

Attacking SCADA systems: a practical perspective

Luís Rosa1, Tiago Cruz1, Paulo Simões1, Edmundo Monteiro1, Leonid Lev2
1CISUC-DEI, University of Coimbra, Portugal

2IEC – Israel Electric Corportation, Israel
{lmrosa, tjcruz, psimoes, edmundo}@dei.uc.pt, leonid.lev@iec.co.il

Abstract—As Supervisory Control and Data Acquisition

(SCADA) and Industrial and Automation Control System (IACS)
architectures became more open and interconnected, some of
their remotely controlled processes also became more exposed to
cyber threats. Aspects such as the use of mature technologies and
legacy equipment or even the unforeseen consequences of
bridging IACS with external networks have contributed to this
situation. This situation prompted the involvement of
governmental, industrial and research organizations, as well as
standardization entities, in order to create and promote a series
of recommendations and standards for IACS cyber-security.

Despite those efforts, which are mostly focused on prevention
and mitigation, existing literature still lacks attack descriptions
that can be reused to reproduce and further research specific use
cases and scenarios of security incidents, useful for improving
and developing new security detection strategies. In this paper,
we describe the implementation of a set of attacks targeting a
SCADA hybrid testbed that reproduces an electrical grid for
energy distribution (medium and high voltage). This
environment makes use of real SCADA equipment to faithfully
reproduce a real operational deployment, providing a better
insight into less evident SCADA- and device- specificities.

Keywords—Industrial Control Systems, SCADA, Security

I. INTRODUCTION
Supervisory Control and Data Acquisition (SCADA)

systems are used to manage and automate processes in critical
infrastructures such as electricity grids or water distribution
facilities. According to the ISA definition [1], SCADA-based
Industrial and Automation Control Systems (IACS) are
structured into five distinct levels: level 0, reserved for the
sensors and actuators; level 1, that contains devices such as
Programmable Logic Controllers (PLC’s) and Remote
Terminal Units (RTU’s); level 2, composed of supervisory
control equipment's such as the Human-Machine Interface
(HMI); level 3: for the Manufacturing Execution Systems
(MES), such as the systems hosting production planning
software; and level 4 for the remaining business related
systems.

The interconnection of level 0 and level 1 devices (e.g.
PLC’s and RTU’s) and the interconnection of level 1 devices
with level 2 devices (e.g. HMI’s) are probably the most
vulnerable points of IACS infrastructures. They were
traditionally isolated and based on proprietary protocols and
technologies without intrinsic security capabilities, relying on
obscurity and air-gapping principles for such purpose.

Nevertheless, with the progressive adoption of Ethernet-

and TCP/IP-based networks, standardized SCADA protocols
and VPN-based remote access (to reduce maintenance costs),
these networks are more connected than ever to the remaining
infrastructure – the corporate network and even the Internet –
either by sharing physical network and computing resources or
via (not foolproof) interconnection firewalls, routers or
gateways. This paradigm change drastically increases the risks,
due to the increased system complexity, the introduction of
new attack vectors and the amplified exposure of existing
security vulnerabilities.

SCADA systems are intrinsically different from traditional
ICT systems [2]. Automated real time physical processes do
not need high throughput but demand continuous availability
with guaranteed low delay and low jitter. More, their primary
focus is on availability and service continuity – opposed to
classic ICT systems, where information confidentiality and
integrity come first [3]. SCADA systems also have much
longer lifetime cycles, due to their high upgrade costs – easily
reaching obsolescence by ICT standards. Even simple security
patches take much longer to deploy, due to the need for
previous testing and certification

Recognizing those specificities and risks, as well as the
tremendous impact they can have on SCADA-based critical
infrastructures such as energy grids, water distribution systems,
transportation systems or factory plants, there is currently a
strong investment on research towards enhancing the security
of (both legacy and more recent) SCADA systems. There is an
extensive literature researching various approaches for
introducing IACS-specific intrusion detection mechanisms, as
well as for improving the intrinsic security of SCADA systems.

However, due to logistic constraints and the difficulty of
using real-world production systems for research purposes, not
many works are based on wider testbed scenarios reproducing
real infrastructures, instead using very simplified test benches
or general-purpose datasets. Among these, the large majority is
focused on the defensive perspective of the targeted
infrastructure, instead of the attacker’s point of view.

While this is understandable – considering how difficult it
is to build larger, more realistic testbeds and the fact that
researchers aim is to improve the SCADA systems cyber-
security awareness and capabilities – we believe it is also
important to grasp the attacker’s perspective, including the
challenges he faces to implement a successful attack.

In this paper, we provide a practical description of
somehow representative cyber-attacks (network based
enumeration, communication hijacking and service disruption)
targeting SCADA systems within a testbed that represents an

electricity grid (regional network of medium and high voltage
distribution). This testbed consists of a hybrid environment that
includes real networking and SCADA assets (e.g. PLCs, HMIs,
process control servers) controlling an emulated power grid (so
we can assess the possible impact of these attacks on the
physical world). We explain those attacks and discuss some of
the challenges faced by an attacker to implement them.

This work was performed in the scope of the CockpitCI [4]
and ATENA [5] research projects, which aim at providing a
holistic approach to security, safety and resilience of energy
distribution grids, including the detection and prevention of
cyber-attacks and the analysis of the mutual interdependency
between their ICT assets (communications network, servers,
SCADA control applications, PLC’s and RTU’s) and the
energy side (e.g. transmission lines, substations, power
transformers and generators, quality of energy service).
Detection of cyber-attacks and situational awareness is a key
part of these projects, and as such we built a specialized
detection layer that has been extensively described and
evaluated in previous works (e.g. [6-7]). This paper
complements them by focusing not so much on the detection
and mitigation solutions, but rather on the process of preparing
and executing the attacks used for validation purposes. For
sake of readability and representativeness, we decided to focus
on simple, classic attacks, instead of more complex actions.

The rest of the paper is organized as follows. Next section,
we discuss related work. Section III introduces the testbed
environment we used. The implemented cyber-attacks are
discussed in Section IV, and Section V concludes the paper.

II. RELATED WORK
As already mentioned, existing research literature discusses

different types of cyber-attacks against SCADA systems, such
as Denial of Service (DoS) attacks [8-10], Man-in-the-Middle
(MitM) attacks [11-12] or malware-based attacks [13].
Nevertheless, those discussions are usually focused on the
defense mechanisms (and not on the attacks), based on small
and/or simulated scenarios or lack detail on the practical
implementation of the attack.

Post-incident research on real-world attacks are valuable
sources. Rolf Langer’s report on the well-known Stuxnet
malware [14] targeting Iran Nuclear facilities is a good
example of such sources. Other high-profile well covered
include the Duqu malware [15] or the 2015 BlackEnergy attack
allegedly responsible for power outages in the Ukrainian Power
Grid [16]. These sources have the advantage of being based on
real, successful attacks but are usually limited to the analysis of
complex high-profile incidents often supported by nation-state
resources – instead of simpler but representative attack profiles.

III. TARGET ENVIRONMENT

A. HEDVa Testbed
With the purpose of supporting the demonstration and

validation of the CockpitCI framework, a testbed reproducing a
regional-scale energy distribution network was built by Israel
Electric Corporation (IEC). From ICT and SCADA
perspectives this testbed is composed of real assets, including
IT network, control and field level components, servers and
services that typically integrate such a system. Within this

scenario, an electrical distribution grid topology was entirely
emulated using specialized software developed at IEC, given
the practical impossibility of using a real, large-scale energy
distribution infrastructure (composed of many substations and
hundreds of kilometers of power lines).

This approach results in a hybrid testbed, where all ICT and
SCADA components are real and “believe to be” monitoring
and controlling a real energy grid. This is achieved by using an
agent-based grid simulation model that uses real PLC
equipment to emulate elements such as feeders or circuit
breakers. The interface between the real and emulated domains
of the grid scenario includes all the monitoring data and
controls that would exist in a real operational environment.

Figure 1 provides an overview of this testbed (designated as
HEDVa: Hybrid Environment for Design and Validation), of
which only a subset will be relevant to the scope of this paper.
By using such an environment, it became possible to research
more complex interdependencies between different
components (e.g. network, SCADA devices) and different
domains (e.g. impact of ICT faults on the quality of energy on
the different points of the grid). Furthermore, having a real
deployment of ICT and SCADA systems allowed more
realistic assessments and the collection of more extensive and
realistic validation data.

Figure 1: Overview of the HEDVa Testbed [6]

B. The Modbus Protocol
Among the wide range of different SCADA protocols

available, the HEDVa Testbed uses Modbus over TCP/IP [17-
18]. Modbus is a protocol used to query field data using a
polling client/server approach. Communication is based on
query/response transactions identified by a transaction ID field
and distinguished by a function code field. According to the
Modbus data model, different types of tables are mapped into
the PLC memory (such as discrete inputs, coils or holding
registers). These values are queried via their respective
function code and memory address (see Figure 2).

There is no built-in mechanism (or fields) for
authentication, authorization or encryption. Hence, without
proper security enforcement in the remaining network stack, it

becomes possible to dissect the Modbus messages payload (i.e.
critical information from a physical process).

Figure 2: Example of the interaction between two Modbus devices

Forging communication or field data is also possible by
simply crafting a valid value for the transaction ID field (see
Figure 3), as this value is frequently predictable (due to lack of
randomness in poor Modbus implementations) or even blindly
discarded by some Modbus implementations. Moreover,
Modbus/TCP runs on the top of non-encrypted TCP sessions.

Figure 3: Modbus Frame and header format

Even considering the real-time nature of the underlying
processes, the polling based mechanism provided by the
Modbus protocol is not effectively real-time. The intervals
between each request directly impact the delay time between a
change in the physical process and the time the change is
observed by the HMI operator. This results in a small but
viable time window for hijacking communications before the
Operator and/or the HMI application notice any changes.

Despite all these security vulnerabilities of Modbus
apparently making the attacker’s work too easy, Modbus holds
a significant market share (over 20%, considering all its
variations [19]) and many of the other protocols are not much
different. This means the testbed represents of a large subset of
the systems currently in operation.

Several open source components can be used to build
Modbus hacking tools, such as the Nmap’s modbus-discover
script [20] or Modscan [21] that allows to map and enumerate
PLCs using Modbus over TCP within a network by exploring
their replies. Another example is a python library extended
from Scapy (a widely-used packet manipulation framework
easy to extend and integrate with other applications) that
contains Modbus specific functions to easily craft Modbus
frames [22].

Next section will discuss with the execution of a series of
attacks, which also served for validating the proposed DIDS.

IV. ATTACK STAGING AND EXECUTION
All the attack scenarios assumed the attacker had access to

the process control network (e.g. as result of a compromised
host – this step, which corresponds to the exploitation of the

initial attack was intentionally omitted). For practical
demonstrations, a dedicated host was deployed on the HEDVa,
to serve as a base for the attacker, which could be easily
relocated on the infrastructure, since it was hosted on a virtual
machine. A similar attack strategy could be implemented (with
the proper adjustments) to trigger an attack (for instance,
forging or sending Modbus packets) directly from a
compromised HMI or other component.

A three-stage attack strategy was devised, pursuing the
following goals: monitoring the process values (to gain
knowledge about the nature and characteristics of the
controlled process), change them without being noticed in the
SCADA HMI consoles and finally, induce service disruption
on the energy grid. These should cover a large subset of a
cyber-attack targeting a SCADA system. A by no means
exhaustive list of the implemented attacks includes classical
and Modbus specific scans, different variants of Denial of
service attacks based on network floods, and a SCADA
specific MitM specifically customized for this process
environment. Next, we describe some of those attacks.

A. The HEDVa use case scenario for attack implementation
For the sake of readability, we’ll describe the attacks using

a subset of the HEDVa testbed, configured to emulate an
electricity distribution grid composed by two energy feeders
and several circuit breakers, controlled by real Modbus PLCs
(see Figure 4). Several HEDVa assets, including services,
equipment (such as network switches and PLCs), servers (both
physical and virtualized) and networks are also part of this use
case. The PLCs and the remaining elements of the SCADA
infrastructure in charge of the emulated grid are connected
using an Ethernet LAN infrastructure (using VLAN
segmentation for domain separation).

Figure 4: Representation of the electrical grid use case scenario

The scenario deployed on the HEDVa (see Figure 5)
includes two Human Machine Interface (HMI) hosts,
controlling and supervising the PLCs, an OPC server, a
dedicated database for past events and offline analysis, and a
deployment of the CockpitCI DIDS (not depicted). However,
the DIDS security detection components didn’t play any active
role – they were used to observe and document the attacks,
without interfering with the attacker’s actions.

This scenario not only offered the means to validate the
CockpitCI DIDS, but it also offered the opportunity to
implement and analyze a series of security strategies. For the

PLC
HMI

19 bd 00 00 00 06 01 03 00 81 10

19 bd 00 00 00 23 01 03 20 03 52

TransID Func
Code Data

TCP$Header MBAP$Header Function$CodeIP$Header Data

TransactionID ProtocolID UnitIDLength

Modbus
PL Cs

Two	 energy 	
feeders

Circuit	
breakers

All	 measure	
Voltage	 and	 	
current

latter purpose, and complementary to the classic penetration
testing and auditing procedures, a series of team drills were
executed to obtain relevant data on the most effective tactical
defensive and offensive strategies.

Process	 Control	 Network Control	 System	 Network

PLC	 Island	 #1

PLC	 Island	 #2

Switch
HMI2

SCADA	 /	 OPC	 Server

HMI1
Switch

Security	
Gateway	 /
	 Router

Switch

NIDS

Attacker

Switch

The	 Victim The	 Bad	 Guy more	 Victims

Figure 5: Reference scenario for the use cases

Besides these efforts, the acquisition of relevant datasets for
development, training and offline evaluation of anomaly
detection methods was also another important role of the
HEDVa scenario. For capturing all the network interactions for
further analysis, a centralized network point of capture was
configured. This was achieved using port monitoring /
mirroring in the switch layer, as opposed to a distributed packet
acquisition solution to avoid all the issues with duplicated
packets or timestamp synchronization.

B. Network Reconnaissance
Network scouting is one of the first steps of an attack,

meant to gather information about all the components of the
target environment, to discover and identify topologies, hosts
and services. For instance, traditional network components
such as HMIs are identified by IP and MAC addresses,
operating system versions and a set of services (using
techniques such as FIN scans, see Figure 6) – in such cases, the
specific service footprint, together with TCP fingerprinting
data is useful to identify specific components or software
implementations.

Figure 6: First step of a Network/Modbus scan

In addition to that, each PLC is also identified and
addressed by the unitID field, part of the Modbus frame (see
Figure 7). For simple scenarios where one IP address
correspond to one PLC, the unitID can be set to a fixed known
value (typically “1”) or may be “ignored” by the Modbus
implementation. Nevertheless, a Modbus gateway, using only
one IP address, may hide several PLCs with different unitIDs.

As part of an attack, a Modbus request with a wrong unitID,
blindly used by an attacker, may be discarded or easily flagged
with proper security mechanisms. Thus, and for Modbus over
TCP, it is critical to perform a Modbus enumeration on top of
the traditional TCP/IP scans. Both types of scans are relevant
as they can be used not only to discover devices and types of
services but also to perform fingerprinting and discover PLCs
behind gateways.

Figure 7: Modbus Device Scan / Enumeration

Network scouting provides a perspective on the target
infrastructure from the network point-of-view, corresponding
to the layers 2-4 of the OSI model. Despite its usefulness as a
tool to identify and enumerate devices and services it doesn’t
provide process-level information, which is required to
implement sophisticated attacks. The next subsection will
present the technique that was used to obtain such information.

C. Using ARP poisoning to implement a MitM attack
The concept of a ARP poisoning MitM attack usually

comprises two parts: an ARP spoofing and a communication
hijacking step. In the first stage, the idea is to spoof the ARP
cache of both target devices, belonging to the same link, by
sending malicious and unsolicited ARP “is-at” messages to the
network (see Figure 8) to force both devices to send the packets
through the attacker MAC address. This requires the attacker to
know at least the IP and MAC addresses of the victims and the
link they are connected to. As soon as the ARP cache of each
victim is spoofed, the traffic gets redirected through the
attacker.

Figure 8: ARP poisoning attack

In the second attack stage (see Figure 9), when the traffic is
already being redirected, the attacker can choose to read the
messages and forward them, or actively change them.

Depending on the type of TCP connection, its payload and
the actual data the attacker is interested in, the process may get

Control	 System	 Network

2 2

HMI1

Attacker

Attacker

PLC

Switch
FIN

1
1

FIN

Port	 StatePort	 State

Do	 it	 slowly And	 for	 all	
the	 network

S tage	 1:	 Hosts	 and	
services

Control	 System	 Network

2

Attacker

Attacker

PLC

Switch
Modbus	 (Malformed)	

Request
UnitID=[1-‐247]

1

Modbus	 (Error)	 Reply
If	 UnitID	 is	 correct

L oop	 until 	 get	
positive	 replies Or	 continuosly 	

because	 of	
potential	
gateway s

Disclaimer:	 Y ou	 may 	 not	 even	 need	
nothing 	 of	 this	 but	 it	 can	 be	 useful	
to	 understand	 the	 device	 y ou	 are	

talk ing 	 to

S tage	 2:	
Modbus	 Devices	
Enumeration

Control	 System	 Network

1 1

2 2

(spoofed)	 ARP	 Cache	 Table:
ip_plc	 è	 mac_atacker

(spoofed)	 ARP	 Cache	 Table:
ip_hmi	 è	 mac_atacker

HMI1

Attacker

Attacker

PLC

Switch

ARP	 Spoofed	
Reply

ARP	 Spoofed	
ReplyS tage	 1:	

AR P	 poisoning

complex. For persistent TCP connections, as opposed to one
TCP connection per data request (Modbus can be implemented
using the two communication models), the attacker will need to
keep the TCP fields consistent (e.g. sequence and
acknowledgement numbers) and the connection open (e.g. TCP
keep-alive packets).

Figure 9: TCP hijacking

Moreover, in the case of Modbus, the requested values
typically change in real-time and some of them are directly
changed by the SCADA operator (e.g. Modbus writes), this
means the attacker needs to somehow keep track not only of all
the interactions but also compute and reproduce the effects in
the physical process (e.g close of a circuit breaker in electric
path may change the physical values such as current and
voltage in other parts of the circuit). The complexity of this
increases as the number of elements, relations and
interdependencies increases.

D. Attack strategy and execution
The objective of the attacker can be summarized as such:

hijack the entire grid in such a way that the main HMI (HMI1)
has no clue about the ongoing attack. Moreover, the attack goal
should be accomplished by the attacker while going unnoticed.

One of the first challenges faced by the attacker has to do
with understanding the network topology and communication
flows. For instance, the HMI1 host (one of the victims) is not
part of the same network link as the PLCs, requiring the
attacker to implement an ARP spoof targeting the gateway
interface of the network link where the attacker is placed
instead of the HMI1 (see Figure 10).

Figure 10: ARP poisoning for the implemented attack

Besides HMI1, there is a second HMI (HMI2) developed to
observe and validate the attack, which was not spoofed. HMI1
uses TCP persistent connections to control several PLCs (11, to
be more precise). Thus, the attacker needs to know how to
handle or forward any spoofed packets in real-time, while
avoiding TCP connection drops, to prevent any suspicious

behaviour on the HMI console that could unveil his presence
(see Figure 11). Packet drops automatically raise an alarm and
change the view of the HMI for the corresponding PLC after a
couple of seconds, indicating a potential issue. A TCP
connection lost or a lack of a Modbus reply from the PLC is
also visible from the HMI console. The second HMI did not
use persistent connections. Later, during the trials, it was
discovered that each PLC only supported a maximum of two
simultaneous TCP connections. This may limit the way TCP
connections are handled and redirected by the attacker.

Figure 11: TCP hijacking for the implemented attack

At first, the main concern was to place the attacker in the
middle of the communication between the HMI1 and the PLCs
to capture and analyze relevant process information. This
allowed the attacker to gather more detailed information about
the communications and the controlled process, learning how
each Modbus register value affected the others (e.g. circuit
breakers, current and voltage ranges).

Once the attacker was able to figure out the basic behavior
of the controlled process, it was time to step up the challenge
and hijack the entire process. This required forging the entire
grid state in such a way that any HMI interaction may produce
a realistic state update, while decoupling HMI-PLC
interactions. For this purpose, the attacker needs to reply to the
Modbus requests in real-time. Moreover, TCP session
hijacking requires the attacker to maintain the integrity of the
TCP connection (such as TCP sequence numbers) to avoid a
connection drop.

Then, the following task is crafting the Modbus frames and
recreate a fake view of the entire scenario in real-time. This
task was implemented using a in-house application on the top
of Scapy framework [22] – since common open-source tools
normally used for this sort of attacks are not SCADA/Modbus
aware and did not fulfill the project needs, either by not
offering an integrated solution for all the steps or by lacking
flexibility to adjust settings to the HEDVa scenario.

After the ARP spoofing, the attacker first starts by
capturing the current state of the grid. This is achieved by
dumping and decoding one complete interaction cycle (i.e. the
set of Modbus request-reply transactions) between the HMI1
and all PLCs. This represents the initial state of the simulated
view and it allows to restore the previously grid state after
stopping the attack (in case the attacker wants to do so). The
attacker is also responsible to perform deep inspection of each
packet and selectively intercept all the TCP connections from

Control	 System	 Network

21

4

(spoofed)	 ARP	 Cache	 Table:
ip_plc	 è	 mac_atacker

(spoofed)	 ARP	 Cache	 Table:
ip_hmi	 è	 mac_atacker

HMI1

Attacker

Attacker

PLC

Switch

R/W	 Coils	 ReplyR/W	 Coils	
Request

3

56

7

8

S tage	 2:	
TCP	 Hijack ing

Control	 System	 Network

1 1

2

S tage	 1	
(again):	

AR P	 poisoning

(spoofed)	 ARP	 Cache	 Table:
ip_hmi	 è	 mac_atacker

HMI1

Attacker

Attacker

PLC

ARP	 Spoofed	
Reply

ARP	 Spoofed	
Reply

Switch Switch

23

(spoofed)	 ARP	 Cache	 Table:
ip_plc	 è	 mac_atacker

Security	
Gateway	 /
	 Router

You	 also	 have	
to	 know	 this

I	 know	
nothing

K eep	
them	 in	
a	 loop

For	 all	
the	 PL Cs

Control	 System	 Network

1

S tage	 2	
(again):	
TCP	

Hijack ing

(spoofed)	 ARP	 Cache	 Table:
ip_hmi	 è	 mac_atacker

HMI1

Attacker

Attacker

PLC

Switch Switch

2

(spoofed)	 ARP	 Cache	 Table:
ip_plc	 è	 mac_atacker

Security	
Gateway	 /
	 Router

Avoid	 TCP	
timeouts

Handle	 TCP	
real-‐time	
sessions

Do	 it	 in	
parallell	
(several	
PL Cs)

Every thing 	
looks	
normal

5

Dangerous	 R/W	
Coils	 Requests

R/W	 Coils	
Request

3

4

7

4

5

6 (Fake)	 R/W	 Coils	
Reply

L earn	 the	
normal	 grid	
behaviour

K eep	 track 	
and	 update	
a	 fake	 grid	

view

Do	 whatever	
y ou	 want	 to	
the	 PL Cs

6

Dangerous	 R/W	
Coils	 Reply

L oop	
Every thing 	
until	 y ou	
want "H "and	 get	

undercover

the HMI1 to the PLCs while forwarding the others (i.e. the
communications between HMIs and PLCs).

When requests from the HMI1 are received, the attacker
will compute the responses based on its own replica of the
model (obtained during the process analysis stage). This
effectively decouples the HMI1 from the PLCs, creating two
distinct communication flows: one between the HMI1 and the
attacker and the other one between the attacker and each PLC.
This allows not only to hijack the data exchanged between
them but also trigger any kind of service disruption against the
PLCs compromising the physical process behind them.

Since the true state of the PLCs is hidden from HMI1, the
attacker is free to do whatever he wants without the knowledge
of the legit SCADA operator. Moreover, all the changes
performed by the SCADA operator such as opening or closing
a breaker are properly intercepted and handled by the attacker.
Finally, whenever the attacker decides to stop the attack, he
only needs to perform the inverse of the first steps, dumping
the values of the simulated HMI1 view to the PLCs, so that
there is no difference between the HMI1 and PLC states, also
restoring the ARP caches by sending additional unsolicited
ARP replies with the correct associations between MAC and IP
addresses.

V. CONCLUSIONS AND FUTURE WORK
The attack procedures here described illustrate a complete

intrusion procedure applied to a specific IACS use case. The
reconnaissance step is like other types of network scans, the
main difference is the Modbus unitID field, depending on the
components and how they are deployed. The service disruption
is also straight-forward since as soon as the attacker has access
to the network, it is simple to redirect Modbus traffic (causing
the disruption) or even flood the PLCs, as they typically have
moderate / small amount of resources available. The
communication hijacking attack that was implemented has
proven to be considerably more complex and tightly coupled to
the field processes in the SCADA environment than, for
instance, a HTTP hijacking attempt. This is due to several
reasons, such as the need to reproduce part the physical process
behavior without getting detected.

Despite new infection paths, types of attacks or strategies to
get unnoticed, further efforts and research should focus on
improving the process of recreate and maintain the fake views
used by the attacker during the communication hijacking and
for specific known domains like energy grids.
 This work is part of a wider effort where multiple cyber
detection technologies are being researched to understand how
these types of cyber security events could be adequately
handled. Moreover, this effort also intends to alleviate the lack
of open available datasets (such as raw traces from SCADA
IACS) allowing to further explore and research new security
approaches and detection mechanisms.

ACKNOWLEDGMENT
This work was partially funded by the CockpitCI European

Project (FP7-SEC-2011-1 Project 285647) and by the ATENA
European Project (H2020-DS-2015-1 Project 700581).

REFERENCES
[1] ISA, “ISA-62443-1-1 security for industrial automation and control

systems part 1: Terminology, concepts, and models draft 5,”
International Society for Automation, 2015.

[2] NIST, “800-82,” Guide to Industrial Control Systems (ICS) Security,
Rev. 2, National Institute of Standards and Technology, 2015.

[3] ISA-99.00.01, Security for Industrial Automation and Control Systems -
Part 1: Terminology, Concepts, and Models, American National
Standard. 2007.

[4] FP7 CockpitCI Research Project, https://www.cockpitci.eu/
[5] H2020 ATENA Research Project, https://www.atena-h2020.eu/
[6] T. Cruz, L. Rosa, J. Proenca, L. Maglaras, M. Aubigny, L. Lev, J. Jiang,

P. Simoes, A cyber security detection framework for supervisory
control and data acquisition systems, IEEE Transactions on Industrial
Informatics, Preprint. doi:10.1109/TII.2016.2599841

[7] T. Cruz, J. Proença, P. Simões, M. Aubigny, M. Ouedraogo, A.
Graziano, L. Maglaras, A Distributed IDS for Industrial Control
Systems, International Journal of Cyber Warfare and Terrorism, 4(2), 1-
22, April-June 2014. DOI: 10.4018/ijcwt.2014040101

[8] C. Queiroz, A. Mahmood, J. Hu, Z. Tari, and X. Yu, “Building a scada
security testbed,” in Network and System Security, 2009. NSS’09. Third
International Conference on, pp. 357–364, IEEE, 2009.

[9] M. Mallouhi, Y. Al-Nashif, D. Cox, T. Chadaga, and S. Hariri, “A
testbed for analyzing security of SCADA control systems (tasscs),” in
Innovative Smart Grid Technologies, 2011 IEEE PES, pp. 1–7, 2011.

[10] S. Bhatia, N. Kush, C. Djamaludin, J. Akande, and E. Foo, “Practical
modbus flooding attack and detection,” in Proceedings of the 12th
Australasian Information Security Conference-Volume 149, pp. 57–65,
Australian Computer Society, Inc., 2014.

[11] B. Chen, N. Pattanaik, A. Goulart, K. L. Butler- Purry, and D. Kundur,
“Implementing attacks for modbus/TCP protocol in a real-time cyber
physical system test bed,” in Comm. Quality and Reliability, 2015 IEEE
International Workshop Technical Committee on, pp. 1–6, 2015

[12] E. E. Miciolino, G. Bernieri, F. Pascucci, and R. Setola,
“Communications network analysis in a SCADA system testbed under
cyber-attacks,” in Telecommunications Forum (TELFOR) 2015 23rd,
pp. 341–344, 2015.

[13] D. Chen, Y. Peng, and H. Wang, “Development of a testbed for process
control system cybersecurity research,” in 3rd International Conference
on Electric and Electronics, Atlantis Press, 2013.

[14] R. Langner, “To kill a centrifuge a technical analysis of what stuxnet’s
creators tried to achieve,” The Langner Group, November 2003.

[15] Laboratory of Cryptography and System Security (CrySyS), Duqu: A
Stuxnet-like malware found in the wild, http://www.crysys.hu/
publications/files/bencsathPBF11duqu.pdf.

[16] “Blackenergy & quedagh: the convergence of crimeware and apt
attacks.”,https://www.fsecure.com/documents/996508/1030745/blacken
ergy_whitepaper.pdf.

[17] Modbus Organization, “Modbus protocol specification,”
[18] Modbus Organization, “Modbus messaging on TCP/IP implementation

guide”
[19] IMS Research, “The World Market for Industrial Ethernet – 2013

Edition”.
[20] “Nmap scripting engine-modbus-discover nse script.”, https://nmap.org/

nsedoc/scripts/modbus-discover.html.
[21] Mark Bristow, Modscan, https://code.google.com/archive/p/modscan/
[22] A. Gervais, “Modbus/TCP library for scapy 0.1.

