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Abstract Nowadays, with more than 50 % of the world’s
population living in urban areas, cities are facing impor-
tant environmental challenges. Among them, air pollution
has emerged as one of the most important concerns, taking
into account the social costs related to the effect of polluted
air. According to a report of the World Health Organization,
approximately seven million people die each year from the
effects of air pollution. Despite this fact, the same report
suggests that cities could greatly improve their air quality
through local measures by exploiting modern and efficient
solutions for smart infrastructures. Ideally, this approach
requires insights of how pollutant levels change over time
in specific locations. To tackle this problem, we present an
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evolutionary system for the prediction of pollutants levels
based on a recently proposed variant of genetic program-
ming. This system is designed to predict the amount of
ozone level, based on the concentration of other pollutants
collected by sensors disposed in critical areas of a city. An
analysis of data related to the region of Yuen Long (one of
the most polluted areas of China), shows the suitability of
the proposed system for addressing the problem at hand. In
particular, the system is able to predict the ozone level with
greater accuracy with respect to other techniques that are
commonly used to tackle similar forecasting problems.

Keywords Evolutionary computation - Genetic
programming - Smart cities - Forecasting - Air quality

1 Introduction

Cities have always represented the engine of industrial
and technological growth and this fact has become even
more evident in recent years: in 2009, more than half
of the world’s population lived in urban centers and by
2050 it is estimated that 70 % of the world’s population
will live in cities (United Nations 2014). While urbaniza-
tion has created prosperity and new job opportunities, the
high concentration of people living in urban areas has cre-
ated noteworthy environmental challenges: urban centers,
along with their traffic, industry, and energy needs, account
for more than 70 % of the global gas emissions. Pollu-
tion composed of many different chemical components and
small particles has raised an important public health prob-
lem that affects especially children and people presenting
breathing difficulties: according to a report published in
2015 by the World Health Organization almost 90 % of
the World’s urban population breathes air with pollutant

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10796-016-9706-2-x&domain=pdf
http://orcid.org/0000-0002-6924-6119
mailto:ales.popovic@ef.uni-lj.si
mailto:mcastelli@novaims.unl.pt
mailto:igoncalves@novaims.unl.pt
mailto:leonardo.trujillo@tectijuana.edu.mx

1124

Inf Syst Front (2017) 19:1123-1132

levels that are much higher than the recommended thresh-
olds (World Health Organization 2015). Another study (Lim
et al. 2012) has provided new evidence of the significant role
that air pollution plays globally, placing it among the top ten
risks faced by human beings. As reported in (Sharma et al.
2013; Kumar et al. 2013), many of the World’s cities are
unable to comply with the prescribed concentration limits
of air pollutants and, in many cases, reported measurements
far exceed these limits, resulting in millions of premature
deaths (Kumar and Thiele 2014; Lim et al. 2012).

Among the several pollutants that exceed concentra-
tion limits are coarse (P Mjo) and fine particulate matter
(PM>5), and unregulated ultrafine particles (< 100 nm)
(Kittelson et al. 2004). Several studies have demonstrated
the negative effect of these pollutants on human health
(Kampa and Castanas 2008; Anderson et al. 2012; Kim et al.
2015). Despite all the measures that have been adopted for
reducing air pollution, a report of the World Health Orga-
nization (World Health Organization 2014) suggested that
the annual mean concentration of P Mj( has increased by
more than 5 % between 2008 and 2013 in 720 cities across
the World. According to a study published in Medina et al.
(2004), a reduction in long-term exposure to PMjg by 5
ng per cubic meter in Europe could avoid between 3000
and 8000 early deaths annually. Similar studies (Medina
et al. 2004; Ayres 2010; Kumar and Thiele 2014) have been
performed in order to evaluate the impact of PM; 5 and
ultrafine particles on human health and health costs in the
UK. Results suggest an average loss of 7 — 8 months in life
expectancy for UK residents and about 20 billion pounds
per year in corresponding health costs.

While these data highlight the importance of the problem,
among the many environmental challenges facing urban
areas, air quality is especially difficult to manage. One of
the main issues is related to the high variability that affects
air quality: pollutant levels are strongly related to weather
conditions, wind speed, seasonality, and other occasional
events. As reported in Karatzas and Kaltsatos (2007) and
Sousa et al. (2007), to take effective measures able to coun-
teract air pollution it is fundamental to make an accurate
prediction of the air pollution level. To answer this call,
this paper presents a system based on genetic programming.
This system makes use of a recently proposed version of
genetic programming, a machine learning technique belong-
ing to the family of evolutionary computation. In particular,
after introducing the concept of semantics in (the field
of) genetic programming, we couple the semantics-based
genetic programming system with a local search optimizer
to increase the accuracy of predicting the ozone level based
on the concentration of different air pollutants. To assess
the performance of the system, we used data collected in
2014 in Yuen Long (a region of China). With the increasing
interest in smart cities and internet of things (Li et al. 2015)
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and the usage of sensors (Corbette 2013) able to collect
vast amount of data (Hota et al. 2015), the proposed system
represents a viable option to analyze sensor data related to
different phenomena.

The remainder of this paper proceeds as follows.
Section 2 provides a general overview of genetic program-
ming, focusing on the variant employed in this work and
describing the method followed to include a local searcher
in the evolutionary search. Section 3 presents the data used
in this work to evaluate the performance of the proposed
system and the experimental settings. Section 4 analyzes
the results achieved by the proposed system and by other
well-known machine learning techniques. Finally, Section 5
concludes the paper summarizing the main findings of this
work.

2 Method

This section describes the system proposed to predict the
ozone concentration level. Section 2.1 introduces basic
concepts about genetic programming, an evolutionary com-
putation technique that is the base of the framework that
we developed. Section 2.2 presents a recently defined vari-
ant of genetic programming that is based on the concept of
semantics. After giving the definition of semantics, the main
features of this genetic programming variant are discussed.
Finally, Section 2.3 shows how to combine semantic genetic
programming with a local search optimizer, with the objec-
tive of improving performance and saving computational
effort.

2.1 Genetic programming

Genetic Programming (GP) is a computational intelligence
technique that belongs to the field of evolutionary com-
putation (EC). EC deals with the development of global
search and optimization algorithms which are designed
based on some of the core principles of the neo-Darwinian
theory (Koza 1992). However, the GP paradigm differs
from other EC techniques in several key respects. GP is
intended to solve problems that can be broadly defined
as automatic program induction, most commonly follow-
ing a supervised learning approach. In other words, the
goal of GP is to evolve syntactic expressions that perform
some form of computation, attempting to find the relation
between a set of independent variables (inputs) and depen-
dent variables (outputs). Conversely, most EC techniques,
such as Genetic Algorithms (GAs), focus on function opti-
mization. In the case of modeling, GAs can be used to
optimize or tune model parameters, while GP is intended
to automatically derive the syntactic structure of the model.
Furthermore, unlike other machine learning paradigms, GP
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automatically defines the shape and size of the model with
very little user involvement. On the other hand, GP follows
the basic evolutionary process of other EC algorithms, that
proceeds as follows: (1) a random generation of a set (pop-
ulation) of candidate solutions (individuals); (2) the use of
a domain-specific fitness function that allows one to grade
each solution; (3) a stochastic selection mechanism to prob-
abilistically choose individuals (parents) that will be used to
construct a new set of solutions (offspring); (4) stochastic
search (genetic) operators, called mutation and crossover,
that take selected parents as inputs and produce offspring
as output, such that useful traits are inherited with the goal
of progressively generating better solution; (5) this process
is iteratively repeated (each iteration is called a generation)
until a stopping criterion is met, such as a maximum com-
putational effort which can be measured using the number
of generations or the total number of function evaluations.
The representation used for individuals must be able
to encode programs, mathematical formulas or other syn-
tactic expressions. The most common representation used
is tree structures, but other representations are possible.
When using a tree-based representation, leaves can contain
the problem’s independent variables, constants and 0-arity
functions: all of these are referred to as terminals and com-
pose the Terminal set I'. Internal nodes are taken from a
Function set F, that contains the primitive operations which
can be used to construct the function or model. In gen-
eral, I' and F are chosen based on the problem features
and domain, and together define the search space of the
problem (the space of all possible programs that can be
constructed by the evolutionary search). The search oper-
ators must be applicable to the chosen representation, and
must allow for the evolution of unspecified expressions of

different sizes and shapes. In standard tree-based GP, the
operators are called subtree mutation and subtree crossover.
More in detail, after choosing two individuals based on
their fitness, subtree crossover performs the following oper-
ations: 1) selects a random subtree in each parent and 2)
swaps the selected subtrees between the two parents (the
resulting individuals are the offspring). Mutation introduces
random changes in the structure of the individuals. Subtree
mutation works as follows: 1) it randomly selects a node in a
tree, 2) it removes whatever is currently at the selected point
and whatever is below the selected point, and 3) it inserts a
randomly generated subtree at that point. This operation is
controlled by a parameter that specifies the maximum size
(usually measured in terms of tree depth) for the newly cre-
ated subtree that has to be inserted. Finally, fitness is usually
expressed as an error function between the actual outputs of
the evolved program and the target values over some data
instances. Figure 1 provides a graphical representation of
the basic GP process.

2.2 Semantic GP

Despite the large number of human-competitive results
achieved with the use of GP (Koza 2010), researchers still
continue to investigate new methods in order to improve the
ability of GP to produce high-quality solutions. In recent
years, one of the emerging ideas is to include the concept
of semantics in the evolutionary process performed by GP.
In this work we use the most common and widely accepted
definition of semantics in GP literature (Krawiec and
Lichocki 2009). The semantics of a program 7; is defined
as the vector of outputs s; = [7;(x1), T;(X2), ..., T; (X,)]
obtained after executing the program on a set of data T

Randomly create
initial population

[—

Calculate fitness of
individuals

Apply genetic
operators to create
new individuals

reached?

NO \ES

Maximum number
of generations

Select individuals
based on fitness

Return best
solution

Fig.1 The GP algorithm
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(Moraglio et al. 2012). When T; represents a real-valued
function then s; € R”.

In the original definition of GP (Koza 1992), crossover
and mutation produce offspring by manipulating the syntax
of the parents. The idea of defining semantic methods in
GP is to overcome one of the most important limitation of
standard, syntax-based GP operators. In fact, while seman-
tics determines what a program actually does, the traditional
genetic operators manipulate programs only considering
their syntax. Hence, traditional GP operators disregard the
information about the behavior of programs provided by
semantics. The drawback of this choice is that it is dif-
ficult to predict the effect that modifications of program
syntax will have on the semantics of the generated off-
spring. To overcome this problem, genetic operators able to
act on the semantics of the programs have been proposed
(Moraglio et al. 2012). These operators, called Geometric
Semantic Operators (GSOs), provide a simple but effec-
tive method to directly manipulate the semantics of the
individuals and, more importantly, they are able to induce
a unimodal fitness landscape (Stadler 1995) on any prob-
lem consisting in finding the match between a set of input
data and a set of expected targets. This feature improves
GP evolvability (the ability of GP to find high quality
solutions) on this class of problems, since a unimodal
fitness landscape makes the search much more effective
with respect to the use of standard, syntax-based, genetic
operators.

To have an intuition of this property, let us first consider a
GAs problem in which the unique global optimum is known
and the fitness of each individual (to be minimized) corre-
sponds to its distance to the global optimum (our reasoning
holds for any employed distance). In this problem, if we
use, for instance, box mutation (i.e. a variation operator that
slightly perturbs some of the coordinates of a solution), then
any possible individual different from the global optimum
has at least one fitter neighbor (individual resulting from its
mutation). So, there are no locally suboptimal solutions. In
other words, the error surface is unimodal, and consequently
the problem is characterized by a good evolvability. Now,
let us consider the typical GP problem of finding a func-
tion that maps sets of input data into known target values (as
we said, regression and classification are particular cases).
The fitness of an individual for this problem is typically a
distance between its predicted output values and the target
ones (error measure). GSOs simply define transformations
on the syntax of the individuals that correspond to geomet-
ric crossover and box mutation in the semantic space, thus
allowing us to map the considered GP problem into the
previously discussed GA problem.

Considering that the problem addressed in this work per-
fectly fits the class of problems for which GSOs induce a
unimodal fitness landscape, the use of GSOs is a natural
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choice for finding good quality solutions for the problem at
hand. Here we report the definition of the geometric seman-
tic operators for real functions domains, since these are the
operators that will be used in the experimental phase.

Definition 1 (Geometric Semantic Crossover (GSC)).
Given two parent functions Tp, 7> : R" — R, the geo-
metric semantic crossover returns the real function
Txo = (T - Tr) + ((1 — Tg) - T>), where T is a random
real function whose output values range in the interval
[0, 1].

Definition 2 (Geometric Semantic Mutation (GSM)).
Given a parent function 7 : R" — R, the geometric seman-
tic mutation with mutation step ms returns the real function
Ty =T + ms - (Tgy — Tg2), where Tgy and Ty are ran-
dom real functions.

Hereafter, GP that uses GSOs will be called Geometric
Semantic GP (GSGP). As Moraglio et al. (2012) point out,
geometric semantic operators create much larger offspring
than their parents and the fast growth of the individuals in
the population rapidly makes fitness evaluation unbearably
slow, making the system unusable. Furthermore, while this
growth produces fitter solutions, it may also be responsible
for creating models that are too specialized on training data,
hence generating overfitting. In Castelli et al. (2015b), a
possible workaround to the problem related to the slowness
of the fitness evaluation process was proposed, consist-
ing in an implementation of these operators that makes
them not only usable in practice, but also very efficient.
As shown in Castelli et al. (2015b), the computational cost
of evolving a population of n individuals for g genera-
tions is O (ng), while the cost of evaluating a new, unseen,
instance is O(g). This is the implementation used in this
work.

2.3 Local search optimizer in GSGP

While GSGP has been shown to produce good results
(Castelli et al. 2013, 2014, 2015¢, 2015e, Goncalves et al.
2015), its original formulation has several disadvantages.
For instance, GSC is not effective when the semantics
of the set of parents does not contain within its con-
vex hull (i.e., does not surround) the target semantics.
Similarly, since GSM produces offspring that are located
randomly around the semantics of the parent, sometimes
the offspring will have a worse fitness than the par-
ent. While this is desirable when the fitness landscape
is multimodal, in GSGP the landscape is unimodal so
this type of exploration is not required. Furthermore, as
pointed out in the previous section, the offspring produced
by the GSOs will always be larger than the parents,
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meaning that program growth cannot be contained. The only
way to control the size of the programs is to reduce the
number of required applications of GSOs; i.e. reducing the
number of generations required by the search.

In this section we describe how to integrate a local
search (LS) strategy within GSGP. In particular, we include
a local searcher within the GSM operator, since previous
works have shown that GSGP achieves its best performance
using only mutation during the search (Vanneschi et al.
2014; Gongalves et al. 2015). This work follows (Castelli
et al. 2015d), where a local search approach was integrated
into GSM using the following construction. In particular,
the GSM with LS (GSM-LS) of a tree 7 generates an
individual:

Ty =ap+a1-T+ar- (Tr1 — Tr2) (D

where o; € R. Notice that o replaces the mutation
step parameter ms used in the definition of GSM. This in
fact defines a basic multivariate linear regression problem,
which can be solved, for example, by Ordinary Least Square
regression (OLS). In this sense, after each mutation event,
OLS is applied to the above expression to obtain the val-
ues of the model parameters (o, @1, a2) that best fit the
training cases. Thus, GSM-LS is used to explore the region
surrounding the tree that is to be mutated. We refer to this
approach as a LS method, since our goal is to produce
the best possible solution given 7', Tg; and Tgy, which is
the best solution possible based on these initial conditions.
This allows the GSGP process to be more directed, using
the target semantics to guide the search at each mutation
event.

The idea of including a LS method is based on a very
simple observation related to the properties of the GSOs:
while these operators are effective in achieving good per-
formance with respect to standard syntax-based operators,
they may require many generations to converge to optimal
solutions. Including a LS method we expect to improve the
convergence speed of the search algorithm. Furthermore, by
speeding up the search process, it is possible to limit the
construction of over-specialized solutions that, at the end,
could overfit the data.

3 Experimental phase

This section presents the data used in the experimental
phase, as well as the experimental settings. In particular,
Section 3.1 describes the data considered to assess the per-
formance of the proposed system, presenting their main
features. Section 3.2 gives details of the systems that have
been taken into account, discussing their properties and the
choice of the parameters’ values.

3.1 Data

To assess the performance of the proposed system we con-
sidered data from the region of Yuen Long, China. As
reported in Chan and Yao (2008), Ji et al. (2014), and
Qin and Liao (2015), air quality of major Chinese cities
is among the worst in the World, a consequence of three
decades of double-digit economic growth with lax envi-
ronmental regulation. According to the Asian Development
Bank, less than 1 % of the largest Chinese cities meet the air
quality standards recommended by the World Health Orga-
nization (Zhang and Crooks 2012). This severe air pollution
has caused not only health problems, but also severe eco-
nomic problems. According to a report of the World Bank,
the monetized health costs of air pollution alone are esti-
mated to be between 1.2 % and 3.8 % of Chinese GDP. All
the reasons mentioned highlight the importance of having a
system to predict, with a good level of accuracy, ozone level
in such a way that human experts can timely take the ade-
quate measures to improve air quality whenever necessary.
As reported in Fig. 2a and in b, the ozone level presents
a significant variation both on a daily time frame and on
a monthly one. This feature highlights the difficulty of
achieving an accurate prediction of the ozone level by using
standard statistical techniques: the obtained solutions are
usually not able to model this kind of phenomena (Breiman
2001). From this viewpoint, machine learning techniques
could represent a better option to consider (Castelli et al.
2015e).

Data used in the experimental phase has been collected in
2014 by the Hong Kong Environmental Protection Depart-
ment http://epic.epd.gov.hk/EPICDI/air/station/. An hourly
time frame has been considered, hence the resulting dataset
consists of 8760 observations. Each observation contains the
concentration of different pollutants in the air and the target
variable is the ozone level one hour later. In particular, the
considered pollutants are the following: Carbon Monoxide
(C 0), Fine Suspended Particulates (F S P), Nitrogen Diox-
ide (N O7), Nitrogen Oxides (NOX), Ozone (0O3), Res-
pirable Suspended Particulates (RS P), and Sulphur Dioxide
(502).

3.2 Experimental settings

Several machine learning techniques have been considered
in the experimental phase. In a first phase we performed
a comparison between the proposed semantics-based sys-
tem with a local search optimizer (LSGP) against GSGP.
In a second phase, we extended the comparison by tak-
ing into account the performance of several techniques
that are commonly used to tackle forecasting problems. In
particular, we considered the following techniques: least
square regression (SQ) (Seber and Wild 2003), Radial Basis
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Fig. 2 Air quality: daily (a) and
monthly (b) average of different

300
pollutants for the monitoring .
station of Yuen Long. Pollutants:
Carbon Monoxide (C 0), Fine 280
Suspended Particulates (FSP), § 225
Nitrogen Dioxide (N O-), 5 200
. . b
Nitrogen Oxides (N O X), 0 175
. £
Ozone (03), Rgsplrable § 150 L =
Suspended Particulates (RS P), S & &
Sulphur Dioxide (S 0,) p=t VN [\ \ P
E 100 e o R, = W i oo W
=4 7 \ ¥ / n -
= 5 v /A - i QB e
W/ WK - 2 A a
50 . v \' ;& ) \ Y o . > o
12 . hd
25 M e
O OO0 O0ODO00 0000000000000 0D00C0O000000 000
o e e e e e e e e e e S e e e s e e e e e e e o e e e (e G e
c'><':>c'>'gé><'3<':>c'><':>»lt##pbébﬁn##&:bbr{:br{;&u{u{:b&‘b
= Nw MONOOOVOHEHNWRUONOOOWOKFENWRARUONO®WOK
Period: 1/1/2014 to 31/1/2014
- CO @ FSP NO2 NOX -=- Q3 RSP SOZ]
125
8 100 8
8 .
o0 e
§ 75 - “ ~ : -
L}
2 . 2
2 S0 = » o = x e
£ X n y e
g2 No——, s - 4 -
N . ? fo
25 o i
L -
0 nN N nN nN nN N N N N N N N
(=1 o o o o o (=1 o o o (=1 o
= = = = = = = = = = = =
e e e -~ S -~ -~ -~ e s »~ e
S 1<) S i S =Y o =) =Y = i N
- N w wv (&) ~ o o o - N
Period: 1/2014 to 12/2014
[#CO-+FSP+NO2 NOX =03 RSP - 502]

Function Network (RBF) (Haykin 1999), Isotonic Regres-
sion (ISO) (Hoffmann 2009), Multilayer Perceptron (NN)
(Haykin 1999), Support Vector Machines with a polynomial
kernel of first (SVM) and second order (SVM?2) (Cristianini
and Shawe-Taylor 2000).

Regarding the two GP systems, all the runs used popula-
tions of 200 individuals allowed to evolve for 1,000 gener-
ations. Tree initialization was performed with the Ramped

Fig. 3 Training and test MAE.

Half-and-Half method (Koza 1992) with a maximum initial
depth equal to 6. The function set contained arithmetic oper-
ators, including the protected division as in Koza (1992).
50 independent runs were executed for both the consid-
ered systems. Each run considers a different partition of the
dataset, where 70 % of the data were used for training pur-
pose, while the remaining 30 % as the test set. The terminal
set contained 6 variables, each corresponding to a different

The plots show the median over (a) 30 (b) 30
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Fig. 4 Boxplots of MAE for (a)
training and (b) test sets
calculated over 50 runs. In each
box, the central mark is the
median, the edges of the box are
the 25" and 75" percentiles,
and the whiskers extend to the
most extreme data points not
considered outliers
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feature in the dataset. Mutation and crossover probabilities
have been automatically self-tuned as described in Castelli
et al. (2016a). This system allows us to save the time-
consuming task of tuning the GP parameters. Survival from
one generation to the other was always guaranteed to the
best individual of the population (elitism). For the GSM
(used in GSGP) a random mutation step has been consid-
ered in each mutation event, as suggested in Vanneschi et al.
(2013). The results discussed in the next section have been
obtained using the GSGP implementation freely available at
http://gsgp.sourceforge.net and documented in Castelli et al.
(2015b).

For the non-evolutionary techniques, we used the imple-
mentation provided by the WEKA machine learning tool
(Weka Machine Learning Project 2015). For these tech-
niques, a preliminary tuning phase has been performed in
order to find a satisfactory settings of the parameters. For
each technique 50 independent runs have been executed and
the same partitions of the dataset used in the previous phase
have been considered. In particular, the tuning phase has
been automatically performed by using the “multisearch”
WEKA package. For a description of these meta-classifiers

NN SVM SvM2 [SGP GSGP SQ 1SO RBF NN SVM SVM2
the reader is referred to the WEKA documentation available
at http://www.cs.waikato.ac.nz/ml/weka.

We studied the performance of all the considered tech-
niques by considering the mean absolute error (MAE). The

definition of this error measure is the following:

1
MAE:NZVi—in 2)

ieQ

where y; = T(x;) is the output of the GP individual T on
the input data x; and #; is the target value for instance X;.
N denotes the number of samples in the training or testing
subset, and Q contains the indices of that set.

The experimental results are discussed in the following
section. For the two GP-based systems results are reported
plotting the median error versus generation number on the
training and test sets. In particular, for each generation we
stored the error on the training and test sets of the best indi-
vidual in the population. The reported curves finally plot the
median of all these values collected at each generation. The
median was preferred over the mean in the reported plots
because of its higher robustness to outliers.

Table 1 Comparison between errors obtained on unseen examples with different techniques. For all the considered techniques we reported 10th,

25th, 50th, 75th and 90th percentile.

LSGP GSGP SQ ISO RBF NN SVM SVM2
TRAINING MAE
10th 16.017 18.230 20.633 25.104 28.279 17.170 19.965 21.414
25th 16.136 18.398 20.758 25.179 28.324 17.813 20.049 21.505
50th 16.254 18.598 20.965 25.367 28.473 20.813 20.108 21.514
75th 16.498 18.954 21.238 25.435 28.574 25.443 20.189 21.620
90th 16.597 19.259 21.570 25.503 28.654 32.075 20.368 21.760
TEST MAE
10th 17.095 19.922 20.537 25.723 28.081 18.496 20.227 21.540
25th 17.485 20.324 20.826 25.828 28.240 18.783 20.625 21.947
50th 17.667 20.526 21.011 26.079 28.388 22.450 20.799 22.019
75th 17.965 21.427 21.486 26.362 28.526 24.830 20.943 22.185
90th 18.170 22.088 21.789 26.645 28.737 32.859 21.146 22.406

Bold is used to denote the best (i.e., lower) median value among the considered techniques
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Table 2 P —values returned by

the Mann-Whitney statistical GSGP SQ ISO RBF NN SVM SVM2
test
TRAINING
LSGP 3.02E-11 3.00E-11 2.99E-11 2.98E-11 2.95E-11 3.00E-11 2.98E-11
TEST
LSGP 3.69E-11 3.00E-11 3.00E-11 3.00E-11 1.52E-09 3.00E-11 3.00E-11

4 Results

We start the discussion of the obtained results by consid-
ering the performance of GSGP and LSGP. Results of this
comparison are reported in Fig. 3a and b. As is possible to
see in these plots, LSGP outperforms GSGP on both training
and test instances. Furthermore, besides the fitness values
reached at the end of the search process, it is interesting
to notice how LSGP converges more quickly than GSGP.
Hence, including a local searcher within the GSM operator
is beneficial in speeding up the convergence of the search
process and, as shown in the plots, it also results in a lower
(better) training and test error with respect to GSGP. In
detail, on the training instances LSGP produces a MAE of
16.254, while GSGP produces a MAE of 18.598. On the test
set LSGP produces a MAE of 17.667, while GSGP produces
a MAE of 20.526.

The boxplots reported in Fig. 4a and b show a compari-
son between the performance achieved by using the differ-
ent machine learning techniques taken into account. On each
box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, and the whiskers extend to
the most extreme data points not considered outliers. As can
be observed, LSGP outperforms all other techniques consid-
ered on both training and test instances. Table 1 reports the
numerical values of the median MAE for all the techniques
considered, on both training and test instances, over the 50
independent runs that have been performed.

To analyze the statistical significance of the obtained
results, a set of tests has been performed on the median
errors. Firstly, the Kolmogorov-Smirnov test has shown
that data are not normally distributed (p-value smaller than
10E-10) and hence a rank-based statistic has been applied.
Subsequently, the Mann-Whitney rank-sum test for pair-
wise data comparison has been used (with a Bonferroni
correction for the value of @ = 0.05) under the alternative
hypothesis that the samples do not have equal medians. The
p-values are reported in Table 2. As can be observed, LSGP
produces results that are statistically better than the ones
produced by the other techniques on both training and test
instances.

To summarize, the proposed semantics-based GP system
where the mutation operator has been redefined to include
a local search optimizer is suitable for addressing the
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problem at hand. In particular, LSGP is able to converge in
a smaller number of generations with respect to GSGP and,
more importantly, to outperform existing state-of-the-art
techniques used to tackle forecasting problems.

5 Conclusions

The prediction of the ozone concentration level is very
important due to the negative impacts of ozone on human
health. Improving the means to predict ozone concentration
is thus very useful because it can provide early warnings
to the population and also reduce the number of measur-
ing sites. In this study a computational intelligence sys-
tem to predict one hour ahead ozone concentration has
been proposed. The system is based on geometric semantic
genetic programming (GSGP), a recently proposed variant
of genetic programming. While GSGP has shown its suit-
ability in addressing real world applications over different
domains, it presents an important drawback: the search pro-
cess converges very slowly and this represents an important
limitation for considering GSGP as a viable technique when
a prompt prediction is needed. To tackle this problem and
to improve the accuracy of the prediction of the ozone con-
centration, we proposed to couple GSGP with a local search
optimizer included in the geometric semantic mutation oper-
ator. The main idea is to couple the exploration ability of
GSGP with the exploitation provided by the local searcher.

The proposed system, called LSGP, has been compared
against GSGP and other well-known machine learning tech-
niques that are commonly used for addressing prediction
problems. In particular, all the systems have been evaluated
considering data related to the concentrations of seven envi-
ronmental pollutants collected in 2014 in Yuen Long, one of
the most polluted region in China. Experimental results have
shown the suitability of LSGP in addressing the problem
at hand. More in detail, LSGP is able to outperform all the
considered techniques and, when compared against GSGP,
it has shown its ability to produce a good quality model in a
smaller number of generations.

Overall, the work provides two distinct and impor-
tant contributions for advancing the prediction of ozone
concentration: from the machine learning perspective we
have shown that the inclusion of a local searcher in
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GSGP is beneficial for improving the convergence speed
of the search process; considering the ozone concentration
prediction problem, LSGP has shown its ability in produc-
ing more accurate predictions with respect to other state-of
the-art machine learning techniques.
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