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ABSTRACT
This paper shows how arbitrarily close alignments in the
error space can be achieved by Genetic Programming. The
consequences for the generalization ability of the resulting
individuals are explored.
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1. SEMANTIC AND ERROR SPACE
Geometric Semantic Genetic Programming (GSGP) [3] is

a form of Genetic Programming (GP) in which its variation
operators induce a cone landscape over any supervised learn-
ing problem. These operators have generated considerable
interest within the research community. Recently, the geo-
metric semantic mutation was even extended to the real of
feedforward Neural Networks [2]. In this context semantics
refers to the outputs of a GP individual over a set of data in-
stances. In line with the work being conducted in semantics
in GP, a recent work by Ruberto et al. [4] explored the pos-
sibility of reaching optimal individuals in terms of training
data by searching for aligned or coplanar individuals in the
error space. Following and adapting from Ruberto et al. [4],
let X = {−→x1,−→x2, ...,−→xn} be the set of input data of a super-

vised learning problem, and
−→
t = [t1, t2, ..., tn] the vector of

the respective target values. In the supervised learning con-
text, a GP individual is essentially a function that computes
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an output for each input instance −→xi . These outputs define
the semantics of an individual. Let I(−→xi) be the output of
an individual I to a given input instance −→xi . Consequently,
the semantics of an individual can be defined as the vector
−→sI = [I(−→x1), I(−→x2), ..., I(−→xn)]. The error vector of an individ-
ual can be constructed from the semantics vector by taking

into account the target vector: −→eI = −→sI −
−→
t . Two GP indi-

viduals A and B are optimally aligned in the error space if
a scalar k exists such that: −→eA = k · −→eB . Ruberto et al. [4]
showed that from these two aligned individuals it is possible
to analytically construct an optimal individual in terms of
training data. However, in the experiments conducted by
these authors they were unable to find aligned or coplanar
individuals. Consequently, the question of how to effectively
find these regularities in the error space is still unanswered.
An important related question is that of generalization to
unseen data. It is still unclear how would the individuals
created from the aligned or coplanar individuals behave in
terms of generalization. Would these individuals generalize
well or would they overfit?

2. ARBITRARILY CLOSE ALIGNMENTS
The approach proposed in this paper is based on the fact

that a target semantics that guarantees an optimal align-
ment can be easily defined. Consequently, the search can
be modified to find individuals that produce this new target
semantics, as opposed to searching directly for individuals
that fit the original targets. By choosing a given individual
and a given error vector proportionality constant (k), it is
immediately defined what is the semantics of the other in-
dividual needed to reach an optimal alignment. Concretely,
given any individual A and any error vector proportional-
ity constant k, an individual B is optimally aligned with
A if it produces by the following error vector: −→eB = −→eA/k,
which consequently derives from the following semantic vec-

tor: −→sB = −→eB +
−→
t . Knowing now the definition of −→sB , the

search can be redefined to find an individual that produces
this semantics. By achieving this, an optimal alignment is
found and, consequently, an optimal individual in terms of
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training data can be constructed. It is important to empha-
size that this redefinition of the target semantics does not
change the nature of the semantic space. In particular, by
using the geometric semantic operators, the search process
can still take advantage of the unimodality of the semantic
space. Since this space has no local optima, and given that
the geometric semantic mutation is an effective operator [1],
the search can be focused around the current best individ-
ual. In other words, a geometric semantic hill climber is
an effective and efficient strategy for conducting the search.
Recently it has been shown that using a geometric semantic
hill climber leads to faster convergence when compared to
a traditional population-based approach [1]. The geomet-
ric semantic crossover was also shown to be inefficient in
comparison with the geometric semantic mutation [1]. For
these reasons, the approach proposed in this paper uses a
geometric semantic hill climber to explore the search space.
This approach will be referred to as ACA-SSHC: Arbitrarily
Close Alignments (ACA) - Semantic Stochastic Hill Climber
(SSHC) [3]. Starting with a given k and any initial indi-
vidual (A), ACA-SSHC computes the new target semantics
(−→sB), and it continually applies the geometric semantic mu-
tation until a desired alignment is found. In this work the
stopping criterion is based on the training error of the indi-
vidual that can be constructed analytically from the current
best alignment found.

The experimental parameters used are the same as in
Gonçalves et al. [1]. The mutation used (DABM [1]) is a
modified version of the original geometric semantic muta-
tion that adds a weight to the parent, and optimally com-
putes this weight and the weight equivalent to the mutation
step. This mutation was shown to be very efficient [1]. A
SSHC that searches directly for the original target is used as
baseline for comparison against the proposed approach. For
both approaches, the training error threshold used as the
stopping criterion is 1.0 Root Mean Squared Error (RMSE).
Notice that since the stopping criterion is based on the train-
ing error, the number of generations is variable. The error
on unseen data is referred to as generalization error. The
datasets used are the same as in Ruberto et al. [4]: PPB
and LD50.

3. RESULTS AND CONCLUSIONS
Preliminary testing showed that the value of k does not

have influence in the search outcome. For this reason, the
following results are presented only for the specific case of
k = 1.1. Starting with ACA-SSHC, we first present the
results that show that this approach is effective in finding
near-optimal alignments in the error space. The alignment
of two individuals (A and B) can be computed by the abso-
lute cosine similarity between their respective error vectors:

| cos θ| = |
−→eA×−→eB

||−→eA||·||−→eB ||
|. Where × represents the scalar prod-

uct between two vectors, and ||.|| represents the Euclidean
norm of a vector. Two optimally aligned individuals will
have an absolute cosine similarity of exactly 1, and two or-
thogonal individuals (i.e., with an angle of 90◦) will have
an absolute cosine similarity of exactly 0. Table 1 shows
the median, average, and Standard Deviation (SD) of the
absolute cosine similarity achieved in both datasets. These
results show that the proposed approach is effective in find-
ing near-optimal alignments.

Table 2 shows the generalization error achieved for ACA-

Table 1: Absolute cosine similarity achieved

Dataset
Absolute cosine similarity

Median Average SD
PPB 0.99879 0.99868 0.00040
LD50 9.999996e-01 9.999996e-01 5.527597e-08

Table 2: Results for ACA-SSHC and SSHC

Dataset Method
Generalization error

Median Average SD

PPB
ACA-SSHC 42.6 3.2e+07 1.5e+08

SSHC 49.7 3.9e+09 2.1e+10

LD50
ACA-SSHC 5316.1 6.9e+49 3.8e+50

SSHC 4457.4 3.8e+26 2.0e+27

SSHC and SSHC. Both approaches overfit the training data.
In comparable experiments, the best median generalization
error achieved is around 30 RMSE for PPB and around
2000 for LD50, e.g., [1]. This shows that searching for near-
optimal alignments is risky in terms of generalization. How-
ever, it also shows that the issue of overfitting is not par-
ticular to an approach with near-optimal alignments, and
that it is more clearly related to the very low training error
threshold defined. In terms of the number of generations
needed to reach the threshold (not shown), both approaches
are relatively similar.

A closer look to the PPB results shows that it is possi-
ble, in the best runs, to reach near-optimal alignments while
still achieving a competitive generalization (around or lower
30 RMSE). The best run achieves 27.7 RMSE. This indi-
cates that a possible research venue is to identify some ad-
ditional criteria that could help identify whether a given
alignment/run is likely to be competitive in terms of gener-
alization.
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