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Abstract 
Nowadays, analysis data volumes are reaching critical sizes challenging traditional data 

warehousing approaches. Cubing methods based on inverted indices, such as Frag-Cubing, 

are efficient alternatives to conventional approaches of computing OLAP data cubes over Big 

Data. However, similar to other memory-based cube solutions, the efficiency of such methods 

is constrained by available dynamic random-access memory (DRAM). In this paper, we 

implement and test the hybrid inverted cubing (HIC) method, which adopts a hybrid memory 

system, with main goal of able to compute and update BIG data cubes (with high 

dimensionality and high number of tuples). HIC stores the most frequent attribute values in 

DRAM; the remaining attribute values are retained in external memory. Tests using a 

relation with 480 dimensions and 107 tuples show that HIC is three times slower than Frag-

Cubing when computing a data cube, and approximately 13 times faster than Frag-Cubing 

when answering complex cube queries. A BIG data cube with 60 dimensions and 109 tuples 

was computed by HIC using 110 GB of RAM and 286 GB of external memory, while Frag-

Cubing could not compute such a cube in same machine. 
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1. Introduction 
 

With the advent of the Big Data research context, it is natural to think of the problem of 
computing OLAP data cubes over Big Data as one of the top-interesting challenges in the 
research community, with also powerful technological achievements to be reached within the 
scope of real-life large-scale data-intensive applications and systems. 

Current implemented solutions are mainly based on relational databases (using R-OLAP 
approaches) that are no longer adapted to these data volumes [15, 21, 22]. Unfortunately, these 
solutions are not capable to deal with computing OLAP data cubes over Big Data, mainly due to 
two intrinsic factors of Big Data repositories:  

(i) size, which becomes really explosive in such data sets;  
(ii) complexity (of multidimensional data models), which can be very high in such data sets 

(e.g., cardinality mappings, irregular hierarchies, dimensional attributes etc.).  

Therefore, there emerge the forceful needs of designing novel mode ls, techniques, algorithms 
and computational platforms for supporting the problem of computing OLAP data cubes over 
Big Data, which, indeed, literally represents an effective call to arms for next -generation Data 
Warehousing and OLAP research. 

The data cube relational operator [4] pre-computes and stores multidimensional aggregations, 
thereby enabling users to perform multidimensional analysis on the fly. A data cube has 

exponential storage and runtime complexity in terms of the number of dimensions. Moreover, it 
is a generalization of the group-by relational operator over all possible combinations of 
dimensions with various granularity aggregates [5]. Each group-by, called a cuboid or view, 
corresponds to a set of cells described as tuples over cuboid dimensions. 
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A data cube has base cells and aggregate cells. Suppose input relation R with three 
dimensions (A, B, and C) and a unique tuple, t1 = (a1, b1 , c1, m), where a1, b1, and c1 are attribute 
values and m is a numerical value representing a measurement value of t1. Given R, a full data 
cube has eight tuples representing all possible R aggregations:  t1, t2  = (a1 , b1, ∗, m), t3  = (a1 , ∗, c1, 

m), t4 = (∗, b1, c1, m), t5 = (a1, ∗, ∗, m), t6 = (∗, b1 , ∗, m), t7  = (∗, ∗, c1 , m), and t8  = (∗, ∗, ∗, m), 

where the asterisk “*” denotes a wildcard representing all values of a cube dimension. 
Generally speaking, a cube computed from R with cardinalities Ca = Cb  = Cc = 1 can have 23 or 
(Ca + 1) x (Cb + 1) x (Cc + 1) tuples. In this example, t1 is a base cell and t2 , t3 , t4 , t5, t6, t7, and t8 

are aggregate cells. 
If we consider relation ABCD instead of relation ABC, and Ca = Cb  = Cc = Cd = 2, there can be 

16 ABCD base cells and 81 aggregate cells in a full data cube. However, most cubing 
approaches are not designed for high-dimensional data cubes.  

Frag-Cubing [7] is the first efficient high-dimensional data cubing solution. Frag-Cubing 
implements an inverted index of tuples; i.e., each attribute value of a tuple is associated with 1 -
n tuple identifiers. Point queries with two or more attribute values are answered by intersecting 
tuple identifiers of these attribute values. Unfortunately, Frag-Cubing only implements equal 
and sub-cube query operators. A sub-cube query operator selects several aggregations of a data 
cube; accordingly, its complexity is also exponential. Frag-Cubing is an internal memory-based 
approach. Therefore, high-dimensional cubes with hundreds of millions or even billions of 

tuples may not be efficiently computed.  
This renders Frag-Cubing impracticable in many important areas, such as social media, 

bioinformatics, and geosciences, in which data exists in high-dimensional BIG databases with 
online updates. Formally, suppose a database has T tuples, C cardinalities, and D dimensions. In 
the algorithm Frag-Cubing each tuple ID is associated with D attributes and thus will appear D 
times in the inverted index. Since there are T tuple IDs in total, the entire inverted index will 

still need D × T integers [11]. For example, for a cube with 60-dimensional base cuboids of T 
tuples, the amount of space to store the fragment of size 3 is on the order of T (60/3 )(23 − 1) = 
140T . Suppose there are 106  tuples in the database and each tuple ID takes 4 bytes. The space 
needed to store the fragments of size 3 is roughly estimated as 140 × 10 6 × 4 = 560MB. In this 
expression, 140 indicates the number of the cuboids, and the 10 6 × 4 is the byte number of the 
index of each cuboid occupied. In this context emerges the motivation to propose an approach 
that takes a hybrid memory system. 

H-Frag [12] implements a hybrid memory system to store cube partitions in external 
memory. Frequent attributes are stored in RAM and low frequency attributes are stored in 
external memory. H-Frag introduces a second partition level, where a frequent attribute value 
can be associated to several sub-lists of tuple identifiers. These sub-lists are stored in external 
memory according to an end user threshold, i.e., the end user defines how many tuples per cube 
portion. Attribute values above 50% of a portion size are stored in complementary sub-lists in 
external memory. In extreme scenarios, where skew is uniform and cardinality is high, H-Frag 

can use all work memory, so it flushes all cube portions to the external memory and continues 
indexing.  H-Frag proves to be faster than Frag-Cubing in answer queries with multiple 
summarized results.   

In this paper, a new approach named hybrid inverted cubing (HIC), able to compute and 
update BIG data cubes (with high dimensionality and high number of tuples) is implemented 
and tested. HIC outperforms Frag-Cubing and H-Frag on both memory consumption and query 

response time. HIC eliminates H-Frag end user thresholds, i.e., it introduces a new property, 
named critical cumulative frequency, to define which attribute values will be stored in RAM or 
in external memory.  HIC calculates the cube size and collects the work memory to define a 
cube portion. Attribute values with a critical cumulative frequency above a baseline defined by 
HIC are stored in external memory. In extreme scenarios, where skew is uniform and cardinality 
is high HIC can use all work memory, so it flushes all attribute values above the critical 
cumulative frequency to the external memory and continues indexing.         

No swaps are required during HIC cube computation and updates because the method adopts 
a complementary external storage solution. As mentioned above, attribute values are associated 
with tuple identifiers. Frequent attribute values have large tuple identifier (TID) lists because 
they occur in almost all tuples. HIC partitions the TID list, associated with each attribute value, 



into several sub-lists as the indexing phase traverses a base relation. This strategy is useful for 
avoiding swaps; moreover, it improves HIC query response times because it is not necessary to 
swap in the entire TID list of a single attribute value. Complementary stor age is likewise useful 
for storing tuple identifiers in DRAM because, unlike Frag-Cubing, HIC does not require a 

significant number of continuous addresses for attribute values.  
The above phenomenon was observed during an experiment we conducted using a BIG data 

cube with 60 dimensions, cardinality of 104
,
 and 109 tuples. HIC computed it in 28 hours, using 

110 GB of RAM and 286 GB of external storage. Frag-Cubing could not compute the cube 
because of lack of contiguous memory space. In addition, we tested HIC using other base 
relations and compared it with Frag-Cubing. In general, the results demonstrated that HIC is 

three times slower in computing a data cube than Frag-Cubing; however, it is approximately 13 
times faster than Frag-Cubing in answering complex cube queries.  

The remainder of this paper is organized as follows. In the following section, we discuss 
related work in terms of Frag-Cubing and some promising high-dimensional approaches. We 
describe the benefits and limitations of these approaches. In the next section, the “HIC 
Approach,” we detail HIC in terms of architecture and algorithms. In “Experiments,” we 
describe our HIC experiments and results. We summarize our work, present conclusions, and 

suggest future HIC improvements in “Conclusions.” 
 

2. Related Work 
 

Several cubing methods exist; however, few implement a sequential high-dimensional cubing 
solution. In Li et al. [7], Leng et al. [6], Wu et al. [19], Ferro et al. [3], and Silva et al. [11, 12], 
the authors investigate inverted index and bitmap index solutions to reduce the curse of 
dimensionality. In Li et al. [7], the authors illustrate the exponential storage impact of different 

cubing approaches using only 12 dimensions. Moreover, clear curve saturation exists when 
using full, iceberg, dwarf, multidimension cyclic graph (MCG), closed, or quot ient approaches 
[1; 8; 10; 13; 20] for cubes with 20, 50, or 100 dimensions.  

Frag-Cubing implements the inverted tuple concept. Each tuple iT has an attribute value, a 
TID list, and a corresponding set of measures. For instance, we consider four tuples: t1  = (tid1, 
a1, b2, c2 , m1), t2 = (tid2, a1, b3 , c3 , m2), t3 = (tid3, a1 , b4 , c4, m3), and t4 = (tid4 , a1, b4, c1 , m4). 
These four tuples produce eight inverted tuples: iTa1, iTb2, iTb3 , iTb4 , iTc1 , iTc2 , iTc3,  and iTc4. 

For each attribute value, we build an occurrences list; i.e., for a1  we have iTa1 = (a1, tid1 , tid2, 
tid3 , tid4 , m1, m2 , m3, m4), where the attribute value a1 is associated with tuple identifiers tid1, 
tid2 , tid3,  and tid4. Tuple identifier tid1 has measure value m1 , tid2 has measure value m2, tid3 has 
measure value m3,  and tid4 has measure value m4. Query q = (a1 , b4, COUNT) can be answered 
by iTa1∩iTb4  = (a1b4, tid3 , tid4, COUNT (m3 , m4)). In q , iTa1∩iTb4 denotes the common tuple 
identifiers in iTa1 and iTb4. 

The intersection complexity is proportional to the number of occurrences of an attribute 
value; more precisely, it is equal to the size of the smallest list. In our example, iTb4 with two 
tuple identifiers is the smallest list; therefore, iTb4∩iTa1 is more efficient than iTa1∩iTb4 . The 
number of tuple identifiers associated with each attribute value can be large; therefore, relations 
with low cardinality dimensions and a high number of tuples require high processing capacity. 
As TID lists become smaller, the Frag-Cubing query becomes faster; consequently, relations 
with low skew and both high cardinalities and dimensions are more suitable to Frag-Cubing 

computation. 
Leng et al. [6] replace the inverted index with a bitmap index. Each attribute value at has a 

set of bits B, indicating whether it is found at each tuple. A clear limitation exists in the number 
of tuples as B becomes greater. The authors propose a compact index, thereby eliminating 
sequences of zeros and ones from B; nevertheless, their approach is useful only for small 
relations. The cardinality imposes a new hard problem because, for each new attribute value at′, 
a new set of bits B′ must be created with a size equal to the number of tuples. Relations with 

thousands of different attribute values per dimension and hundreds of millions of tuples cannot 
be efficiently computed using a bitmap index, even if it is not a high-dimensional relation. For 
Frag-Cubing, the authors reinforce these limitations of a bitmap index technique [7].  



Wu et al. [19] introduced the word-aligned hybrid (WAH) bitmap compression scheme. 
WAH is considered one of the most efficient compression strategies for bitmap indexes. It is a 
hybrid solution based on run-length encoding and literal bitmaps [16; 17], wherein a sequence 
of bits of the same type is represented by a bit value and quantity [14]. WAH response time for 

a range query using a bitmap compression strategy is optimal; i.e., in the worst case, the 
response time is proportional to the number of hits returned by the query.  

Wu et al. [19] additionally proposed an order-preserving bin-based clustering structure 
(OrBiC). This binning technique [19] involves grouping various keys in common bitmap 
structures called “bins.” It therefore demands fewer bitmaps to code a certain attribute. For 
example, consider a numeric dimension with attribute values ranging from 0 to 100. Instead of 

100 bit values, it would create 10 maps (or bins) containing the bits for attribute values in the 
intervals (0, 10], (10, 20], and so on. This arrangement enables the exclusion of many bins and 
the saving of processing time. The drawback, however, is that false candidates can be 
introduced, requiring further refinement of results. 

Ferro et al. [3] proposed a very efficient method for cube computation using a bitmap index. 
That approach is similar to Frag-Cubing; i.e., it horizontally partitions data according to the 
attribute values of one dimension. In addition, it computes group-bys in a bottom-up manner for 

each partition. The authors demonstrate the possibility of computing, querying, and indexing 
distributive measures, such as sum, max, and min. However, it can only be applied to lo w-
cardinality relations because the internal memory used for both building and updating bitmaps 
may be insufficient. To solve the high-cardinality limitation, the developers of BitCube [3] 
propose an extension using the WAH compression technique. Unfortunately, the proposed 
compression technique does not solve the cube update problem and does not enable accurate 
distributive, algebraic, and holistic measures calculus, due to loss of precision required for 

compression. 
In qCube, Silva et al. [11] adopt the benefits of an inverted index to provide a solution to 

range queries. Range queries implement operators like greater than, between, similar, distinct, 
some, fewer than and many others. These query types are extensions of classical cube queries, 
where only equal operators are used. Accordingly, qCube implements a high-dimensional range 
cube approach with efficient computation runtimes and query response times. However, qCube 
is also an internal memory based approach; therefore, some cubes cannot fit in memory 

(DRAM) and require operating system swaps, which are often inefficient. 
 

 

3. HIC Approach 
 

Data input for cube computation in the HIC approach is d-dimensional relation R with n 
tuples, where n ⊂  [1 , ∞] . Formally, R is a set of tuples, wherein each tuple t is defined as t = 

(tid, D1 , D2, ..., Dz, M1 , M2 , ..., Mk). In t, the TID is a unique tuple identifier; therefore, in a 
relation, there are no equal tuples, as proposed by Codd [2]. The number o f dimensions is 
represented by z, D is a specific dimension defined as Di = (att1  + att2 + ... + attn), and att is the 
attribute value of dimension Di. The number of measures is represented by k, M is a specific 

measure defined as Mi = (mea1 + mea2 + ... + mean), and mea is the measure value of Mi. The 
plus symbol “+” denotes the logical OR operator. 

HIC architecture has three main components: computation, query, and measure calculus. The 
computation component handles the base relation reading and producing the data cube. Table 1 
outlines the relation R used to exemplify data cube computation with HIC. R is comprised of 
attributes A, B, and C and measure M. Three phases for computing a data cube exist in HIBC. 

They are outlined in the following paragraphs . 

 

 
 
 

Table 1. Base Relation R 

tid A B C M 



1 a1 b1 c1 2.56 

2 a2 b2 c2 3.14 

3 a1 b3 c2 2.45 

4 a3 b1 c2 6.7 

5 a1 b1 c1 88.9 

6 a1 b1 c2 1.5 

7 a1 b2 c2 3.65 

8 a2 b2 c2 14.9 

9 a3 b3 c2 75.9 

10 a3 b1 c2 76.9 

11 a1 b1 c1 65.3 

12 a1 b3 c1 44.5 

 

First Phase:  The objective of this phase is to determine which attribute values are retained in 
external storage. The HIC approach uses the frequency of each attribute value to compute the 

cumulative frequencies. The aim is to store in DRAM the most frequent attribute values whose 
frequencies are higher than the critical cumulative frequency. The definition of critical 
cumulative frequency depends on the memory available and the cube size allocated to memory. 
Table 2 outlines the attribute value occurrences of R dimensions.  

Table 2 lists R dimension frequencies in descending order. For dimension A, because a1 has 
the highest frequency (7), attribute value a1 appears in the first entry of the table. Attribute 

value a3, which has a frequency of 3, is next. Finally, a2, with a frequency of 2, is registered in 
the table. Cumulative frequencies are shown in the third row of the table. The sum occurs as the 
row is traversed from left to right. For example, to compute the cumulative frequency of a3, it is 
necessary to sum the frequencies from a1 to a3 , which results in 10. The last attribute value of 
each dimension (a2, b3,  and c1 in the ABC data cube example) has a cumulative frequency equal 
to the number of tuples. 

 

Table 2. Cumulative Frequencies 

Attribute Value a1 a3 a2 b1 b2 b3 c2 c1 

Frequency 7 3 2 6 3 3 8 4 

Accumulated Frequency 7 10 12 6 9 12 8 12 

 
The following rules are defined for determining which attributes are stored in DRAM:  

• All dimensions should have approximately the same amount of information in memory. 

If the memory size available for cube storage is MS, then each dimension must use at 
most MS/Z of that space. Therefore, dimensions with low cardinality will have fewer 
attribute values stored in memory. 

• The estimated size of the cube partition that can be stored in memory must be 

considered. Suppose CS is the size of the cube, which includes its occurrence 
information. The most frequent attribute values must be stored in memory. To this end, 
HIC considers memory capacity; it builds a list of attribute values using their frequency 
descending order. In addition, it computes the accumulated frequency for the list. The 
aim is to use the accumulated frequency to determine which attributes are chosen. The 
fraction between the critical accumulated frequency and number of tuples indicates 
which of the most frequent attribute values are stored in memory. The critical 

accumulated frequency must be sufficiently large to store the most frequent attribute 
values; therefore, sufficient memory must exist. If CS  is one-third larger than MS, the 
most frequent attribute values up to the critical value of the critical accumulated 
frequency must have free space in memory. 

In our example, suppose that CS is one-third larger than MS and external storage is therefore 
required. For each dimension, the memory available for storing attribute values is the same; i.e., 

MS/3. Because CS is larger than MS, some attribute values of dimensions A, B, and C are stored 



in both memory and external storage. Because the size of the cube ( CS) is one-third larger than 
that of memory (MS), and the number of tuples in R is 12, the critical cumulative frequency is 
therefore 9 because CS = 12/4. Only attribute values whose accumulated frequencies are lower 
than or equal to 8 can be stored in DRAM. 

As a result of the above phase, HIC identifies the memory attribute value set (MAVS) and 
storage attribute value set (SAVS). The MAVS is comprised of attribute values with the highest 
frequencies whose cumulative frequencies are lower than the critical cumulative  frequency. In 
our example, MAVS = {a1 , b1, c2} and SAVS = {a3 , a2, b2, b3, c1}. 

Second Phase:  In this phase, at each dimension, the TID lists of attribute values with lower 
frequencies—i.e., whose accumulated frequencies are greater than the critical accumulated 

frequency (the list is in frequency descending order)—are retained in external storage. 
The HIC implementation includes a buffering schema; therefore, when a TID list reaches a 

threshold, TIDs are propagated to external storage. At the algorithm execution end, all 
remaining TID lists, which are buffered in memory, are propagated to external storage. The 
measure values of each R attribute value are likewise retained in external storage using a similar 
buffering schema. 

In general, the HIC approach continually maintains high DRAM usage and postpones SAVS 

persistence in external storage. Owing to an inverted index technique, an attribute value can 
have n  complementary TID lists; therefore, it can be stored in complementary binary files in 
external storage. Consequently, all TID lists of SAVS are stored in HDD. The results of partial 
cube computation in external storage are presented in Table 3 and Table 4. Table 3 outlines all 
attribute values retained in external storage; each row represents a stored fi le. Table 3 lists cube 
measure values with inverted tuples propagated to external storage. For each measure value, a 

directory is created with one binary file for each TID .  

Third Phase:  In this phase, at each dimension, the TID lists of attribute values with the 
highest frequencies—whose cumulative frequencies are less than the critical cumulative 
frequency (belonging to MAVS)—are stored in DRAM. This phase requires a complete R scan. 
HIC experiments demonstrate that this phase is faster than the two last phases because there is 
no data to be propagated to external storage. As a result of this phase, all TID lists of MAVS are 
stored in memory and are ready for query submissions. In our example, MAVS = {a1, b1 , c2}; 
the result of partial cube computation in e xternal storage is presented in Table 5.  

The query component receives a user query and performs intersections and unions with TIDs 
stored in memory. After obtaining the TIDs of the frequent attribute values, the attribute values 
retained in external storage are obtained and processed. The query final TID list is used to 
obtain the numerical measure values, thereby enabling statistical functions, such as average, 
sum, variance, rank, and many others, to be calculated by the measure calculus component.  

Roll-up operations can be performed by attribute value removal; therefore, part of a new 
rolled up query Q′  must be reprocessed because query Q ⊂  Q′. Drill-down is the reverse of roll-

up. It navigates from less detailed data to more detailed data. A drill -down can be performed 
either by stepping down a concept hierarchy for a given dimension, or by introducing additional 
dimensions. In a drill -down scenario, Q′  ⊂  Q, where Q′ is a drilled query from Q. 

 
Table 3. Infrequent Attribute Values in External Memory 

Dimension Attribute Value tids 

A 
a2 2, 8 
a3 4, 9 
a3 10 

B 
b2 2, 7 
b2 8 
b3 3, 9 

C c1 1, 5 
c1 11, 12 

 

Table 4. Measure Values Relation in External Memory 
Measure tid Measure Value 

M 1 2.56 



2 3.14 

3 2.45 

4 6.7 

5 88.9 

6 1.5 

7 3.65 

8 14.9 

9 75.9 

 

Table 5.  Partial Cube Representation in DRAM 
Dimension Attribute Value tids 

A a1 1,3,5,6,7,11,12 

B b1 1,4,5,6,10,11 

C c2 2,3,4,6,7,8,9,10 

 
 

3.1. HIC Computation Algorithm 

 
From the computation (CO) algorithm and input relation R, HIC obtains a data cube — HIC 

= ({iTati1, iTati2 , ..., iTatin}, {[iEati1, iEati2 , ..., iEatin], [im1 , im2 , ..., imx]})—wherein each 
internal element, iTati and iEati, represents a list of inverted tuples of a specific dimension. 
This specific dimension is illustrated by att i, with iTati in memory and iEati in external storage. 

Each iTat and iEat element is defined as as = (tid1 , ..., tidp), representing the TIDs associated 
with attribute value atti of R, whose cardinality is p. In addition, the HIC approach includes 
inverted measure values (im1, im2, ..., imx), where each im is defined as im = (tid, mv), tid is a 
tuple identifier, and mv is a numerical measure value. The CO algorithm is introduced in the 
next paragraph and its method is presented in Algorithm 1. 

The CO algorithm collects the DRAM available in Line 1. The occurrences of each 

dimensional attribute value are calculated and stored in the atts  variable (Lines 3-6). At each 
tuple, the cumulative frequency of each attribute value (Lines 7 and 8) is calculated. Then, the 
critical cumulative frequency (Line 10) is calculated and set to the CCF variable. Values to be 
propagated to external storage and stored in DRAM are defined; i.e., the SAVS and MAVS 
variables are listed (Lines 11 and 13). The MAVS and SAVS cardinalities are defined by the 
respective sets of attribute values, which are attributed to each variable (MAVS = {a1, b1 , c2} 
and SAVS = {a3, a2 , b2, b3 , c1}). In the example of relation R, MAVS cardinality is three and 

SAVS cardinality is five. 
For each attribute value of R (Line 15), HIC builds the inverted index and stores it as an 

entry in hicDiM (Line 16) when the size of the TID list of each attribute value reaches the 
buffer size. The attribute values and their TID lists are propagated to external s torage (Lines 18 
and 19). The same idea is used for each measure value of R, which is stored in the hicDiM 
variable (Lines 20 and 23). In Line 23, the measure and attribute values that are in the hicM 
variable are propagated to external storage. The same occurs with the hicDiT variable. Finally, 

HIC propagates to external storage the TID list of attribute values present in the MAVS variable 
that remains in memory (Lines 25 and 26).  

 
Algorithm 1 (Computation (CO)): HIC cube computation based on inverted tuples and 
inverted measures;  
Input: (1) R with set of tuples t is defined as t = (tid, D1 , D2 , ..., Dn);  

Output : an HIC data cube. 
 
 
 
 

Method: 
 

1. MMS <- get memory available 



2. op <- available memory 

 

3. while R has tuples{ 

4.       check the frequency aatribute values in each dimension 

5.       for each dimension in tuple{ 

6.           atts{di, {att, count}} <- tuple.attributeValue and count the attribute 

             value in dimension 

   } 

7.   CS <- calculate cube size 

8.   CF <- cumulative frequencies per attribute value 

   } 

 

9. if CS > MMS { 

10.     CCF <- CS+1 

   } 

11. for each dimension in tuple { 

 for each attribute value in atts{ 

12.   if attributeValue.count >= CCF{ //SAVS  <- with cumulative critical 

frequency 

   SAVS[i] <- attribute value 

  }else { //MAVS <- with cumulative frequency less than critical 

frequency 

13.    MAVS[i] <- attribute.value 

  } 

 } 

    } 

14. while R has tuple{ 

15. if SAVS contains attribute value{ 

16.  build inverted index in an entry in hicDiT: {att, tids} 

17.  if the size hicDiT is OP compared to CS { 

18.   storage hicDiT.att 

  } 

 } 

19. for each measure value in tuple { 

20.   build inverted index in an entry in hicDiM: {mi, {tid, mv}} 

21.  if the size the measure values is OP compared to CS{ 

22.   storage hicDiM 

  } 

 } 

23. storage hicDiT and hicDiM 

   } 

24. while R has tuple { 

25. if MAVS contains attribute values{ 

26.  build inverted index in an entry in hicMiT: {att, tids}} //in main 

memory 

 } 

    } 

3.2. HIC Update Algorithm  

 

Four types of updates can occur in an HIC data cube: (1) a new tuple is added to R; 

(2) R attribute values can be merged; (3) new dimensions and new measures can be 

added to R; and (4) dimensional hierarchies can be rearranged. In summary, the 

inverted index technique is an excellent strategy for these  types of updates. 

The CO algorithm is used with no changes in update of Type (1). For updates of 

Type (2), when the attribute values to be merged are in external storage, each TID list 

(physical file) must be loaded into memory to be merged. In general, u pdates of Type 

(2) are trivial; computational cost depends on the attribute value frequency in R. 

Updates of Type (3) require that the new dimension or measure is traversed so that the 

attribute values are associated with TID lists. A complete scan of new dimensions and 

measures is mandatory. Updates of Type (4) do not impact the data cube because a 

query can proceed in any order. In the HIC approach, it makes no difference if a query 

uses ABC or CBA attributes of R.  HIC performs optimizations based on attr ibute 

cardinality and frequency; therefore, HIC always strives to anticipate how many times 



an attribute value occurs in R. The frequencies are fundamental to performing fast 

intersection and union algorithms. Detailed explanations of HIC query optimizatio ns 

are provided in the following section.  

 

3.3. HIC Query Algorithm  

 
The HIC data cube can answer queries of type Q, thereby generating as output three or more 

TID sub-lists, which are derived from two possible sub-types of queries: (1) point queries, and 
(2) queries with multiple aggregations. A point query is performed by using a filter with an 
equality operator. Queries that have resulting multiple aggregations are those in which range 
filters or inquire filters are used. Filters with different operators  can be used in Q;  each filter is 
applied to one dimension or measure of R. Thus, three possible sub-queries are generated from 
Q: pQ (queries with equality filters), rQ (queries with range filters), and iQ (queries with 

inquire filters). A single result from Q consolidates the results of the three possible sub-queries 
with an intersection algorithm with complexity O(n), where n is the number of elements in the 
smallest list. 

For pQ queries, the HIC approach produces a TID list. rQ ∈ Q represents range queries in 

different dimensions. Query rQ may have a resulting set of aggregations from attribute values 
present in R. An inquire sub-query iQ results in the combination of different dimensions. iQ ∈ 

Q represents an inquiry in which two operators, iOp (subcube + distinct), are defined for 
different dimensions. Range operator rQ is defined as rOp = (greater than + less than + 
between + some + different + similar (v1, v2, ..., vn)) . As mentioned earlier, the plus “+” symbol 

represents the logical OR operator. The values defined by the user for a range operator are 
represented by (v1 , v2, ..., vn). 

For an HIC cube, filter F is executed in query pQ. F is defined as F: {op1 ∩ op2 ∩ ... ∩ opn}, 
where opi  is the ith  equal operator of F applied to dimension i of HIC. In query rQ from the data 
cube, HIC executes filter F′. Accordingly, the TIDs of pQ are intersected with those of rQ. The 

definition of F′  is given by F′: {œ1 ∩ œ2 ∩ ... ∩œn}, where œ i is the operator ith range of F′ 
applied to dimension i of HIC. F and F′ are filters applied to different dimensions. Each œi 

returns a TID list for the attribute values that meet the criteria defined by operator rOp. Thus, 
several intersections of TID lists are executed for each possible association among attribute 
values instantiated in each sub-query. These intersections are always initiated from the attribute 
values with the smallest TID list. Dimensions with frequent attribute values in R have low 
cardinality. Therefore, dimensions with infrequent attribute values are queried before high 

frequent attribute values because high cardinality dimensions have attribute values that are 
associated with fewer TIDs. The size of a TID list is used to efficiently perform intersections 
and unions.  

In addition, queries iQ are combinatorial; therefore, query iQ receives an HIC data cube and 
executes a third filter, F′′ . The TIDs of iQ are intersected with those resulting from (pQ ∩ rQ). 
Filter F′′ is defined as F′′: β1 ∩ β2 ∩ ...∩ βn , where βi  is the operator i th inquire of F′′ applied to 

dimension i of HIC. F, F′ , and F′′  are filters that are applied to different dimensions.  
The first sub-queries to be processed are always point queries. The cardinality is additionally 

used to sort a processing order when there is more than one filter of the same type in Q. After 
point queries are processed, range and inquire Q queries are executed. When the attribute values 
are frequent, the TID list is retrieved in a single access. When the attribute values have a lower 
frequency, their TID lists are retrieved from external storage. In this case, because the TIDs can 
be partitioned into several complementary lists, costly readings  are numerous. To reduce the 

cost of input/output and intersections, the HIC approach reads from the last partition to the first 
one. Thus, we assume that the last partition may have fewer tuples than the others; 
consequently, it may have a smaller TID list and lower intersection costs when  processing the 
remaining partitions. 

 

 

Algorithm 2 (Query) performing point, range, and inquire queries;  

Input: (1) HIC data cube and (2) user query Q;  



Output: HIC_R, which includes aggregations processed by the computation 

algorithm and completed by the query algorithm;  

 

Method: 

 
1. for each sub-query in Q { //pQ, rQ or iQ 

2.    for each attribute in Di{ 

3.  if attsInExternalMemory contains attribute{ 

4.   attribute.tids recover externalMemory //first is recovery the 

last file 

   created 

5.  }else{ 

6.   tids <- attribute.tids 

  } 

7.  for each tidi in tids { 

8.   if tidi ∩ [att1, …, attn] //point query and range query 

9.    RQi ← tidi  ∩ [att1, …, attn]  

   } 

10.     if tidi ∩ [att1, att2, …, attn]{ //inquire query and  

11.    IQi ← tidi  ∩ [att1, …, attn]  

       } 

  } 

    } 

12.     hicQr ← RQi ∩ IQi;  

      } 

13. hicQr ← calculateMeasures(hicQr, Q, hicDiM); 

 
The algorithm for point, range, and inquire queries is organized as follows. Initially, for each 

sub-query the TID lists (Lines 4 and 6) associated with attribute values instantiated in each 
dimension are retrieved. In case the attribute value is in external storage, it is retrieved one 
partition at a time, starting with the last one. After the intersection, the TID lists are merged 
(Line 5) until intersections with all TIDs occur in external storage. Next, for each possible 

aggregation, intersections among attribute value TID lists exist. The intersection always starts 
from lists with fewer TIDs (Lines 7-12). Finally, all measures defined in Q are calculated (Line 
13). 

Example Inquire Query:  Suppose an end-user query q={?,?,c2}. Initially, HIC fetches 

the TID list of the instantiated dimension(c2)and returns (c2):{2,3,4,6,7,8,9,10}. 

Next, HIC fetches the TID lists of the inquired dimensions: A and B. They are A = [{(a1:{ 

1,3,5,6,7,11,12})},  {(a2:{2,8})}, {(a3:{4,9,10})}] and B =[{(b1:{ 

1,4,5,6,10,11})}, {(b2:{2,7,8})},{(b3:{ 3, 9})}].  Next, HIC performs 

intersections between c2  TID list and A TID lists. The results are: {(a1c2:{3,6,7}), 

(a2c2:{2,8}), (a3c2:{4,9,10})}. Next, HIC performs intersections between c2 TID list 

and B TID lists. The results are: (b1c2:{4,6,10}), (b2c2:{2,7,8}) and 

(b3c2:{3,9})}. A final set of intersections produce a base cuboid with six tuples: {(a1, b1, 

c2), (a2, b1, c2), (a1, b2, c2), (a1, b2, c2) , (a1, b3, c2) and (a3, b3, 

c2)}. 

Example Range Query:  Suppose an end-user query q’={a2, >b1, c2}. Initially, HIC 

fetches the TID list of the instantiated dimensions (a2, c2) and returns (a2, c2):{2,8}. 

Next, HIC fetches the TID lists of the range dimension B. These are {(b2:{2,7,8})} and 

{(b3:{3,9})}.  Next, HIC intersects B results with (a2, c2) and the final result is a cuboid 

of one tuple: {(a2, b2, c2)}. 

SQL versions of inquire and range queries examples q and q’ are presented in the 

endnotes. 

 
 

4. Results and discussion 
 



To verify the proposed approach in terms of efficiency and scalability, we conducted 
experiments with HIC, H-Frag [12] and Frag-Cubing approaches by testing both computation 
and query algorithms. HIC and H-Frag algorithms were coded in 64-bit Java (version 8.0). Frag-
Cubing is a C++ implementation by the authors of Li et al. [7] and is compiled for 64 -bit 

Windows architecture. Query response times using the hybrid memory HIC approach considered 
both storage and memory access times. None of the experiments exceeded the physical li mit of 
DRAM; therefore, the respective methods did not require operating system swaps. The 
algorithms were sequentially implemented. Nevertheless, the use of a multiprocessor 
architecture was convenient because there was implicit parallelism. Tests were made in a 
machine with two 2.4 GHz six-core Intel Xeon processors, 12 MB of cache, and 128 GB of 

RAM DDR3 1333 MHz shared between the processors. The disk had SAS technology and 
operated at 15,000 RPM with 64 MB of cache. The operating system was 64-bit Windows High 
Performance Computing (HPC) Server 2008. All experiments were executed five times. We 
removed the longest and shortest runtimes and calculated the average of the three remaining 
runtimes to produce the final result. 

For this section, we define D as the number of dimensions, C as the cardinality of each 
dimension, T as the number of tuples in the base relation, and S  as the data skew. When S  was 

equal to zero, the data was uniform; as S  increased, it became skewed. Real databases are 
normally skewed. Some R attribute values typically occur far more frequently than others in the 
same dimension. Synthetic base relations were created using a relation generator provided by 
the IlliMine project. IlliMine is an open-source software and data repository that  provides 
various approaches for data mining and machine learning. The Frag-Cubing method is part of 
the IlliMine project. 

 

4.1. Computing Different Numbers of Tuples 

Tests varying the number of tuples had linearly stable behavior in all approaches.  
We used relations with T = 1 M, 25 M, 50 M, 75 M, and 100 M, D = 15, C=104 , and S = 0. 

HIC used 200% to 300% less memory than Frag-Cubing, as Figure 1 illustrates. HIC used 20% 
to 80% less memory than H-Frag in the same scenarios. The cube runtimes for computing the 
different numbers of tuples were linear, as illustrated in Figure 1. In the worst scenario, HIC 
was three to four times slower than Frag-Cubing when computing a partial cube; however, this 

is a reasonable result if we consider that HIC uses external storage. HIC is 3 times to 5 times 
slower than Frag-Cubing, so HIC is, on average, 1.5 times faster than H-Frag. HIC is faster than 
H-Frag because it postpones an external memory access until a critical cumulative frequency is 
reached and this is more efficient than an attribute value reaches 50% of a user defined cube 
portion to be stored in external memory.    

 

 
Figure 1. HIC, H-Frag and Frag-Cubing runtime and memory consumption with different tuples: D 

= 15, S = 0, and C = 104 

 

4.2. Computting Different Numbers of Dimensions 



The results of experiments in which the number of data cube dimensions varied are presented 
in Figure 2. For these experiments, relations with D = 240, 480, 720, and 960, T = 10 M, and C 
= 104 were used. The memory consumption was linear for all approaches; however, because 
Frag-Cubing required approximately 50% more memory, relations with D = 720 and 960 were 

not computed because Frag-Cubing required contiguous memory allocation.  
 

 
Figure 2. HIC, H-Frag and Frag-Cubing runtimes and memory consumptions with different 

dimensions: T = 107, S = 0, and C = 104 

The difference in memory consumption decreased, averaging from 200% to 300%, when HIC 
was compared to Frag-Cubing. HIC consumes 20% to 50% less memory than H-Frag. As shown 
in Figure 2, Frag-Cubing did not compute relations with more than 480 dimensions and 107 

tuples. This result shows that HIC and H-Frag overcome the Frag-Cubing limitation of data 
cubes with high dimensionality, but HIC is 23% to 41% faster than H-Frag. 

 

4.3. Computting Skewed Relations 

 
We evaluated data cube computations using base relations with different skews: S = 0, 0.5, 1, 

1.5, 2, and 2.5, D = 15, T = 107 , and C = 104 .  
Figure 3 illustrates memory consumption and runtime results. In the figure, all approaches 

show the same behavior; i.e., as skew increased, runtime decreased. However, HIC took 1.6 to 3 
more times than Frag-Cubing using only DRAM and 25% to 52% times faster than H-Frag using 

a hybrid memory system. Skewed base relations are very common in real  scenarios, wherein 
few attribute values are present in almost all tuples. In this case, HIC stored frequent attribute 
values in memory, and skewed base relations had more frequent attributes than uniform ones; 
consequently, HIC used more memory to compute such bases and became faster.   

 

 
Figure 3. HIC, H-Frag and Frag-Cubing runtimes and memory consumptions with different skews: D 

= 15, T = 107, and C = 104 

 
HIC is faster than H-Frag because critical cumulative frequency is more efficient than 50% 

of a cube portion to store an attribute value in external memory. Skewed relations can have 
attribute values 100% frequent in a cube portion, so H-Frag can make twice more external 



memory accesses and the work memory utilization is not maximized with a fixed threshold to 
flush an attribute value TID sub-list to external memory. 

In all scenarios, HIC and H-Frag significantly reduced memory usage in representing a 
partial cube. It is evident from the results that Frag-Cubing consumed 63% more DRAM than 

the HIC approach when the base relation was uniform (S = 0); however, the difference increased 
as skew increased. Accordingly, Frag-Cubing memory consumption was 84% higher than that of 
HIC in base relations with S  = 2.5. The results are similar for Frag-Cubing versus H-Frag 
approaches. In these scenarios, approximately half of the attribute values were stored in DRAM 
and half were propagated to external storage. The significant decrease in memory consumption 
was justified by the irregular frequency of attribute values ; therefore, the critical cumulative 

frequency could be found in all attribute values. Thus, all TID lists were retained in external 
storage; only the references for each TID list remained in DRAM.  
 

4.4. Query Response Time 

 
Frag-Cubing response times were significantly slower than those of HIC (approximately 13 

times), even in scenarios in which there were many attribute values higher than the critical 
cumulative frequency and which were consequently retained in external storage.  

Queries with more than two sub-cube operators could not be answered by Frag-Cubing 
because there was not enough contiguous memory in 128 GB of DRAM to allocate many large -
size arrays with numerous empty cells. Frag-Cubing duplicated an array size when it reached its 
limit. In contrast, the number of small complementary arrays enabled HIC to produce an 
enormous number of aggregated results. In addition, dimension rearrangements based on 
cardinalities drastically reduced inquire query response times. Figures 4, 5 and 6 illustrate 
experiments using the same relation R used in previous sections.  

In general, query response times using attribute values stored in both DRAM and external 
storage were 2.5 times slower than queries requiring attribute values stored in DRAM.  

Figure 5 depicts results of experiments with queries using attribute values higher than the 
critical frequency; Figure 6 illustrates results of experiments with queries using attribute values 
lower than the critical frequency. 

 

 
Figure 4. Query response time with inquire operators: T = 107, C = 104, D = 30, and S = 0 

 



 
Figure 5. Query response time with point operators: T = 107, C = 104, D = 30, and S = 0 with queries 

using attribute values higher than the critical frequency 
 

 
Figure 6. Query response time with point operators: T = 107, C = 104, D = 30, and S = 0 with queries 

using attribute values lower than the critical frequency 
 

4.5. BIG Data Cube Experiment 
 

A relation with T = 109 tuples was computed by the HIC approach. Approximately 80% of 
the attribute values were  propagated to external storage. This experiment took 28 hours and 
consumed 110 GB of RAM. The results show that it is possible to compute BIG data cubes 
using the HIC approach with no operating system swaps, thereby enabling both updates and 
queries. 

Aside from its external storage limitation, Frag-Cubing was faster than HIC in computing a 
data cube because it allocated a new array twice as large as the previous one when a limit was 

reached. Therefore, there were few reallocations, and a unique contiguous array with many 
empty cells existed. Instead, HIC allocated complementary contiguous small -size arrays, which 
thereby yielded more reallocations and arrays, but fewer empty cells. For the HIC approach in 
this regard, we used the Fast Util (http://fastutil.di.unimi.it/) framework of intersection/union 
algorithms and data structures. 

Queries with five range operators, ten point operators, and one inquire operator were 
answered in less than 20 seconds. To the best of our knowledge, there is no other sequential  

cube approach that efficiently answers high-dimensional range queries from relations with T = 
109  tuples. 
Data cubes with a high number of tuples could not be computed by the Frag-Cubing approach. This 
was demonstrated by trying to compute a base relation with 200 million tuples and 60 dimensions. 
Using the HIC approach, however, it was possible to compute a cube from a base relation with 1 
billion tuples and 60 dimensions. 

 



4.6 Experiments with Real-World Relations 

 
HIC was also tested with two real relat ions. The first relation was the Forest CoverType 

relation obtained from the UCI machine learning repository website ( www.ics.uci.edu/~mlearn). 
This relation is the same used in Frag-Cubing [7]. The Forest CoverType relation contains T = 

581.012 D = 54, the dimensions include 10 quantitative variables, 4 binary wilderness areas and 
40 binary soil type variables. The cardinalities are (1978, 361, 67, 551, 700, 5785, 207, 185, 
255, 5827, 2, 2, 2, 2, 2, 2, 2, 2, 2 , 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7). HIC computation took 18 seconds and consumed 1 GB of RAM.  

Since the relation has very different cardinalities, inquire queries were extremely sensitive 
according to the dimensions used. An inquire query with three dimensions with cardinalities 
1978, 5785 and 5827 took 764 milliseconds and 1.2 GB. Both query response time and memory 

consumption decrease to 62 millisecond and 1.05 GB to a inquire query with three dimensions 
and cardinalities 2, 2 and 7.  

The second relation was the Record Linkage Comparison Patterns relation obtained also from 
the UCI machine learning repository website ( www.ics.uci.edu/~mlearn). This relation contains 
T = 4.599.306 D = 12. The cardinalities are (96633, 96636, 55, 31, 100, 35, 2, 3, 3, 3, 3, 2). HIC 
constructed shell-fragments of size 3 using consecutive dimensions as a fragment group. HIC 

cube computation took 1.3 minutes and 5.3GB. Inquire queries with three dimensions with high 
cardinalities (96633, 96636, 55) took more than eleven hours and consumed 12GB, but inquire 
queries with three dimensions with low cardinalities (3, 3, 2) took one second and consumed 
only 6GB. An inquire query with two dimensions took on average 6 hours to compute, 
considering dimensions with cardinalities 96633 and 96636.  

 

4.7 Analysis of Results 

 
Table 6 illustrates the possible scenarios tested with the Frag-Cubing approaches, H-Frag and 

HIC. The approaches were evaluated for computing data cubes, the four possible updates in a 
relation, specific queries, complex queries with the subcube operator and the execution 
capability on machines with a low main memory (RAM). Relations are classified according to 
its cardinality, dimensionality, number of tuples and skew.  

 

Table 6.  Scenarios in which each approach is recommended (lower memory 

consumption and runtime) 

 Relations 

 Low 

Cardinality 

Low 

Dimensionality 

Low N. of 

Tuples 

High 

Cardinality 

High 

Dimensionality 

High N. 

of Tuples 
Skewed 

Computation Frag Frag Frag Frag / HIC HIC HIC HIC 

Updates HIC HIC HIC HIC HIC HIC HIC 

Point Query Frag Frag Frag HIC HIC HIC HIC 

Query of 
subcubes 

HIC HIC HIC HIC HIC HIC HIC 

Little RAM 
available 

HIC HIC HIC HIC HIC HIC HIC 

 
The computation of small cubes favors approaches that use only main memory, due to the 

cost of access the external memory, this Frag-Cubing way is more efficient than the others. 

Tests were performed with the Frag-Cubing approach and HIC approach to compute a data cube 
with only 106 tuples, 10 dimensions with cardinality equal to 100 in each dimension. The HIC 
approach consumed three times more memory and took twice as long to compute such data 
cube. 

 

 

http://www.ics.uci.edu/~mlearn
http://www.ics.uci.edu/~mlearn


5. Conclusions 
 

To enable the computation of BIG data cubes with high cardinality, a large number of 
dimensions, and a large number of tuples, we implemented and tested the HIC approach. This 
method enables hybrid memory capabilities; therefore, high-dimensional data cubes with 109 

tuples can be indexed. A critical cumulative frequency property was defined to determine 
memory and external storage cube partitions. This property makes it possible to distinguish 
attribute values with a high frequency, which are stored in DRAM, from attribute values wi th a 
low frequency that are retained in external storage.  

Our experiments demonstrated that HIC is an efficient solution. The results showed that HIC 
had both linear runtime and memory consumption as the number of tuples or dimensions 
increased. HIC memory consumption was consistently much lower than Frag-Cubing memory 

consumption; moreover, HIC was significantly faster than Frag-Cubing in answering point and 
inquire queries. In general, HIC is also more efficient than H-Frag, since it reduces its memory 
consumption and is faster than it. The HIC approach was designed for query types proposed in 
qCube [11]; it is therefore also a range cube approach. In the experiments, we established 
scenarios in which the Frag-Cubing approach failed to index the data cube on account of lack of 
contiguous addresses in DRAM. In contrast, HIC computed and queried a BIG base relation 

with 60 dimensions and 109 tuples. HIC runtimes were an average of three times slower than 
those of Frag-Cubing for indexing a cube. This result can be regarded as promising because HIC 
uses slow external storage to support very large data cubes.  

Some improvements and optimizations can be made to the HIC approach. Computing and 
updating experiments should be conducted with holistic measures; although they are extremely 
costly, they are important for decision making. Further, although the HIC approach solves the 
BIG database computation problem, an unsolved issue remains. Very large TID lists are present 

in low cardinality dimensions, as previously observed. At times, such attribute values cannot fit 
in memory. HIC must swap in all TID lists that are associated with a frequent attribute value 
each time the attribute is used in the query. Because no free memory space exists, these TID 
lists are retained in external storage; HIC must improve such scenarios to swap in only a few 
TID lists.  

Moreover, we intend to develop multicore and multicomputer versions for HIC. 
Multidimensional frequent colossal pattern mining and high-dimensional frequent pattern 

mining [9; 21] are of interest to us because inverted index techniques can produce different 
perspectives for solving these types of problems. Experiments with BIG data cubes computed 
from unstructured databases (Twitter, email, etc.) must be conducted, and textual measure 
particularities must be implemented. BIG spatial databases must be computed by the HIC 
approach; accordingly, dimensions, hierarchies, and measures should be redesigned for the 
spatial context. 
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7. Endnotes 

 
SQL version of Inquire Query q: 
SELECT a, '*', 'c2', COUNT(a) FROM TABLE WHERE c = 'c2' 

GROUP BY 1,2,3 UNION  

SELECT '*', B, 'c2', COUNT (b) FROM TABLE WHERE c = 'c2' 

GROUP BY 1,2,3 UNION 

SELECT A, B, 'c2', COUNT (*) FROM TABLE WHERE c = 'c2' 

GROUP BY 1,2,3; 

SQL version of Range Query q`: 

SELECT b, '*', 'c2', COUNT(a) FROM TABLE where c = 'c2' and a= 'a2' and b>'b1' 

GROUP by 1,2,3 UNION  

SELECT A, B, 'c2', COUNT(*) FROM TABLE where c = 'c2' and a= 'a2' and b>'b1' 

GROUP by 1,2,3; 
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