executes a third filter, F′′ . The TIDs of iQ are intersected with those resulting from (pQ ∩ rQ).
Filter F′′ is defined as F′′: β1 ∩ β2 ∩ ...∩ βn , where βi is the operator i th inquire of F′′ applied to

dimension i of HIC. F, F′ , and F′′ are filters that are applied to different dimensions.
The first sub-queries to be processed are always point queries. The cardinality is additionally

used to sort a processing order when there is more than one filter of the same type in Q. After
point queries are processed, range and inquire Q queries are executed. When the attribute values
are frequent, the TID list is retrieved in a single access. When the attribute values have a lower
frequency, their TID lists are retrieved from external storage. In this case, because the TIDs can
be partitioned into several complementary lists, costly readings are numerous. To reduce the

cost of input/output and intersections, the HIC approach reads from the last partition to the first
one. Thus, we assume that the last partition may have fewer tuples than the others;
consequently, it may have a smaller TID list and lower intersection costs when processing the
remaining partitions.

Algorithm 2 (Query) performing point, range, and inquire queries;

Input: (1) HIC data cube and (2) user query Q;

Output: HIC_R, which includes aggregations processed by the computation

algorithm and completed by the query algorithm;

Method:

1. for each sub-query in Q { //pQ, rQ or iQ

2. for each attribute in Di{

3. if attsInExternalMemory contains attribute{

4. attribute.tids recover externalMemory //first is recovery the

last file

 created

5. }else{

6. tids <- attribute.tids

 }

7. for each tidi in tids {

8. if tidi ∩ [att1, …, attn] //point query and range query

9. RQi ← tidi ∩ [att1, …, attn]

 }

10. if tidi ∩ [att1, att2, …, attn]{ //inquire query and

11. IQi ← tidi ∩ [att1, …, attn]

 }

 }

 }

12. hicQr ← RQi ∩ IQi;

 }

13. hicQr ← calculateMeasures(hicQr, Q, hicDiM);

The algorithm for point, range, and inquire queries is organized as follows. Initially, for each

sub-query the TID lists (Lines 4 and 6) associated with attribute values instantiated in each
dimension are retrieved. In case the attribute value is in external storage, it is retrieved one
partition at a time, starting with the last one. After the intersection, the TID lists are merged
(Line 5) until intersections with all TIDs occur in external storage. Next, for each possible

aggregation, intersections among attribute value TID lists exist. The intersection always starts
from lists with fewer TIDs (Lines 7-12). Finally, all measures defined in Q are calculated (Line
13).

Example Inquire Query: Suppose an end-user query q={?,?,c2}. Initially, HIC fetches

the TID list of the instantiated dimension(c2)and returns (c2):{2,3,4,6,7,8,9,10}.

Next, HIC fetches the TID lists of the inquired dimensions: A and B. They are A = [{(a1:{

1,3,5,6,7,11,12})}, {(a2:{2,8})}, {(a3:{4,9,10})}] and B =[{(b1:{

1,4,5,6,10,11})}, {(b2:{2,7,8})},{(b3:{ 3, 9})}]. Next, HIC performs

intersections between c2 TID list and A TID lists. The results are: {(a1c2:{3,6,7}),

(a2c2:{2,8}), (a3c2:{4,9,10})}. Next, HIC performs intersections between c2 TID list

and B TID lists. The results are: (b1c2:{4,6,10}), (b2c2:{2,7,8}) and

(b3c2:{3,9})}. A final set of intersections produce a base cuboid with six tuples: {(a1, b1,

c2), (a2, b1, c2), (a1, b2, c2), (a1, b2, c2) , (a1, b3, c2) and (a3, b3,

c2)}.

Example Range Query: Suppose an end-user query q’={a2, >b1, c2}. Initially, HIC

fetches the TID list of the instantiated dimensions (a2, c2) and returns (a2, c2):{2,8}.

Next, HIC fetches the TID lists of the range dimension B. These are {(b2:{2,7,8})} and

{(b3:{3,9})}. Next, HIC intersects B results with (a2, c2) and the final result is a cuboid

of one tuple: {(a2, b2, c2)}.

SQL versions of inquire and range queries examples q and q’ are presented in the

endnotes.

4. Results and discussion

To verify the proposed approach in terms of efficiency and scalability, we conducted
experiments with HIC, H-Frag [12] and Frag-Cubing approaches by testing both computation
and query algorithms. HIC and H-Frag algorithms were coded in 64-bit Java (version 8.0). Frag-
Cubing is a C++ implementation by the authors of Li et al. [7] and is compiled for 64 -bit

Windows architecture. Query response times using the hybrid memory HIC approach considered
both storage and memory access times. None of the experiments exceeded the physical li mit of
DRAM; therefore, the respective methods did not require operating system swaps. The
algorithms were sequentially implemented. Nevertheless, the use of a multiprocessor
architecture was convenient because there was implicit parallelism. Tests were made in a
machine with two 2.4 GHz six-core Intel Xeon processors, 12 MB of cache, and 128 GB of

RAM DDR3 1333 MHz shared between the processors. The disk had SAS technology and
operated at 15,000 RPM with 64 MB of cache. The operating system was 64-bit Windows High
Performance Computing (HPC) Server 2008. All experiments were executed five times. We
removed the longest and shortest runtimes and calculated the average of the three remaining
runtimes to produce the final result.

For this section, we define D as the number of dimensions, C as the cardinality of each
dimension, T as the number of tuples in the base relation, and S as the data skew. When S was

equal to zero, the data was uniform; as S increased, it became skewed. Real databases are
normally skewed. Some R attribute values typically occur far more frequently than others in the
same dimension. Synthetic base relations were created using a relation generator provided by
the IlliMine project. IlliMine is an open-source software and data repository that provides
various approaches for data mining and machine learning. The Frag-Cubing method is part of
the IlliMine project.

4.1. Computing Different Numbers of Tuples

Tests varying the number of tuples had linearly stable behavior in all approaches.
We used relations with T = 1 M, 25 M, 50 M, 75 M, and 100 M, D = 15, C=104 , and S = 0.

HIC used 200% to 300% less memory than Frag-Cubing, as Figure 1 illustrates. HIC used 20%
to 80% less memory than H-Frag in the same scenarios. The cube runtimes for computing the
different numbers of tuples were linear, as illustrated in Figure 1. In the worst scenario, HIC
was three to four times slower than Frag-Cubing when computing a partial cube; however, this

is a reasonable result if we consider that HIC uses external storage. HIC is 3 times to 5 times
slower than Frag-Cubing, so HIC is, on average, 1.5 times faster than H-Frag. HIC is faster than
H-Frag because it postpones an external memory access until a critical cumulative frequency is
reached and this is more efficient than an attribute value reaches 50% of a user defined cube
portion to be stored in external memory.

Figure 1. HIC, H-Frag and Frag-Cubing runtime and memory consumption with different tuples: D

= 15, S = 0, and C = 104

4.2. Computting Different Numbers of Dimensions

The results of experiments in which the number of data cube dimensions varied are presented
in Figure 2. For these experiments, relations with D = 240, 480, 720, and 960, T = 10 M, and C
= 104 were used. The memory consumption was linear for all approaches; however, because
Frag-Cubing required approximately 50% more memory, relations with D = 720 and 960 were

not computed because Frag-Cubing required contiguous memory allocation.

Figure 2. HIC, H-Frag and Frag-Cubing runtimes and memory consumptions with different

dimensions: T = 107, S = 0, and C = 104

The difference in memory consumption decreased, averaging from 200% to 300%, when HIC
was compared to Frag-Cubing. HIC consumes 20% to 50% less memory than H-Frag. As shown
in Figure 2, Frag-Cubing did not compute relations with more than 480 dimensions and 107

tuples. This result shows that HIC and H-Frag overcome the Frag-Cubing limitation of data
cubes with high dimensionality, but HIC is 23% to 41% faster than H-Frag.

4.3. Computting Skewed Relations

We evaluated data cube computations using base relations with different skews: S = 0, 0.5, 1,

1.5, 2, and 2.5, D = 15, T = 107 , and C = 104 .
Figure 3 illustrates memory consumption and runtime results. In the figure, all approaches

show the same behavior; i.e., as skew increased, runtime decreased. However, HIC took 1.6 to 3
more times than Frag-Cubing using only DRAM and 25% to 52% times faster than H-Frag using

a hybrid memory system. Skewed base relations are very common in real scenarios, wherein
few attribute values are present in almost all tuples. In this case, HIC stored frequent attribute
values in memory, and skewed base relations had more frequent attributes than uniform ones;
consequently, HIC used more memory to compute such bases and became faster.

Figure 3. HIC, H-Frag and Frag-Cubing runtimes and memory consumptions with different skews: D

= 15, T = 107, and C = 104

HIC is faster than H-Frag because critical cumulative frequency is more efficient than 50%

of a cube portion to store an attribute value in external memory. Skewed relations can have
attribute values 100% frequent in a cube portion, so H-Frag can make twice more external

memory accesses and the work memory utilization is not maximized with a fixed threshold to
flush an attribute value TID sub-list to external memory.

In all scenarios, HIC and H-Frag significantly reduced memory usage in representing a
partial cube. It is evident from the results that Frag-Cubing consumed 63% more DRAM than

the HIC approach when the base relation was uniform (S = 0); however, the difference increased
as skew increased. Accordingly, Frag-Cubing memory consumption was 84% higher than that of
HIC in base relations with S = 2.5. The results are similar for Frag-Cubing versus H-Frag
approaches. In these scenarios, approximately half of the attribute values were stored in DRAM
and half were propagated to external storage. The significant decrease in memory consumption
was justified by the irregular frequency of attribute values ; therefore, the critical cumulative

frequency could be found in all attribute values. Thus, all TID lists were retained in external
storage; only the references for each TID list remained in DRAM.

4.4. Query Response Time

Frag-Cubing response times were significantly slower than those of HIC (approximately 13

times), even in scenarios in which there were many attribute values higher than the critical
cumulative frequency and which were consequently retained in external storage.

Queries with more than two sub-cube operators could not be answered by Frag-Cubing
because there was not enough contiguous memory in 128 GB of DRAM to allocate many large -
size arrays with numerous empty cells. Frag-Cubing duplicated an array size when it reached its
limit. In contrast, the number of small complementary arrays enabled HIC to produce an
enormous number of aggregated results. In addition, dimension rearrangements based on
cardinalities drastically reduced inquire query response times. Figures 4, 5 and 6 illustrate
experiments using the same relation R used in previous sections.

In general, query response times using attribute values stored in both DRAM and external
storage were 2.5 times slower than queries requiring attribute values stored in DRAM.

Figure 5 depicts results of experiments with queries using attribute values higher than the
critical frequency; Figure 6 illustrates results of experiments with queries using attribute values
lower than the critical frequency.

Figure 4. Query response time with inquire operators: T = 107, C = 104, D = 30, and S = 0

Figure 5. Query response time with point operators: T = 107, C = 104, D = 30, and S = 0 with queries

using attribute values higher than the critical frequency

Figure 6. Query response time with point operators: T = 107, C = 104, D = 30, and S = 0 with queries

using attribute values lower than the critical frequency

4.5. BIG Data Cube Experiment

A relation with T = 109 tuples was computed by the HIC approach. Approximately 80% of
the attribute values were propagated to external storage. This experiment took 28 hours and
consumed 110 GB of RAM. The results show that it is possible to compute BIG data cubes
using the HIC approach with no operating system swaps, thereby enabling both updates and
queries.

Aside from its external storage limitation, Frag-Cubing was faster than HIC in computing a
data cube because it allocated a new array twice as large as the previous one when a limit was

reached. Therefore, there were few reallocations, and a unique contiguous array with many
empty cells existed. Instead, HIC allocated complementary contiguous small -size arrays, which
thereby yielded more reallocations and arrays, but fewer empty cells. For the HIC approach in
this regard, we used the Fast Util (http://fastutil.di.unimi.it/) framework of intersection/union
algorithms and data structures.

Queries with five range operators, ten point operators, and one inquire operator were
answered in less than 20 seconds. To the best of our knowledge, there is no other sequential

cube approach that efficiently answers high-dimensional range queries from relations with T =
109 tuples.
Data cubes with a high number of tuples could not be computed by the Frag-Cubing approach. This
was demonstrated by trying to compute a base relation with 200 million tuples and 60 dimensions.
Using the HIC approach, however, it was possible to compute a cube from a base relation with 1
billion tuples and 60 dimensions.

4.6 Experiments with Real-World Relations

HIC was also tested with two real relat ions. The first relation was the Forest CoverType

relation obtained from the UCI machine learning repository website (www.ics.uci.edu/~mlearn).
This relation is the same used in Frag-Cubing [7]. The Forest CoverType relation contains T =

581.012 D = 54, the dimensions include 10 quantitative variables, 4 binary wilderness areas and
40 binary soil type variables. The cardinalities are (1978, 361, 67, 551, 700, 5785, 207, 185,
255, 5827, 2, 2, 2, 2, 2, 2, 2, 2, 2 , 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7). HIC computation took 18 seconds and consumed 1 GB of RAM.

Since the relation has very different cardinalities, inquire queries were extremely sensitive
according to the dimensions used. An inquire query with three dimensions with cardinalities
1978, 5785 and 5827 took 764 milliseconds and 1.2 GB. Both query response time and memory

consumption decrease to 62 millisecond and 1.05 GB to a inquire query with three dimensions
and cardinalities 2, 2 and 7.

The second relation was the Record Linkage Comparison Patterns relation obtained also from
the UCI machine learning repository website (www.ics.uci.edu/~mlearn). This relation contains
T = 4.599.306 D = 12. The cardinalities are (96633, 96636, 55, 31, 100, 35, 2, 3, 3, 3, 3, 2). HIC
constructed shell-fragments of size 3 using consecutive dimensions as a fragment group. HIC

cube computation took 1.3 minutes and 5.3GB. Inquire queries with three dimensions with high
cardinalities (96633, 96636, 55) took more than eleven hours and consumed 12GB, but inquire
queries with three dimensions with low cardinalities (3, 3, 2) took one second and consumed
only 6GB. An inquire query with two dimensions took on average 6 hours to compute,
considering dimensions with cardinalities 96633 and 96636.

4.7 Analysis of Results

Table 6 illustrates the possible scenarios tested with the Frag-Cubing approaches, H-Frag and

HIC. The approaches were evaluated for computing data cubes, the four possible updates in a
relation, specific queries, complex queries with the subcube operator and the execution
capability on machines with a low main memory (RAM). Relations are classified according to
its cardinality, dimensionality, number of tuples and skew.

Table 6. Scenarios in which each approach is recommended (lower memory

consumption and runtime)

 Relations

 Low

Cardinality

Low

Dimensionality

Low N. of

Tuples

High

Cardinality

High

Dimensionality

High N.

of Tuples
Skewed

Computation Frag Frag Frag Frag / HIC HIC HIC HIC

Updates HIC HIC HIC HIC HIC HIC HIC

Point Query Frag Frag Frag HIC HIC HIC HIC

Query of
subcubes

HIC HIC HIC HIC HIC HIC HIC

Little RAM
available

HIC HIC HIC HIC HIC HIC HIC

The computation of small cubes favors approaches that use only main memory, due to the

cost of access the external memory, this Frag-Cubing way is more efficient than the others.

Tests were performed with the Frag-Cubing approach and HIC approach to compute a data cube
with only 106 tuples, 10 dimensions with cardinality equal to 100 in each dimension. The HIC
approach consumed three times more memory and took twice as long to compute such data
cube.

http://www.ics.uci.edu/~mlearn
http://www.ics.uci.edu/~mlearn

5. Conclusions

To enable the computation of BIG data cubes with high cardinality, a large number of
dimensions, and a large number of tuples, we implemented and tested the HIC approach. This
method enables hybrid memory capabilities; therefore, high-dimensional data cubes with 109

tuples can be indexed. A critical cumulative frequency property was defined to determine
memory and external storage cube partitions. This property makes it possible to distinguish
attribute values with a high frequency, which are stored in DRAM, from attribute values wi th a
low frequency that are retained in external storage.

Our experiments demonstrated that HIC is an efficient solution. The results showed that HIC
had both linear runtime and memory consumption as the number of tuples or dimensions
increased. HIC memory consumption was consistently much lower than Frag-Cubing memory

consumption; moreover, HIC was significantly faster than Frag-Cubing in answering point and
inquire queries. In general, HIC is also more efficient than H-Frag, since it reduces its memory
consumption and is faster than it. The HIC approach was designed for query types proposed in
qCube [11]; it is therefore also a range cube approach. In the experiments, we established
scenarios in which the Frag-Cubing approach failed to index the data cube on account of lack of
contiguous addresses in DRAM. In contrast, HIC computed and queried a BIG base relation

with 60 dimensions and 109 tuples. HIC runtimes were an average of three times slower than
those of Frag-Cubing for indexing a cube. This result can be regarded as promising because HIC
uses slow external storage to support very large data cubes.

Some improvements and optimizations can be made to the HIC approach. Computing and
updating experiments should be conducted with holistic measures; although they are extremely
costly, they are important for decision making. Further, although the HIC approach solves the
BIG database computation problem, an unsolved issue remains. Very large TID lists are present

in low cardinality dimensions, as previously observed. At times, such attribute values cannot fit
in memory. HIC must swap in all TID lists that are associated with a frequent attribute value
each time the attribute is used in the query. Because no free memory space exists, these TID
lists are retained in external storage; HIC must improve such scenarios to swap in only a few
TID lists.

Moreover, we intend to develop multicore and multicomputer versions for HIC.
Multidimensional frequent colossal pattern mining and high-dimensional frequent pattern

mining [9; 21] are of interest to us because inverted index techniques can produce different
perspectives for solving these types of problems. Experiments with BIG data cubes computed
from unstructured databases (Twitter, email, etc.) must be conducted, and textual measure
particularities must be implemented. BIG spatial databases must be computed by the HIC
approach; accordingly, dimensions, hierarchies, and measures should be redesigned for the
spatial context.

6. Acknowledgements

This work was partially supported by FAPESP under Grant No. 2012/04260-4.

7. Endnotes

SQL version of Inquire Query q:
SELECT a, '*', 'c2', COUNT(a) FROM TABLE WHERE c = 'c2'

GROUP BY 1,2,3 UNION

SELECT '*', B, 'c2', COUNT (b) FROM TABLE WHERE c = 'c2'

GROUP BY 1,2,3 UNION

SELECT A, B, 'c2', COUNT (*) FROM TABLE WHERE c = 'c2'

GROUP BY 1,2,3;

SQL version of Range Query q`:

SELECT b, '*', 'c2', COUNT(a) FROM TABLE where c = 'c2' and a= 'a2' and b>'b1'

GROUP by 1,2,3 UNION

SELECT A, B, 'c2', COUNT(*) FROM TABLE where c = 'c2' and a= 'a2' and b>'b1'

GROUP by 1,2,3;

8. References

[1] Brahmi, H., Hamrouni, T., Messaoud, R., and Yahia, S. “A new concise and exact representation of data

cubes,” Advances in Knowledge Discovery and Management, Studies in Computational Intelligence (vol.

398), Springer, Berlin-Heidelberg, 2012, pp. 27–48.
[2] Codd, E. F. “Relational completeness of data base sublanguages,” R. Rustin (ed.), Database Systems,
Prentice Hall and IBM Research Report (RJ 987), San Jose, California, 1972, 65-98.

[3] Ferro, A., Giugno, R., Puglisi, P. L., and Pulvirenti, A. “Bitcube: A bottom-up cubing engineering,”

Proceedings of the 11th International Conference on Data Warehousing and Knowledge Discovery, DaWaK
’09. Springer-Verlag, Berlin-Heidelberg, 2009, pp. 189–203.
[4] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., and Pira-
hesh, H. “Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals,” Data

Mining and Knowledge Discovery (1), 1997, 29–53.
[5] Han, J. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2011.
[6] Leng, F., Bao, Y., Yu, G., Wang, D., and Liu, Y. “An efficient indexing technique for computing high-

dimensional data cubes,” Proceedings of the International Conference on Advances in Web-Age Information
Management, Berlin, Heidelberg, Germany, 2006, pp. 557–568.
[7] Li, X., Han, J., and Gonzalez, H. “High-dimensional OLAP: a minimal cubing approach,” Proceedings of
the International Conference on Very Large Data Bases, 2004, pp. 528–539.

[8] Lima, J. d. C. and Hirata, C. M. “Multidimensional cyclic graph approach: representing a data cube
without common sub-graphs,” Information Sciences 181 (13), July 2011, 2626–2655.
[9] Prasanna K., Seetha M. “Association rule mining algorithms for high-dimensional data: a review,”

Proceedings of IJAET, (vol. 2, issue 1), 2012, pp 443-454.
[10] Ruggieri, S., Pedreschi, D., and Turini, F. “Dcube: discrimination discovery in databases,” Proceedings

of ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 2010, pp. 1127–
1130.
[11] Silva, R. R., Lima, J. d. C., and Hirata, C. M. “qCube: efficient integration of range query operators over
a high dimension data cube,” Journal of Information and Data Management 4 (3), 2013, 469–482.

[12] Silva, R. R., Lima, J. d. C., and Hirata, C. M. “A Hybrid Memory Data Cube Approach for High
Dimension Relations,” 17th International Conference on Enterprise Information Systems (ICEIS),
SCITEPRESS Digital Library, Barcelona, 2015.
[13] Sismanis, Y., Deligiannakis, A., Roussopoulos, N., and Kotidis, Y. “Dwarf: shrinking the petacube,”

Proceedings of ACM SIGMOD International Conference on Management of Data, New York, NY, USA,
2002, pp. 464–475.
[14] Stockinger, K. and Wu, K. “Bitmap indices for data warehouses,” Data Warehouses and OLAP. 2007.
IRM Press, 2006.

[15] Stonebraker, M., 2012. New opportunities for new sql. Communications of the ACM, 55(11), pp. 10–11.
[15] Wu, K., Otoo, E. J., and Shoshani, A. “A performance comparison of bitmap indexes,” Proceedings of
the Tenth International Conference on Information and Knowledge Management, CIKM ’01. ACM, New

York, NY, USA, 2001, pp. 559–561.
[16] Wu, K., Otoo, E. J., and Shoshani, A. “Compressing bitmap indexes for faster search operations,”

Proceedings of the Fourteenth International Conference on Scientific and Statistical Database Management,
SSDBM ’02. IEEE Computer Society, Washington, DC, USA, 2002, pp. 99–108.
[17] Wu, K., Otoo, E., and Shoshani, A. “On the performance of bitmap indices for high cardinality
attributes,” Proceedings of the Thirtieth International Conference on Very Large Data Bases (vol. 30), VLDB

’04. VLDB Endowment, 2004, pp. 24–35.
[18] Wu, K., Stockinger, K., and Shoshani, A. “Breaking the curse of cardinality on bitmap indexes,”
Proceedings of the Twentieth International Conference on Scientific and Statistical Database Management ,
SSDBM ’08. Springer-Verlag, Berlin-Heidelberg, 2008, pp. 348–365.

[19] Xin, D., Shao, Z., Han, J., and Liu, H. “C-cubing: efficient computation of closed cubes by aggregation-
based checking,” International Conference on Data Engineering, Atlanta, Georgia, USA, 2006, pp. 4.
[20] Zhu F, Yan X, Han J, Yu P and Cheng H. “Mining colossal frequent patterns by core pattern fusion,”

Proceedings of ICDE07, 2007.

[21] Cuzzocrea, A., Bellatreche, L., Song, I.-Y., 2013. Data warehousing and olap over big data: Current
challenges and future research directions. 16th Int. Workshop on Data Warehousing and OLAP (DOLAP),

ACM, pp. 67–70.
[22] Dehdouh, K., Boussaid, O., Bentayeb, F., 2014. Columnar nosql star schema benchmark. Model and
Data Engineering, LNCS 8748, Springer, pp. 281–288

