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Abstract. One of the most important goals of any Machine Learning
approach is to find solutions that perform well not only on the cases
used for learning but also on cases never seen before. This is known
as generalization ability, and failure to do so is called overfitting. In
Genetic Programming this issue has not yet been given the attention it
deserves, although the number of publications on this subject has been
increasing in the past few years. Here we perform several experiments
on a small and yet difficult toy problem specifically designed for this
work, where a perfect fitting of the training data inevitably results in
poor generalization on the unseen test data. The results show that, on
this problem, a Random Sampling Technique with parameter settings
that maximize the variation between generations can significantly reduce
overfitting when compared to a standard GP approach. We also report
the results of some techniques that failed to achieve better generalization.
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1 Introduction

Genetic Programming (GP) is an evolutionary computation technique that auto-
matically solves problems without needing to know the structure of the solution
in advance [2]. One of the areas in GP that has been recently recognized as an
open issue that needs to be addressed in order for GP to realize its full potential
is the one of generalization [6]. Generalization is the ability to find solutions that
perform well not only on the cases used for learning but also on cases never seen
before. Achieving good generalization ability is one of the most important goals
of any Machine Learning (ML) approach such as GP. Failure to generalize well
is called overfitting, when the solution performs well on the training cases but
poorly on the test cases. This indicates that the underlying relationships of the
whole data were not learned, and instead a set of relationships existing only on
the training cases were learned, but these have no correspondence over the whole
possible set of cases.

The issue of generalization in GP has not yet received the attention it de-
serves. Other non-evolutionary ML methods have dedicated a far larger amount

EPIA'2011 ISBN: 978-989-95618-4-7

152



2 Experiments on Controlling Overfitting in Genetic Programming

of research effort to it, although the number of publications dealing with overfit-
ting in GP has been increasing in the past few years. Notably, in Koza [7] most
of the problems presented did not use separate training and test data sets, so
performance was never evaluated on unseen cases [8]. Part of the lack of general-
ization efforts can be related to another issue occurring in GP - bloat. Bloat can
be defined as an excess of code growth without a corresponding improvement in
fitness [9]. This phenomenon occurs in GP as in most other progressive search
techniques based on discrete variable-length representations. Bloat was one of
the main areas of research in GP, not only because its occurrence hindered the
search progress but also because it was hypothesized, in light of theories such as
Occam’s razor and the Minimum Description Length, that a reduced code size
could lead to a better generalization ability. Researchers had a common agree-
ment that these two issues were related and that counteracting bloat would lead
to positive effects on generalization ability. This, however, has been recently chal-
lenged. Contributions show that bloat free GP systems can still overfit, while
highly bloated solutions may generalize well [10]. This leads to the conclusion
that bloat and overfitting are in most part two independent phenomena. In light
of this finding, new approaches to improve GP generalization ability are in need,
particularly those not based on merely biasing the search towards shorter so-
lutions. It was this challenge that motivated the development of the current
work, which is only one of the first steps of a larger research effort directed at
understanding and controlling overfitting in GP.

Section 2 reviews the state of the art of the generalization issue in GP. Sec-
tion 3 reports the proposed techniques and the experimental settings. Section 4
presents and discusses the results. Section 5 concludes and presents the future
work.

2 State of the art

The most common approaches to reducing overfitting in GP are those based on
biasing the search towards shorter solutions. Becker and Seshadri [11] proposed
adding a complexity penalty factor to the fitness function. Mahler et al. [12]
explored to what extent Tarpeian bloat control affects GP generalization ability.
Gagné et al. [13] tested the application of parsimony pressure. Cavaretta and
Chellapilla [14] used a low-complexity-bias algorithm that uses a modification in
the fitness function meant to penalize larger individuals. Zhang et al. [15] also
addressed the relationship between size and generalization performance by using
a fitness function with two components: fitting error and size.

More recent approaches bias the search process to less complex solutions. In
these approaches complexity is not simply defined as solution size. Vladislavl-
eva et al. [16] proposed a complexity measure called order of nonlinearity. This
measure adopts the notion of the minimal degree of the best-fit polynomial, ap-
proximating an analytical function with a certain precision. The main objective
behind the proposed complexity measure is to favor smooth and extrapolative
behavior of the response surface and to discourage highly nonlinear behavior,
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Experiments on Controlling Overfitting in Genetic Programming 3

which is unstable towards minor changes in inputs and is dangerous for extrap-
olation. Vanneschi et al. [17] proposed a functional complexity measure based
on the classic mathematical concept of curvature. Informally, the curvature of
a function can be defined as the amount by which its geometric representation
deviates from being straight. This complexity measure expresses the complex-
ity of a function by counting the number of different slopes. Other complexity
measures have been recently studied [18, 19].

Also recently, approaches based on similarities between solutions have started
to appear. Uy et al. [20] proposed a Semantic Similarity based Crossover ap-
proach which is based on the Sampling Semantics Distance between two trees
(or subtrees), which is calculated by choosing N random points (fitness cases)
and calculating the mean absolute difference between each corresponding points
on the two trees. The authors argue that the exchange of subtrees is most likely
to be beneficial if the two subtrees are not too similar or too dissimilar. Van-
neschi and Gustafson [21] proposed avoiding solutions similar to already known
overfitted solutions. The proposed method (repGP) keeps a list of overfitting
individuals (called repulsors) and prevents any new individual to enter the next
generation if they are similar to any of the known repulsors.

Various other approaches were proposed. A simple and elegant idea was pro-
posed by Da Costa and Landry [22]. The idea is to relax the training set by
allowing a wider definition of the desired solution which translates into consid-
ering not only the desired output y correct but allow a more broader range to
be considered, i.e. allow any output in the range [ymin, ymax]. Chan et al. [23]
proposed a statistical method called Backward Elimination that works by elim-
inating insignificant terms in polynomials models such as those produced by
GP. Nikolaev et al. [24] proposed several techniques to balance the statistical
bias and variance. In the context of financial applications, Chen and Kuo [25]
proposed a measure of degree of overfitting based on the extracted signal ra-
tio. Foreman and Evett [26] proposed Canary Functions, where the idea is to
measure overfitting during the run by using a validation set. When overfitting
starts to occur the search process is stopped. Vanneschi et al. [27] argued that
using GP with a multi-optimization approach can enhance the generalization
ability of the resulting solutions. This approach uses two other criteria besides
the traditional sum of errors. These are: the correlation between outputs and
targets (to maximize) and the diversity of pairwise distances between outputs
and targets (to minimize). Robilliard and Fonlupt [28] applied a method called
Backwarding that goes back as much as needed in the evolution process until
the point that overfitting is not yet very relevant. This is achieved by saving
two copies of the solutions: one copy for the best solution on the training set
and another copy for the best solution on the validation set. At the end of the
GP process the best saved solution for the validation set is returned. Finally, in
the context of the Compiling Genetic Programming System, Banzhaf et al. [29]
showed the positive influence of the mutation operator in generalization ability.

Although these and a number of other works have addressed the issue of
overfitting in GP, they appear as a set of isolated efforts scattered along the
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Fig. 1. First pair of training (left) and test (right) data sets used in our experiments
(blue lines) drawn with the original quartic function (red dots)

years and among different applications. Nevertheless, as GP matures and slowly
becomes a mainstreamML approach, also the overfitting issue is slowly becoming
a central research subject.

3 Experiments

3.1 Data

Given that GP is still lacking any benchmarks specifically designed for studying
generalization and overfitting, we have designed a very simple toy problem where
to run our experiments. It would be possible, of course, to use a real world
problem as a test case, however the unpredictable errors and inaccuracies of real
data could bias the results and prevent us from drawing solid conclusions.

We took one of the simplest GP benchmark problems commonly used to
study the learning ability of GP, the symbolic regression of the quartic polyno-
mial x4 + x3 + x2 + x using only 21 equidistant points in the interval −1 to +1.
To the expected output value of each point we randomly added or subtracted
the fixed value 1. We did this 10 times to create 10 different training sets, and
an additional 10 times to create their 10 respective test sets. We performed 30
independent runs for each of the experiments described in the next section, in
each one using one training + test pair, each pair being used in 3 different runs.
Fig. 1 plots the modified training and test data used as the first pair, together
with the original data.

Note that this is not the usual way to partition a data set into training + test.
What is usually done is to use a fraction of the data points for training, reserving
the rest for testing. However, we wanted to ensure that, in our toy problem, a
perfect fit of the training data would inevitably result in overfitting, so we used
the same set of points for both training and testing, but with different expected
outputs. It can be argued that this problem is impossible to solve, but this is
exactly what most real world problems are. Our goal is to develop a technique
that avoids overfitting such that the final solution will not be perfect in either
training or test set, but will have the same error in both sets. That solution is
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Experiments on Controlling Overfitting in Genetic Programming 5

precisely the one that perfectly fits the original quartic polynomial before the
noise was added.

Also note that, although originally simple, the newly designed noisy quartic
problem is now very difficult to solve. In particular, our goal is very difficult to
achieve, since each of the 21 modified points heavily biases the search towards
solutions that are wrong, i.e., that overfit. It is possible to decrease the difficulty
of the problem by using more points and applying smaller changes to their
original value, but we have used it exactly as described above.

3.2 Techniques

Two main types of techniques are proposed: an extension to the Random Sam-
pling Technique and several validation set based approaches.

The first proposal is to extend the Random Sampling Technique (RST) used
by Liu and Khoshgoftaar [1]. This technique had been previously used to improve
the speed of a GP run [30], however in [1] it was used to reduce overfitting in
a classification task in the context of software quality assessment. In the RST,
the training set is never entirely used in the search process. Instead, at each
generation, a random subset of the training data is chosen and evolution is
performed taking into account the fitness of the solutions in this subset only. This
implies that only individuals that perform well on various different subsets will
remain in the population. It is expected that, since these surviving individuals
perform reasonably well on different subsets, they have captured the underlying
relationships of the data instead of overfitting it. In [1] the size of each random
subset was 50% of the whole training set. The approach proposed here will be
more flexible in two main aspects. Firstly, the size of the random subset can be
defined as any percentage of the training set. Secondly, the rate at which a new
random subset is chosen can be defined as either being at each N generations or
as a percentage of the total number of generations. These two RST parameters
are respectively labelled as Random Subset Size (RSS) and Random Subset Reset
(RSR). In this extended approach they can be defined as any value, as opposed
to their static nature in the abovementioned work. Experiments are performed
in order to find promising combinations of these parameters.

Two simple variants of the RST are also experimented. These are RST NENR
and RST Std Dev. RST NENR is simply the RST without elitism or any kind of
replication of individuals into the next generation. NENR stands for No Elitism
and No Replication. RST Std Dev uses a two component fitness function as
opposed to the Root Mean Squared Error (RMSE) used on the regular RST.
The first component is the RMSE and the second is the standard deviation
(Std Dev) of the differences between outputs and targets. Both components are
weighted equally.

The other proposed approaches are based on the usage of a validation set
during the search process and the inclusion of information about this set in the
fitness function. The validation set is formed by taking 50% random samples
from the training set, which for our toy problem results in very small training
and validation sets (approximately 10 samples each). The techniques presented
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6 Experiments on Controlling Overfitting in Genetic Programming

in this section are called Validation Start (VS), Validation Evaluation (VE),
Validation Std Dev Start (VSDS), Validation Std Dev Evaluation (VSDE) and
Validation Complexity Start (VCS).

VS and VE define fitness as a weighted combination of the RMSE on the
training set and the absolute difference between the RMSE in the training set
and the RMSE in the validation set. The goal is to optimize the RMSE on the
training set while maintaining similar RMSE values on the validation set without
specifically measuring it on this set. These components are weighted by different
but correlated weights w1 and w2. w1 is randomly chosen between 0 and 1, and
the w2 is such that w1+w2 = 1. VS and VE differ from each other in the moment
when the weights are chosen. In VS this happens only once at the start of the
run. In VE new weights are chosen every time there is a fitness evaluation.

VSDS and VSDE build on VS and VE by adding another component to the
fitness function. This component is Std Dev, the same used in RST Std Dev,
calculated on the original training data (current training and validation sets),
with the goal of promoting smoothness of the solutions. The three weights w1,
w2 and w3 are chosen randomly with w1 + w2 + w3 = 1. As with VS and VE,
both a single (at start) and a periodical (at each fitness evaluation) generation
of weights are possible, respectively designated as VSDS and VSDE.

VCS builds on VS by also adding one fitness component to the fitness func-
tion. This component is a measure of solution complexity based on the concept
of curvature [17] mentioned in Section 2 and is calculated on the training set
only. All the weights sum to 1 and are chosen once at the start of the run. The
goal is also to promote the smoothness of the solutions.

Standard GP with RMSE as the fitness function is used as the baseline
technique. Standard NENR refers to Standard GP without elitism or replication.
Standard Std Dev refers to Standard GP with a fitness function using the same
two components (RMSE and Std Dev) as RST Std Dev.

3.3 Tools and Parameters

All the experiments were performed using a modified version of GPLAB [4], a
Genetic Programming Toolbox for MATLAB. Statistical significance of the null
hypothesis of no difference was determined with pairwise Kruskal-Wallis non-
parametric ANOVAs at p=0.05. A non-parametric ANOVA was used because
the data is not guaranteed to follow a normal distribution. For the same reason,
the median was preferred over the mean in all the evolution plots shown in the
next section. The median is also more robust to outliers.

The experimental parameters are provided in Table 1. Furthermore, crossover
and mutation points are selected with uniform probability. Unless stated oth-
erwise, fitness is calculated as the Root Mean Squared Error (RMSE) between
outputs and targets.
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Experiments on Controlling Overfitting in Genetic Programming 7

Runs 30

Population 500

Generations 100

Crossover operator Standard subtree crossover, probability 0.9

Mutation operator Standard subtree mutation, probability 0.1,
new branch maximum depth 6

Tree initialization Ramped Half-and-Half [2],
maximum depth 6

Function set +, -, *, and /, protected as in [2]

Terminal set Input variable and no random constants

Selection for reproduction Lexicographic Parsimony Pressure [3],
tournaments of size 10

Elitism Replication rate 0.1,
best individual always survives

Maximum tree depth 17

Table 1. GP parameters used in our experiments

4 Results and Discussion

This section presents and discusses the results achieved following the experi-
mentation chronological order and the reasoning behind each new experiment.
For the remainder of this paper, the terms training fitness and test fitness are
to be interpreted in the following way: training fitness is the fitness of the best
individual in the training set; test fitness is the fitness of that same individual
in the test set.

4.1 Experiments on RST

Our first set of experiments was performed in order to determine what would be
the most promising parameter values for the RST. RSS was the first parameter
tested on preliminary experiments, where values 50%, 40%, 30%, 20%, 10%, 5%
and 1 were tested (1 means each subset contains only 1 data sample, not 1% of
the samples). These initial experiments suggested that lower values of RSS are
normally better in terms of test fitness. They are also worse, as expected, in terms
of training fitness. The best value found in the initial experiments was precisely
1, the one that uses only one fitness case. Considering these preliminary results,
and since an exhaustive experimentation would be impractical, we decided to
deepen the study of the RSS influence only for values 1 and 50%. The first is
justified by the preliminary good results and the second is justified for being
a good middle ground to experiment with, and also the value used in [1]. The
same preliminary experiments also suggested that an RSR value of 1 is better
than 5, so we fixed RSR to value 1 while varying the RSS value. Results show
that an RSS of 1 is statistically better than an RSS of 50% in terms of test
fitness (Fig. 2, left). As for training fitness (Fig. 2, right), the reverse is true,
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8 Experiments on Controlling Overfitting in Genetic Programming
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Fig. 2. Boxplot of test fitness (left) and training fitness (right) for RST RSS=1/50%
RSR=1
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Fig. 3. Evolution plots for RST RSS=1 RSR=1 (left) and RST RSS=50% RSR=1
(right)

being value 50% statistically better than value 1. Test fitness results confirm the
validity of the initial impression over the RSS value 1. It seems that using very
few fitness cases (in this case only one) is, at least in this data set, enough to
improve the generalization ability. Training fitness results come as no surprise
since using more learning cases intuitively facilitates the learning process and,
consequently in this case, aggravates the overfitting issue.

The evolution plots (Fig. 3) show that an RSS of 1 produces a constant or
slightly changing gap between the training and test fitness values. On the other
hand, value 50% presents a constantly widening gap between both values. It
seems that the higher the RSS value, the larger the gap, i.e., the more overfitting,
so the value 1 was concluded to be the best value for the RSS.

The second step in this first set of experiments was to find a suitable value
for RSR. As mentioned before, preliminary experiments showed that the value
1 seemed more promising than the value 5, so the following values of RSR were
tested: 1, 5, 10 and 20. For 100 generations per run, this implies that we are
ranging the algorithm from choosing a new subset 100 times per run (RSR
value 1) to choosing a new subset 5 times per run (RSR value 20). Given the
previous results, the RSS is set to value 1. Results show a tendency for test
fitness to worsen as the RSR is increased (Fig. 4, left), although the difference
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Fig. 4. Boxplot of test fitness (left) and training fitness (right) for RST RSS=1
RSR=1/5/10/20

only achieves statistical significance for the comparison between values 1 and 20.
A similar tendency is seen in the training fitness results (Fig. 4, right), where
value 1 is shown to be the best, being statistically better than every other value.
Also, value 5 is statistically better than value 20.

When looking at the corresponding evolution plots, only little differences can
be observed for the different values of RSR, and the most noticeable difference
is a better training fitness achieved with RSR = 1. We do not include here the
plots obtained with RSR = 5/10/20 and instead refer the reader to Fig. 3 (left)
that shows the results for RSR = 1. RSS seems to be a much more influential
parameter than RSR.

The results from this first set of experiments allow us to conclude that the
best parameter configuration, among the tested values, is setting both RSS and
RSR to value 1. It seems that using a low RSS value helps achieving better test
fitness while, in the process, resulting in worse training fitness. As for the RSR,
low values seem to be suited to achieve better training fitness while preserving
test fitness. We conclude that having a low RSS value is not that damaging to
the training fitness as long as the changes on the random subset occur often
enough (low RSR value). Having low values on both RSS and RSR appears to
be a good compromise between improving test fitness and not having excessive
decline on training fitness.

4.2 Comparison with Standard GP

The next step was to assess the RST performance against the baseline technique
- standard GP. Results show that the RST is statistically better on test fitness
(Fig. 5, left), which supports our initial view on the potential of the RST for
improving generalization ability. Using less fitness cases in each generation and
inducing frequent changes on the chosen fitness cases is indeed helpful in improv-
ing test fitness. On training fitness, standard GP is statistically better (Fig. 5,
right). This last result is not surprising for the same reason presented in the
comparison between values 50% and 1 of RSS shown earlier (using more fitness
cases facilitates the learning process). The evolution plot for Standard GP (not
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Fig. 5. Boxplot of test fitness (left) and training fitness (right) for RST RSS=1 RSR=1
and Standard GP
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Fig. 6. Best solutions obtained in the first five training sets (blue lines) drawn with the
original quartic function (red dots) for Standard GP (left) and RST RSS=1 RSR=1
(right)

shown) is similar to the one of RST RSS=50% RSR=1% (Fig. 3 (right)) with a
large and constantly widening gap between the training and test fitness values.

We looked deeper into the results and observed the best solutions obtained
by Standard GP and RST RSS=1 RSR=1 in the five first training sets of our
toy problem (Fig. 6). The differences in the shape of the solutions are obvi-
ous. Standard GP finds rugged functions that closely fit the noisy training data
(which is not plotted), while RST finds smoother functions that approximate
the original noiseless data (red dots) much better. Another important difference
between both techniques is found at the population level. In the Standard GP
population there is a large amount of individuals that are equal or very similar
to the best individual. In RST the top best individuals of the population usually
show large differences between them, suggesting a much higher diversity at least
among the best of the population, and possibly a very quick “rotation” of the
best as the training subset changes.
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Experiments on Controlling Overfitting in Genetic Programming 11

4.3 Variations on Standard GP and RST

The smoothness and diversity of best solutions found by RST, described above,
prompted our next experimentation steps. In an attempt to replicate or further
promote each of these two features (smoothness and diversity) we applied small
variations to Standard GP and RST, namely a fitness function that also tries to
minimize the standard deviation of the differences between outputs and targets,
and a non elitist version where no individual is ever copied into the next gen-
eration. As described in Section 3, we designate these variants as Standard Std
Dev, Standard NENR, RST Std Dev, and RST NENR. Both RST variants use
the best configuration found previously: both RSS and RSR set to 1.

Standard NENR revealed to be statistically better than Standard GP on
training fitness, but on test fitness there were no differences. This suggests that
the elitism is driving the search into local optima, possibly due to a loss of
diversity that is particularly obvious among the elite part of the population. We
looked at some examples of solutions found by Standard Std Dev, comparing
them to the ones found by Standard GP (not shown), and found them to be
slightly smoother visually, but not enough to award statistical significance. This
small smoothing effect does not accumulate with the smoothness of RST, as
RST Std Dev is not statistically different from the regular RST. In fact, the
regular RST and its two variants did not show any significant difference between
them, either in training or test fitness. This implies that these variations do
not influence the learning or the generalization. Regarding RST NENR, this
conclusion is not so surprising because the diversity was already high in the
regular RST. However, the RST Std Dev results were somewhat unexpected,
and it is not clear why the modified fitness function did not affect the learning
process. We hypothesize that assigning equal weights to RMSE and Std Dev
may be insufficient, and if Std Dev was given a higher weight the results could
be different. This matter was not yet further explored. We can, however, view
the comparison between RST and RST Std Dev in light of the Occam’s Razor
and reason that, since adding a new fitness component does not bring anything
new, then we prefer the simpler method - RST. Given the previous arguments
we shall keep regular RST as our chosen technique.

It is important to emphasize that, although RST Std Dev and RST NENR
did not improve RST results, they are both statistically better on test fitness,
and statistically worse on training fitness, than Standard GP. Also, although
Standard NENR was better than Standard GP on training fitness, we do not
consider this to be relevant in terms of generalization so we keep Standard GP
as the baseline technique.

4.4 Additional Techniques

The last set of experiments was intended to measure the performance of the
validation based techniques (described in Section 3) against Standard GP and
RST. The five techniques under analysis are: Validation Start (VS), Validation
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Fig. 7. Boxplot of test fitness for Standard GP, RST RSS=1 RSR=1, VS, VE, VSDS,
VSDE and VCS (see Section 3.2 for the description of the acronyms)
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Fig. 8. Boxplot of training fitness for Standard GP, RST RSS=1 RSR=1, VS, VE,
VSDS, VSDE and VCS (see Section 3.2 for the description of the acronyms)

Evaluation (VE), Validation Std Dev Start (VSDS), Validation Std Dev Eval-
uation (VSDE) and Validation Complexity Start (VCS). The results (Figs. 7
and 8) show that none of these techniques is able to achieve better test fitness
than Standard GP. VE is even statistically worse than Standard GP on test fit-
ness. Furthermore, all of the techniques are worse than Standard GP on training
fitness. As expected given the results reported previously, RST is statistically
better on test fitness than all the other techniques. On training fitness VS and
VCS are statistically better while the others are neither better nor worse.

The evolution plots of these five techniques (not shown) are rather similar to
each other. They lie between the evolution plots of the RST and the Standard
GP. The gaps between training and test fitness are larger that on the RST but
smaller than on Standard GP. This, however, does not result in any significant
advantage in terms of test fitness against Standard GP.
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Experiments on Controlling Overfitting in Genetic Programming 13

These results show that the five validation based techniques are not interest-
ing in terms of generalization ability. However, this may have happened because
of the small number of samples in the training set, so we believe they deserve
further investigation.

5 Conclusions and Future Work

In this work we have taken some of our first steps towards the understanding
and controlling overfitting in GP in order to improve the generalization ability
of its solutions. We have summarized the current state of the art on this subject,
which is composed of a set of isolated efforts scattered along the years and among
different applications. However we have also noticed that, as GP matures and
slowly becomes a mainstream ML approach, also the overfitting issue is slowly
becoming a central research subject.

Given that GP is still lacking any benchmarks specifically designed for study-
ing generalization and overfitting, we have designed a small but difficult toy
problem where we could run all our experiments without the danger of drawing
biased conclusions from real world inaccurate data. In this problem, a perfect
fitting of the training data inevitably results in poor generalization on the un-
seen test data, thus replicating the difficulties that are usually present in real
applications.

We have proposed two main types of techniques to control overfitting in GP,
using a standard GP approach as the baseline for comparison. The first set of
techniques is an extension of the previously published Random Sampling Tech-
nique (RST), previously used to improve the speed of a GP run [30] and more
recently to reduce overfitting in the context of software quality classification [1].
In the original RST the training set is never entirely used in the search process.
Instead, at each generation, a random subset of the training data is chosen and
evolution is performed taking into account the fitness of the solutions in this
subset only. In our extended implementation of RST we have introduced two
parameters that control the size of the subset (RSS) and how often its samples
are changed (RSR). The results have shown that, on our toy problem, RST with
parameter settings that maximize the variation between generations (RSS=1
and RSR=1) can significantly reduce overfitting when compared to a standard
GP approach. Slight variations were also tested, with the goal of promoting the
smoothness of the functions proposed as solutions and the diversity of the best
individuals in the population, and both performed equally well.

The second set of techniques we proposed are based on the usage of a valida-
tion set during the search process and the inclusion of information about this set
in the fitness function. The validation set is formed by taking half of the samples
from the training set, which for our toy problem results in very small training
and validation sets. This may have been the reason why none of these techniques
succeeded in improving generalization ability when compared to Standard GP.

The subject of generalization and overfitting in GP is crucial in order for
GP to become a mainstream ML technique. Our next steps will be to perform
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a more thorough review of the published work on this subject, along with the
formalization of benchmark problems where new and old overfitting control tech-
niques may be tested and compared to each other. The techniques described here
are currently being used in hard multidimensional real world problems, already
with some reported successes. Comparing these achievements with the results of
other regression methods, evolutionary or not, is part of our future work. Under-
standing the dynamics of overfitting in GP and developing a simple technique
to completely eliminate it from the search process is our ultimate goal.
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