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ABSTRACT
Since its introduction, Geometric Semantic Genetic Programming
(GSGP) has been the inspiration to ideas on how to reach optimal
solutions e�ciently. Among these, in 2016 Pawlak has shown how
to analytically construct optimal programs by means of a linear
combination of a set of random programs. Given the simplicity
and excellent results of this method (LC) when compared to GSGP,
the author concluded that GSGP is “overkill”. However, LC has
limitations, and it was tested only on simple benchmarks. In this
paper, we introduce a new method, Population-Wide Semantic
Crossover (PSXO), also based on linear combinations of random
programs, that overcomes these limitations. We test the �rst variant
(Inv) on a diverse set of complex real-life problems, comparing it to
LC, GSGP and standard GP. We realize that, on the studied problems,
both LC and Inv are outperformed by GSGP, and sometimes also
by standard GP. �is leads us to the conclusion that GSGP is not
overkill. We also introduce a second variant (GPinv) that integrates
evolution with the approximation of optimal programs by means
of linear combinations. GPinv outperforms both LC and Inv on
unseen test data for the studied problems.
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1 INTRODUCTION
In 2016 a paper published by Pawlak [4] claimed that the same
excellent performance as GSGP [3] can be obtained, in much shorter
running time, by means of a simple linear combination of some
particular random programs. �at work has cast a shadow on
the real usefulness of GSGP, concluding that “geometric semantic
genetic programming is overkill”.

�e objective of this paper is to take the work of Pawlak and
provide a more informed opinion on whether GSGP (and more
generally GP) is still in demand, or it is really “overkill”. More
speci�cally, we build on the same idea and introduce improvements
in three di�erent aspects: contrarily to what happens in the algo-
rithm proposed by Pawlak, in this work the initial random trees
used to build the linear combination (1) can be of any cardinality;
(2) can use any prede�ned set of primitive functions; (3) can have
any format or shape.

2 THE PSXO METHOD AND ITS VARIANTS
Let p1, p2, . . . , pm be a set of random programs, generated with any
initialization method. �e objective of the method that we propose
in this paper (that we call Inv) is to �nd the vector of weights such
that:

[s(p1), s(p2), . . . , s(pm )] w = t (1)

where, for each i = 1, 2, . . . ,m, s(pi ) is the semantics of program
pi and t is the target vector. As for the LC method, the globally
optimal solution is:

p∗ =
m∑
i=1

wipi (2)

As we can see, p∗ is a combination of the individuals pi in a pop-
ulation. In contrast to LC, the set of programs p1, p2, . . . , pm can
have any cardinality and the programs can be totally random, use
any primitive operators and have any form. Equation (2) can be
interpreted as a particular type of crossover involving all the in-
dividuals in a population. We call this operator Population-Wide
Semantic Crossover, and name our method a�er it.

In this paper, the following variants of PSXO have been studied:
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(1) Inv. �e method described above.

(2) Inv-mod. �is variant works like Inv, with the only di�er-
ence that the population contains k additional individuals, each
being a single-node program returning the value of one of k input
variables.

(3) GPinv. �e objective of this method is to integrate evolu-
tion with the Inv method. A population is randomly initialized
and an approximation of a globally optimal solution is generated
using Equation (2). �en, the population is evolved using GSOs
and, at each generation, the current population is used to �nd an-
other approximation of a globally optimal solution, again using
Equation (2).

(4) GPinv-mod. �is method integrates evolution with
Inv-mod. It works like GPinv, but as it happens for Inv-mod, the
initial population additionally contains a single-node program for
each variable in the training set, returning the value of that variable.
All these variants, in the next section, are compared with: Lin-
ear Combination (LC), that is the method presented in [4]; Stan-
dard GP (StGP), as in [2]; GSGP, as in [5, 6]; Hybrid, that is a method
that combines GSGP with local search, presented in [1].

3 EXPERIMENTAL STUDY
Eight di�erent symbolic regression test problems were considered
in the experimental study.

Results show that LC consistently returns the lowest error on
the training set for all the studied problems, but it never returns the
lowest error on the test set. More speci�cally, LC is the method that
returns the worst results on the test set for 4 over 8 of the studied
problems.

Among the proposed methods, Inv and Inv-mod are the ones that
are more similar to LC, in the sense that they are not evolutionary
algorithms and they try to reconstruct an optimal program by
means of a “one-step” linear combinations of random programs.
Speci�cally, Inv and Inv-mod are not the best methods on the
training set for any of the studied problems. While on the training
set their performance is generally comparable with the one of the
other methods, except LC, for 7 over 8 of the studied problems Inv
and Inv-mod are outperformed by the evolutionary techniques on
the test set.

Finally, GPinv and GPinv-mod return results that are generally
comparable with the best of the other evolutionary methods (StGP,
GSGP and Hybrid), both on the training and on the test set.

�ese considerations allow us to conclude that LC, Inv and
Inv-mod have returned results that are rather disappointing, which
allows us to come at diametrically opposite conclusions compared
to the work of Pawlak [4]. In other words, trying to replace evolu-
tion by a linear combination of random programs is never bene�cial
on unseen test data, at least for the problems studied here. Evolution
is still appropriate, and GSGP is not overkill.

To investigate the e�ect of population size on the presented
results. we run a set of experiments considering population sizes of
20, 100, 200, 500 and 1000 individuals. �e general conclusion we
are allowed to draw is that population size does not seem to have
a marked in�uence on the results obtained on the test set. �is

allows us to conclude that small populations (like for instance a
population size equal to 20, as in our simulations) can be used.

4 CONCLUSIONS
In this paper, we have de�ned an algorithm that, starting from
any randomly generated population is able, in one step, to �nd an
approximation of a perfect solution. �at solution consists in a
linear combination of the initial random trees and the heart of the
algorithm is the method that allows us to calculate the weights of
this linear combination, i.e., a method able to approximate a matrix
inverse, or pseudo-inverse. In the end, the solution returned by the
system is a linear combination of a population of individuals, so
we could consider it as a particular type of crossover, that we call
Population-Wide Semantic Crossover.

Experimental results suggest that, although approximating a
perfect solution by means of a linear combination of the individ-
uals in the population can be very useful, evolution is still in de-
mand. In other words, (geometric semantic) genetic programming
is not overkill.
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