
Towards the development of a complete GP system
on an FPGA using geometric semantic operators

Carlos Goribar-Jimenez,
Yazmin Maldonado

and Leonardo Trujillo
Instituto Tecnológico de Tijuana,

Baja California, México
Email:

cgoribar@tectijuana.edu.mx,
yaz.maldonado@tectijuana.edu.mx,
leonardo.trujillo@tectijuana.edu.mx

Mauro Castelli,
Ivo Gonçalves,

and Leonardo Vanneschi
NOVA IMS, Universidade Nova de Lisboa,

1070-312 Lisboa, Portugal
Email:

mcastelli@novaims.unl.pt,
igoncalves@novaims.unl.pt,
lvanneschi@novaims.unl.pt

Abstract—Genetic Programming (GP) has been around for
over two decades and has been used in a wide range of practical
applications producing human competitive results in several
domains. In this paper we present a discussion and a proposal
of a GP algorithm that could be conveniently implemented on
an embedded system, as part of a broader research project
that pursues the implementation of a complete GP system in
a Field Programmable Gate Array (FPGA). Motivated by the
significant time savings associated with such a platform, as well
as low power consumption, low maintenance requirements, small
size of the system and the possibility of performing several
parallel processes. The proposal is focused on the Geometric
Semantic Genetic Programming (GSGP) approach that has been
recently introduced with promising results. GSGP induces a
unimodal fitness landscape, simplifying the search process. The
experimental work considers five variants of GSGP, that incor-
porate local search strategies, optimal mutations and alignment
in error space. Best results were obtained by a simple variant
that uses both the optimal mutation step and the standard
geometric semantic mutation, using three difficult real-world
problems to evaluate the methods, outperforming the original
GSGP formulation in terms of fitness and empirical convergence.

I. INTRODUCTION

Genetic programming (GP) is a very flexible and gen-
eral evolutionary paradigm, with several different variants
proposed over the years [1]. For instance, regarding repre-
sentation, trees are the most used data structure, but others
have been proposed including linear representations [20], [21],
graph representations [22] and stack-based approaches [25].

One recent and successful variant is the Geometric Semantic
GP approach (GSGP), developed by Moraglio et al. [11].
The original GSGP formulation has shown to be quite good
at handling difficult real world problems [14], [15], [18],
[28] and to be resilient to overfitting [28]. Moreover, the
form of the GSGP search operators induce a unimodal fitness
landscape and also allows for the easy integration of greedy
local optimizers or local search methods, leading to faster
convergence, as well as smaller training and testing errors
on several real-world tasks, outperforming standard GP [12],
[13], [16], [17]. Another reason why GSGP is of interest, is

the manner in which it can be efficiently implemented [16].
This implementation allows for the creation of a single set of
initial trees, with the rest of the evolutionary process operating
directly at the level of semantics, so there is no need to
create, store or manipulate large trees of different shapes and
sizes. This fact makes GSGP a promising alternative for the
development of a GP algorithm that runs directly on-chip, for
instance using an Field Programmable Gate Array (FPGA).
The FPGA is a device considered to be at the intersection
of software and hardware-oriented systems, its basic internal
architecture consist of a huge two dimensional array of logic
blocks interconnected by programmable switches. Although
most modern FPGAs contain special embedded resources
such as DSP units, memory blocks and microprocessors,
the availability of these resources varies from one model to
another, and from vendor to vendor, making it hard to write
portable programs that run on any FPGA family. Our goal
is to develop a highly portable system that can run on most
FPGAs. Therefore, the best option to tackle this problem is
to exclude special blocks and design the whole system by
using only its array of logic blocks. However, this makes
the design process much more complex, because even simple
arithmetic blocks have now to be designed by hand. For
example standard FPGAs do not support even basic operations
such as division operations nor fixed/floating point format. For
a deeper discution of implementations of GP on FPGAs see
[26][27] in which a proposal of a random tree generator for
FPGA is given, for arithmetic and floating point operations on
FPGAs refer to [7].

While standard GSGP might be directly transferable to
a device such as an FPGA, the methods that apply local
searchers during the application of the genetic operators are
not as amenable to be used within a hardware implementation
[12], [13], [16], [17]. The main difficulty for the implemen-
tation of the local search methods in the FPGA is due to
the considerable effort and time needed to develop hardware
architectures in general, and particularly complex numerical
methods like Singular Value Decomposition (SVD) or LU

978-1-5090-4601-0/17/$31.00 c©2017 IEEE
1932

and QR factorization [29]. Therefore, choosing an appropriate
GSGP implementation will be paramount for the development
of our main research goal, that is the implementation of a GP
algorithm in an embedded system.

In this work, we present, analyze and evaluate several recent
GSGP variants, some of which are based on previous works,
while others are proposed in this paper. In particular we
consider:

• GSGP, as implemented in [16].
• GSGP-LS, GSGP with a local search process embedded

in the Geometric Semantic Mutation [13].
• GSGP with optimal alignment in error space, where the

goal is to find two aligned solutions that can be used to
reconstruct the problem target [12].

• GSGP with an optimal mutation step; in this case,
we modify the original formulation [17], such that the
pseudo-inverse of the local optimization process is sim-
plified allowing for an easier future implementation in
hardware.

• Hybrid GSGP version, where the original geometric se-
mantic operators are used in combination with the locally
optimized variants.

Our results are encouraging, showing that a simple hybrid
GSGP version outperforms all other GSGP variants studied
here, using difficult real-world datasets. Moreover, the sim-
plicity of the best performing variant makes it a very good
choice for the further development of a fully hardware-based
GSGP system on an FPGA chip.

The remainder of this paper is organized as follows. Section
II provides a brief introduction to GSGP, particularly focusing
on geometric semantic mutation. Then, Section III surveys
several GSGP variants that exploit the geometric structure
of semantic space to help improve algorithm convergence or
performance; some of the discussed methods are taken from
recent literature while others are original proposals of the cur-
rent work. The experimental work is presented in Section IV,
describing the problems used for evaluation, implementation
details and discussing the main results. Finally, concluding
comments are given in Section V along with an outline of
future work, building towards a full FPGA implementation of
GSGP algorithms.

II. GEOMETRIC SEMANTIC GENETIC PROGRAMMING

Traditional GP utilizes operators that manipulate the syntac-
tic representation of programs ignoring their effect on program
output or semantics; i.e., the search is blind to the effects
on fitness. In contrast, GSGP searches directly the space of
the underlying semantics of programs by means of its special
operators defined in [11]. The semantics of an individual or
program P is defined as the program output, where, for each
input vector −→xi returns the scalar value P (−→xi). In other words,
the semantics of P is −→sP = [P (−→x1) , P (−→x2) , ..., P (−→xn)].

1) Geometric Semantic Mutation (GSM).: In [11], the GSM
was defined as a search operator M : S → S which is a
geometric ε-mutation with respect to the metric d if for any
chosen parent p, the offspring o = M(p) is located in the

metric ball of radius ε centered in the parent. In particular it
is defined as

TM = T +ms · (TR1 − TR2) (1)

where TR1 and TR2 are random real functions, and ms is the
mutation step.

For the remainder of this work, we will only consider
GSM as the sole search operator in GSGP, given that it has
been shown to be the best configuration in several real-world
problems [14], [15], [18], [28]

III. GSGP VARIANTS

This section presents the variants of the GSGP algorithms
that will be evaluated in this work.

A. GSGP with Local Search

One disadvantage of GSGP is that it tends to converge
rather slowly and thus produces extremely large trees due to
the accumulative effect of repeatedly applying the Geometric
Semantic Operators (GSO’s). One way to speed up the search
process is found in [13] which proposes a hybrid approach that
integrates a local search (LS). The local searcher is included
in the GSM operator and is defined as

TM = α0 + α1 · T + α2 · (TR1 − T2) (2)

where αi ∈ R, this gives an overdetermined multivariate linear
fitting problem solved using SVD. Authors argue that the
operator is not a LS in the entire semantic space, rather, it
should be seen as a LS operator that attempts to determine
the best linear combination of the parent three and the random
trees used to perturb it (R1 and R2).

B. GSGP with an Optimal Mutation Step (OMS)

Similar to the approach described above, [17] proposes a
modification to the GSM operator using an optimal mutation
step (OMS). The mutation operation in Eq. 1 is in fact a linear
combination of the semantic vector of the parent

−→
SP and a

random semantic vector
−→
RI which is in turn the difference

between the semantics of two random individual TR1 and
TR2. Given that

−→
t is the semantics of the desired target, the

equation turns into
−→
t =

−→
SP +ms ∗

−→
RI (3)

then solving for ms,

ms =
(−→
t −
−→
SP

)
∗
−→
RI−1 (4)

where
−→
RI−1 is the pseudo-inverse of vector

−→
RI .

The introduction of the adaptive mutation method achieves
competitive generalization in only a single application of the
mutation operators, consequently smaller solutions can be
found with good generalization. In spite of the benefits of
the adaptive mutation it is prone to quick overfitting [17].
Nonetheless, the OMS method is optimal in the sense of
least squares (when using Moore-Penrose method) for each
application of the operator [13], [17].

1933

1) Proposed Optimal Mutation Step implementation: The
OMS requires the computation of the pseudo-inverse of the

−→
RI

vector. In [17] it is recommend to apply the Moore-Penrose
pseudo-inverse which can be calculated via the Singular Value,
LU or QR decomposition methods. However, those numerical
methods require calculations that are too complex to be
implemented in an embedded system like an FPGA [29]. As−→
RI is always a vector of m × 1 (being m the number of
training cases), a general method is not required to compute
the pseudoinverse for an m × 1 matrix. Instead, the Moore-
Penrose pseudo-inverse can be calculated for the special case
when

A =

a1
...
am

 (5)

then, the pseudo-inverse A+ of A is given by

A+ =
1

‖A‖2
A∗ =

1

‖A‖2
(a1, · · · , am) (6)

where,

‖A‖ =
√
|a1|2 + · · ·+ |am|2. (7)

Considering all the elements of RI as real values then ai = ai,
and Eq. 6 can be rewritten as

A+ =
(a1, · · · , am)

|a1|2 + · · ·+ |am|2
=

AT

AT ·A
. (8)

Using Eq. 8 is easier and requires less computational effort
than using a numerical method such as SVD. Thus, since Eq.
8 only requires arithmetic calculations and is a good candidate
for an embedded implementation and it is the method we use
in the experiments reported in this work.

C. GSGP with Error Alignment

The notion of the error vector was introduced in [12] as
−→e P = −→s P −

−→
t that can be represented as a point in an

n-dimensional space called error space. In other words, each
vector in the semantic space is translated in the error space by
subtracting

−→
t , this notion is depicted in Fig. 1 The definition

of two optimally aligned individuals is as follows.
Optimally Aligned Individuals: Two GP individuals A and

B are optimally aligned if exist a scalar k such that −→e A =
k · −→e B .

The concept of optimally aligned individuals depicted in
Fig. 2 allows for the calculation of the optimal solution
analytically. Let A and B be two optimally aligned individuals.
Then the equation of the aligned individuals can be rewritten
as

−→
SA −

−→
t = k ·

(−→
SB −

−→
t
)
. (9)

Now, obtaining
−→
t is

−→
t =

1

1− k
·
−→
SA −

1

1− k
·
−→
SB . (10)

eA

eB

O

t

Fig. 1. A 2-D representation of the transformation from the semantic space
to the error space. In practice semantic and error spaces are multidimensional
with a number of dimensions being equal to the number of instances.

θ

eA

eB

eC

O
eD

Fig. 2. A graphical 2-D representation of the error alignment: vector −→eA
is aligned with vector −→eB and the vector −→eC is aligned with vector −→eD . In
practice semantic and error spaces are multi-dimensional with a number of
dimensions being equal to the number of instances.

From where we can analytically construct the optimal
solution if we consider that we are looking for the optimal
solution kopt with semantics

−→
t , and if A and B represent the

syntactic structure of the two aligned individuals. That is

kopt =
1

1− k
·A− 1

1− k
·B. (11)

This implies that if we are able to find two optimally aligned
individuals A and B with semantics

−→
SA and

−→
SB it is possible

to find the optimal solution syntax kopt that corresponds to
the semantics of

−→
t by the direct application of Eq. 11.

D. Reconstructing solutions using GSGP and Error Alignment

In this work, we stick to the definition of optimally aligned
individuals in the error space made in [12]. GSGP and error
alignment are used in conjunction to find two optimally
aligned individuals and reconstruct the target directly, an
approach that has been used in [30]. The goal in [12] is to
minimize the angle between error vectors in order to find
two aligned individuals, then, the optimal solution is found
analytically; while in [30] the goal is to minimize the distance
to a new target semantics by using a geometric semantic

1934

Original Target

"Mirror" Target

Random Individual

Fig. 3. Random individual and new target computation.

Fig. 4. Initial population for evolution around the new target.

hill climber to explore the search space. In our approach we
find two optimally aligned individuals by searching for an
individual that minimizes the distance to a “mirror target”
which in turn is aligned to a randomly produced individual,
this is done by applying the mutation with the OMS. Thus we
split the problem in two parts. The first step is the generation of
a random individual within a certain distance from the target,
then calculate the semantics of the “mirror target” (see Fig. 3)
using Eq. 9.

The second step will be to set the “mirror target” as the
target of the problem, this is done in an attempt to minimize
the risk of overfiting by searching for the “mirror target”
instead of searching for the target directly. Afterwards, we
run the GP process towards this mirror target (see Fig. 4).
After that we solve the problem of finding the syntactic
representation of a individual which minimizes the distance
to the “mirror target” in semantic space. Then we use that
solution to construct an optimal solution. The mutation utilizes
the OMS in the process of searching for the “mirror target”.
The fitness used to guide the evolution is the distance relative
to the “mirror target” in the semantic space, instead of using
the original target as reference.

The third step will be to use the nearest individual to
the “mirror target” to reconstruct a solution using the error
alignment method (Eq. 11). The distance from the original
target to the reconstructed individual is the error reported in the
experimental section of this work since it is the performance
on the actual problem target, Fig. 5 shows this step graphically.
The process continues until a stop criterion is met. In this
method, test fitness is computed based on the reconstructed
solution after the error alignment procedure. Hereafter, this

Fig. 5. Fitness evaluation with the best individual (after reproduction and
mutation).

method will be referred to as GSGP-EA+OMS.

E. Hybrid Proposals

In this section we present our implementation of two hybrid
methods based on the OMS, given its nice property of con-
verging quickly in just few generations to low error values. We
refer to these approaches as HyOMS-1 and HyOMS-2, which
stand for Hybrid algorithm with Optimal Mutation Step, with
two versions.

In previous works, it has become apparent that the OMS
method (and similarly GP-LS) converges quickly at the be-
ginning, but then fails to improve any further. On the other
hand, the standard GSM operator converges much slower at
a steady pace across the entire run, and also does not seem
to be affected by overfitting. Therefore, the proposed Hybrid
approaches attempt to combine the use of both mutations.

The first attempt was to run the algorithm with the OMS at
the begging for a few generations and then change to standard
GSM. A similar approach was used in [13] but the problem
is that it was not possible to determine how many generations
should the search run with one mutation and then switch to
the other one, thus this approach was discarded.

In HyOMS-1 we perform OMS during 10 generations and
we store the fitness of each generations in a buffer, using a
sliding window, this is because after 10 generations the effect
of the OMS on the fitness tends to diminish considerably,
but a wider window can be also used. Subsequently, we
calculate the mean fitness improvement within the window.
If the result is not lower than a certain threshold (i.e., the
OMS is not performing any significant improvements) we
start using GSM, otherwise the evolution continues to perform
OMS until the performance improvement stagnates. This is
a simple adaptation process to switch between the different
mutation operators.

A different approach is taken in HyOMS-2. In this case both
OMS and the standard GSM are always performed, and the
mutation that provided the best improvement is kept while
the other mutation is discarded. Hence, in HyOMS-2, the
best fitness is taken by considering both methods. While this
method incurs a slight increase in computation time, it is
practically negligible given that these operations occur fully

1935

Problem Set Number of
Training Cases

Number of
Test Cases

Number of
Features

Energy CL 538 230 8
Energy HL 538 230 8

Housing 354 152 12

TABLE I
NUMBER OF CASES AND FEATURES OF SELECTED PROBLEMS

Parameter Value

Function Set +,−, /, ∗
Population Size 200

Max. Number of Generations 2000
Probability of Crossover 0.0 %
Probability of Mutation 100 %

Max. Depth of Initial Trees 6
Tournament Size 4

Mutation Step OMS, GSM (0.1)
Fitness Measurement MAE

TABLE II
CONFIGURATION OF THE GSGP RUNS.

in semantic space and none of the mutations are complex or
time consuming.

IV. EXPERIMENTAL RESULTS

This section presents our experimental work, detailing the
test problems, the tested algorithms, our experimental setup
and implementation details. Afterward, we present a detailed
discussion of the main results obtained.

A. Datasets and experimental setup

In total, the experimental evaluation includes three common
real-world problems used in machine learning and symbolic
regression literature.

We used two datasets used to predict the energy consump-
tion of residential buildings based on the heating load (Energy
HL) and cooling load (Energy CL) [18]. These datasets take
into account the insulation and construction of the building,
including floors, walls, ceilings and roofs, and the building’s
glazing and skylight based on size, performance, shading and
overshadowing. The correct estimation of HL and CL are very
important to achieve an efficient heating, ventilation and air-
conditioning (HVAC) in building designs. These datasets have
been used with GSGP before, with strong results relative to
other learning methods [18].

The third datset is referred to as Housing, which is used
to predict the housing value in the city of Boston, MA in
the USA [24]. This dataset takes into account variables like
per capita crime rate by town, index of accessibility to radial
highways, pupil-teacher ratio by town, among other important
measures. Table I summarizes the number of fitness cases and
features for each of the tested problems.

The common parameters of the GP algorithms are shown
in Table II, this is the configuration we have used for all runs.

In total, the following algorithms are tested: (1) GSGP;
(2) GSGP with Optimal Mutation Step (GSGP + OMS); two

different Hybrid methods with the OMS, namely (3) HyOMS-
1 and (4) HyOMS-2; and (5) GSGP with Error Alignment
and OMS, named GSGP-EA+OMS. All algorithms are based
on the GSGP implementation in [16], which uses tables of
references (pointers) in C++ with a fixed step mutation of 0.1
and without crossover. The switching threshold between OMS
to GMS used in HyOMS-1 was set to 0.001.

For each problem, we present two plots to analyze the
results. First, convergence plots of the median training fitness
over 30 independent runs using random partitions of the
data, with a 70-30 split between training and testing. The
second plot is a boxplot comparison of the training and testing
performance, to assess the amount of overfitting by each
method as well as the differences between the performance
of all the methods. These results are summarized in Figures
6 to 11. Moreover, a numerical summary of the results are
provided in Tables III and IV that present the median fitness
at the last generation (2000th generation) obtained for the three
problems. Table III presents the training performance, while
Table IV presents the testing performance.

B. Results and discussion

In terms of convergence, shown in Figures 6, 8 and 10, it is
evident that most of the methods that use the OMS converge
much faster than GSGP.

Some other trends include the following. First, GSGP
converges slower, but reaches the same performance (or
slightly better) on two problems (Energy CL and Energy
HL) than GSGP + OMS and GSGP-EA+OMS. Second, both
GSGP+OMS and GSGP-EA+OMS converge quickly and seem
to stagnate after a small number of generations, except for
the Housing problem where slight improvements are still
produced across all generations. On the other hand, both
hybrid approaches show a clear trend towards incremental
improvements throughout the search process, in some cases the
difference with the other methods seems substantial (Energy
CL and Energy HL). These results are confirmed in Table III,
where the best median performance is exhibited by HyOMS-
2, followed by HyOMS-1. This behaviour should be expected,
since these hybrid approaches are using a greedy approach to
discard offspring or to switch the mutation operator during the
run.

In the boxplot comparisons of Figures 7, 9 and 11, we can
see the following. First, all methods exhibit a slight effect
of overfitting, with training performance always being better
(sometimes only marginally so) than testing performance. The
uniformity is encouraging, however, because even the most
greedy hybrid approach (HyOMS-2) does not seem to deviate
from the other methods. Second, on almost all problems the
largest variance and worst performance is exhibited by GSGP-
EA+OMS, in many cases producing outlier results that are not
shown given the scale of the plots. Of all the other methods,
GSGP performs the worst, while HyOMS-2 consistently shows
the best median training and testing performance, also sum-
marized in Table IV. Finally, the hybrid methods exhibit clear
performance improvements relative to the other methods on

1936

500 1000 1500 2000
0

1

2

3

4

5

6

Generation

F
it
n
e
s
s

GSGP

GSGP+OMS

HyOMS-1

HyOMS-2

GSGP-EA+OMS

Fig. 6. EnergyCL: median of test fitness at each generation.

0

2

4

6

8

10

12

14

F
it

n
e

s
s

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

GSGP GSGP+OMS HyOMS−1 HyOMS−2 GSGP−EA+OMS

Fig. 7. EnergyCL: Box-plot comparison (not all outliers are shown).

the Energy HL and Energy CL problems, which is particularly
encouraging since it is also the problems on which overfitting
is practically non-existent for these methods.

Finally, it is instructive to analyze the behavior of HyOMS-
2 since it achieved the best performance overall. We are
interested in quantifying the number of times that either
standard GSM was applied or by using the OMS; i.e., the
percentage of mutations where the best child was produced
by standard GSM or OMS. Figures 12, 13 and 14 show these

TRAINING MAE

energyCL energyHL housing
GSGP 1.8036 1.5575 3.3542

GSGP+OMS 1.8444 1.5761 2.36
HyOMS-1 1.3266 1.0688 2.4209
HyOMS-2 1.3147 0.9832 2.0435

GSGP-EA+OMS 1.9961 1.6876 2.633

TABLE III
MEDIAN TRAINING FITNESS FOR EACH METHOD ON EACH PROBLEM,
WITH BOLD INDICATING THE BEST RESULT. MEDIAN OVER 30 RUNS.

500 1000 1500 2000
0

1

2

3

4

5

6

Generation

F
it
n
e
s
s

GSGP

GSGP+OMS

HyOMS-1

HyOMS-2

GSGP-EA+OMS

Fig. 8. EnergyHL: median of test fitness at each generation.

0

2

4

6

8

10

12

14

F
it

n
e

s
s

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

GSGP GSGP+OMS HyOMS−1 HyOMS−2 GSGP−EA+OMS

Fig. 9. EnergyHL: Box-plot comparison (not all outliers are shown).

results, as the median value of all runs for each problem.
Note that in figure 12, for problem Energy CL, and figure
14 for problem Housing, the tendency is to mainly perform
OMS at the beginning of the run and then switch to GSM.
This is consistent with the proposal in [13], where GSM with
a local search is applied for the first generations and than
standard GSM afterwards. However, OMS is still successful
in some cases (roughly < 8%) after the initial generations,

TRAINING MAE

energyCL energyHL housing
GSGP 1.8524 1.6563 3.941

GSGP+OMS 1.8926 1.6925 3.1437
HyOMS-1 1.4077 1.1225 3.2366
HyOMS-2 1.3516 0.9975 3.064

GSGP-EA+OMS 1.9188 1.695 3.5515

TABLE IV
MEDIAN OF TEST FOR THE FIVE METHODS, WITH BOLD INDICATING THE

BEST RESULT. MEDIAN OVER 30 RUNS.

1937

500 1000 1500 2000
0

1

2

3

4

5

6

Generation

F
it
n
e
s
s

GSGP
GSGP+OMS
HyOMS-1
HyOMS-2
GSGP-EA+OMS

Fig. 10. Housing: median of test fitness at each generation.

0

2

4

6

8

10

12

14

F
it

n
e

s
s

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

GSGP GSGP+OMS HyOMS−1 HyOMS−2 GSGP−EA+OMS

Fig. 11. Housing: Box-plot comparison (not all outliers are shown)

so the use of both mutation operators seems justified. On the
other hand, for the Energy HL problem, shown in figure 13, the
behavior of the algorithm is quite different. At the beginning,
when the solutions are far from the target then OMS allows
for a quicker convergence and is thus used more frequently.
Afterwards, the OMS estimation stagnates and standard GSM
(which is more explorative) is preferred, again consistent with
the results on the other two problems. The difference appears
at about generation 1000 (half of the run), where both methods
are applied with almost the same proportion. Once again, this
strongly indicates that using both methods concurrently is the
main reason why HyOMS-2 achieves the best performance.

V. CONCLUSIONS AND FUTURE WORK

This paper is part of a broader research project, aimed at de-
veloping a hardware implementation of a full GP system using
FPGAs. Given the particularities of the GSGP approach, we
believe that it presents a perfect candidate for this stated goal.
As a first step, in this work we have evaluated several recent

0 500 1000 1500 2000
0

20

40

60

80

100

Generation

%
 o

f
e

x
e

c
u

ti
o

n
b

y
g

e
n

e
ra

ti
o

n

OMS
GSM

Fig. 12. Energy CL: percentage of times that either standard GSM or OMS
generated the best offspring. The plots show the median values over 30 runs.

0 500 1000 1500 2000
0

20

40

60

80

100

Generation

%
 o

f
e

x
e

c
u

ti
o

n
b

y
g

e
n

e
ra

ti
o

n

OMS

GSM

Fig. 13. Energy HL: percentage of times that either standard GSM or OMS
generated the best offspring. The plots show the median values over 30 runs.

GSGP variants, that integrate greedy local search methods or
heuristics to improve algorithm convergence and performance.

We have compared five variations of the GSGP algorithm,
namely: (1) GSGP; (2) GSGP with Optimal Mutation Step
(GSGP + OMS); two different Hybrid methods with the
OMS, namely (3) HyOMS-1 and (4) HyOMS-2; and (5)
the GSGP with Error Alignment and OMS, named GSGP-
EA+OMS. Results show that both hybrid methods achieve
the best performance, and might present suitable approaches
for the FPGA implementation. HyOMS-2 exhibited the best
performance, but HyOMS-1 performance was very similar and
is a bit more efficient since it only utilizes a single mutation
operator, but this difference might be negligible in a parallel
implementation.

Future work, will focus on implementing the full GSGP
on an FPGA device, and in particular to implement the
proposed HyOMS-1 and HyOMS-2 variants. However, it must

1938

0 500 1000 1500 2000
10

20

30

40

50

60

70

80

90

Generation

%
 o

f
e

x
e

c
u

ti
o

n
b

y
g

e
n

e
ra

ti
o

n

OMS
GSM

Fig. 14. Housing: percentage of times that either standard GSM or OMS
generated the best offspring. The plots show the median values over 30 runs.

be stressed that this will not be a trivial endeavour, requiring
the solution of complex tasks for an FPGA device, including
program representation, genetic operators, fitness evaluation
and other tasks that are trivial when done in software but can
be quite complex operating directly on hardware.

ACKNOWLEDGMENT

First authors was supported by CONACYT (Mexico) schol-
arship 406989. Funding was provided by CONACYT (Mexico)
project FC-2015-2/944 “Aprendizaje evolutivo a gran escala”.
Authors want to thank the Tecnologico Nacional de Mexico
for its support with the project No. 5861.16-F.

REFERENCES

[1] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd. 2008.

[2] R. Poli, N F. McPhee, L. Vanneschi. Analysis of the Effects of Elitism
on Bloat in Linear and Tree-based Genetic Programming. Genetic
Programming Theory and Practice VI, Chap. 7, pp. 91-111, 2008.

[3] D. A. Augusto, H. J.C. Barbosa. Accelerated parallel genetic program-
ming tree evaluation with OpenCL. Journal of Parallel and Distributed
Computing, Vol. 73, Issue 1, pp. 86-100, January 2013.

[4] S. Harding. Evolution of image filters on graphics processor units using
cartesian genetic programming. Evolutionary Computation, IEEE World
Congress on Computational Intelligence, pp. 1921-1928, 2008.

[5] S. Harding, W. Banzhaf. Fast genetic programming on GPUs. Pro-
ceedings of the 10th European Conference on Genetic Programming
(EuroGP’07), pp. 90-101, 2007.

[6] D. Perry. VHDL : Programming By Example. McGraw-Hill Education,
2002.

[7] J. Deschamps, G. Sutter, E. Cant. Guide to FPGA Implementation of
Arithmetic Functions. Springer , 2012.

[8] B. Scheuermann, K. So, M. Guntsch, M. Middendorf, O. Diessel, H.
ElGindy, H. Schmeck. FPGA implementation of population-based ant
colony optimization. Applied Soft Computing, Volume 4, No. 3, pp. 9303
- 322, 2004.

[9] Spartan-6 FPGA Configurable Logic Block. Xilinx, 2010.
[10] Y. Jin A Comprehensive Survey of Fitness Approximation in Evolu-

tionary Computation. Soft Computing, Vol.9, No. 1, pp. 3-12, 2005.
[11] A. Moraglio, K. Krawiec and C. G. Johnson. Geometric semantic

genetic programming. Proceedings of the 12th International Conference
on Parallel Problem Solving from Nature, Vol. I, pp.21-31, 2012.

[12] S. Ruberto, L. Vanneschi, M. Castelli and S. Silva. ESAGP – A Semantic
GP Framework Based on Alignment in the Error Space. EuroGP 2014,
LNCS 8599, pp. 150-161, 2014.

[13] M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores and P.
Legrand. Geometric Semantic Genetic Programming with Local Search.
GECCO ’15, pp. 999-1006, 2015.

[14] M. Castelli, I. Gonçalves, L. Trujillo, A. Popovič. An evolutionary sys-
tem for ozone concentration forecasting. Information Systems Frontiers,
pp. 1-10, 2016.

[15] M. Castelli, L. Trujillo, L. Vanneschi, A. Popovič. Prediction of relative
position of CT slices using a computational intelligence system. Applied
Soft Computing, Vol. 46, pp. 537-542, 2016.

[16] M. Castelli, S. Silva and L. Vanneschi. A C++ framework for geometric
semantic genetic programming. Genetic Programming and Evolvable
Machines, Vol. 16, Issue 1, pp. 73-81, 2015.

[17] I. Gonçalves, S. Silva and C.M. Fonseca On the Generalization Ability
of Geometric Semantic Genetic Programming. Genetic Programming:
18th European Conference, EuroGP 2015, Proceedings, pp. 41-52, 2015.

[18] M. Castelli, L. Trujillo, L. Vanneschi, A. Popovič. Prediction of energy
performance of residential buildings: A genetic programming approach.
Energy and Buildings, Vol. 102, pp. 67-74, 2015.

[19] M. S. Brown, and M. J. Pelosi, and H. Dirska. Dynamic-radius Species-
conserving Genetic Algorithm for the Financial Forecasting of Dow
Jones Index Stocks. Proceedings of the 9th International Conference on
Machine Learning and Data Mining in Pattern Recognition, pp. 27-41,
2013.

[20] M. Brameier and W. Banzhaf. A Comparison of Linear Genetic
Programming and Neural Networks in Medical Data Mining. IEEE
Transactions on Evolutionary Computation, Vol. 5, pp. 17-26, 2001.

[21] M. Brameier and W. Banzhaf. Explicit Control of Diversity and
Effective Variation Distance in Linear Genetic Programming. Genetic
Programming: 5th European Conference, EuroGP 2002, pp. 37-49, 2002.

[22] J. F. Miller, P. Thomson. Cartesian Genetic Programming. Genetic
Programming: European Conference, EuroGP 2000, pp. 121-132, 2000.

[23] T. Perkis. Stack Based Genetic Programming. Proceedings of the 1994
IEEE World Congress on Computational Intelligence 1994, Vol. 1, pp.
148-153, 1994.

[24] J. R. Quinlan Combining Instance-Based and Model-Based Learning.
Machine Learning, Vol. 76, pp. 236-243, 1993.

[25] L. Spector. Autoconstructive Evolution: Push, PushGP, and Pushpop.
Proceedings of the Genetic and Evolutionary Computation, GECCO-
2001, pp. 137146, 2001.

[26] C. Goribar, Y. Maldonado, L. Trujillo. Random Tree Generator for an
FPGA-based Genetic Programming System. Proceedings of the Genetic
and Evolutionary Computation, GECCO-2016, pp. 1023-1026, 2016.

[27] C. Goribar, Y. Maldonado, L. Trujillo. Automatic Random Tree Gen-
erator on FPGA. NEO 2015: Results of the Numerical and Evolutionary
Optimization Workshop NEO 2015, pp. 89-104, 2017.

[28] L. Vanneschi, M. Castelli, L. Manzoni and S. Silva. A New Imple-
mentation of Geometric Semantic GP and Its Application to Problems
in Pharmacokinetics. Proceedings of the 16th European Conference on
Genetic Programming, EuroGP’13, pp. 205-21, 2013.

[29] R. Prez-Andrade, C. Torres-Huitzil, R. Cumplido Processor arrays gen-
eration for matrix algorithms used in embedded platforms implemented
on FPGAs. Microprocessors and Microsystems, Vol. 39, pp. 576-588,
2015.

[30] I. Gonçalves, S. Silva, C. Fonseca, M. Castelli, Arbitrarily Close
Alignments in the Error Space: A Geometric Semantic Genetic Program-
ming Approach Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, pp. 99-100, 2016.

1939

