
  

 

Abstract— Heart rate variability (HRV) represents one of 

the most promising markers of the autonomic nervous system 

(ANS) regulation. However, it requires the acquisition of the 

ECG signal in order to reliably detect the RR intervals, which 

is not always easily and comfortably available in personal 

health applications. Additionally, due to progress in single spot 

optical sensors, photoplethysmography (PPG) is an interesting 

alternative for heartbeat interval measurements, since it is a 

more convenient and a less intrusive measurement technique. 

Driven by the technological advances in such sensors, wrist-

worn devices are becoming a commodity, and the interest in the 

assessment of HRV indexes from the PPG analysis (pulse rate 

variability – PRV) is rising. 

In this study, we investigate the hypothesis of using PRV 

features as surrogates for HRV indexes, in three different 

contexts: healthy subjects at rest, healthy subjects after 

physical exercise and subjects with cardiovascular diseases 

(CVD). Additionally, we also evaluate which are the 

characteristic points better suited for PRV analysis in these 

contexts, i.e. the PPG waveform characteristic points leading to 

the PRV features that present the best estimates of HRV 

(correlation and error analysis). The achieved results suggest 

that the PRV can be often used as an alternative for HRV 

analysis in healthy subjects, with significant correlations above 

82%, for both time and frequency features. Contrarily, in the 

post-exercise and CVD subjects, time and (most importantly) 

frequency domain features shall be used with caution (mean 

correlations ranging from 68% to 88%). 

I. INTRODUCTION 

Heart rate variability (HRV) parameters quantify the 
change of time periods between consecutive cardiac cycles. It 
has been proven to be a valuable tool to characterize and 
understand the regulation of the cardiovascular system by the 
autonomic nervous system (ANS) [1]. In HRV analysis, the 
RR intervals obtained from the ECG are required [2]. 
Nevertheless, in principle, any signal providing accurate 
inter-beat heartbeat intervals could be used instead. A 
promising alternative technology is PPG, which can 
potentially provide similar results compared to a HRV 
analysis. However, since pulse signals are used, it shall be 
called pulse rate variability (PRV) instead [3]. Due to its 
technological and practical advantages, PPG is becoming 
increasingly popular in wrist-worn devices for pulse rate 
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detection [3, 4], driving the interest for PRV analysis (rather 
than HRV) in different physiological, demographic and 
biometric circumstances. The PRV may achieve better 
estimates than HRV under some circumstances, such as when 
the ECG is subject to ECG-specific electrical artifacts, e.g., 
during clinical interventions [4]. 

Recent research has shown a sufficient accuracy of PRV 
compared to HRV in healthy mostly young subjects at rest 
[3], with high correlations (r) of both time and frequency 
domain parameters (r > 0.94, p-value < 0.0001) [5], and 
suitable limits of agreement: from [-0.1, 0.1] min

-1
 (in heart 

rate – HR) to [-7.0; 19.8] % (in pNN50) and from [-1.38; 0.9] 
n.u. (in low/high frequency ratio – LF/HF) to [-202; 343] ms

2
 

(in low frequencies – LF) [6]. In non-stationary conditions, 
like the tilt table test, similar results were found [7]. 

It has also been shown that PRV-derived parameters tend 
to overestimate HRV values representing physiological 
processes related with short-term variability [3], but without 
impairing the evaluation of ANS in individuals at rest: 
absolute differences from 0.0±0.7 min

-1
 (in HR) to 6.4±0.8% 

(in pNN50), and from 0.31±0.21 n.u. (in LF/HF) to 54±44 
ms

2
 (in HF) [6]. A major challenge for using PPG in HRV 

analysis is its sensitivity to motion artifacts [3, 5]. 
Suppression of these artifacts by improved algorithms is a 
popular research topic [8]. A complementary strategy for 
artifact suppression deals with acquisition from other body 
sites, like the earlobe [5, 6] or inside the auditory canal [9]. 
Often, an acceleration signal is synchronously acquired as 
well [5, 8], enhancing the deletion of motion artifacts using 
sensor fusion approaches. 

Rauh et al. [6] achieved appropriate limits of agreement 
between the ECG-derived HR and the PPG-derived pulse rate 
(PR) in healthy subjects for paced breathing. However, worse 
ranges were observed for some parameters (from [-0.4, 0.5] 
min

-1
 – HR – to [-10.2; 21.3] % – pNN50 – in the time 

domain, and from [-4.56; 3.31] n.u. – LF/HF – to [-715; 
1260] ms

2
 – LF – in the frequency domain), which was 

interpreted as a higher influence of breathing effects on the 
PPG compared to the ECG. Similar results were reported 
during obstructive sleep apnea events [10]. Furthermore, Han 
et al. [11] found that different breathing patterns lead to 
unequally altered characteristics of HRV and PRV. Breathing 
frequency had a higher impact than breathing volume. It was 
also demonstrated that the agreement between HRV and 
PRV-derived frequency features diminishes (e.g., a decrease 
of 28% in HF) during the Stroop Color-Word Test, when 
compared to resting conditions [12]. 

Since moderate physical or mental stress has been 
associated with a compromised agreement between PRV and 
HRV [3], the aim of this study is to extend these observations 
and to compare the HRV and PRV parameters, extracted 
using a time-variant analysis, in three experimental settings: 
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healthy subjects at rest, healthy subjects after physical 
exercise and subjects with cardiovascular diseases (CVD). 

II. COLLECTED DATA 

Three datasets were collected at the “Centro Hospitalar de 
Coimbra” covering different populations and circumstances: 
case 1) 33 healthy subjects at rest; case 2) same subjects as in 
case 1, after moderate physical exercise on a treadmill and; 
case 3) 35 subjects with CVD (such as hypertension, acute 
infarction, heart failure and coronary artery disease) at rest in 
supine position. Our datasets comprise ECG and PPG signals 
collected from all enrolled individuals using a HP-CMS 
monitor extended with a data logger functionality. The PPG 
signal (@125Hz) was recorded from the tip of the index 
finger using an infrared transmission finger probe, while the 
ECG waveform (MLII lead) was digitized at 500Hz. The 
biometric characteristics of the enrolled subjects (51 male 
and 17 female) are: 

 Cases 1 and 2 - Age: 29.72±8.54 years; BMI: 24.48±2.41 
kg/m

2
; 

 Case 3 - Age: 58.97±17.22 years; BMI: 25.38±3.10 
kg/m

2
. 

Since our data analysis is based on a sliding window of 
180 sec. with increments of 5 secs., the minimum length of 
the analyzed signals must be at least 185 secs. to retrieve two 
data points. This requirement could not be achieved for some 
subjects, which had to be excluded from the analysis: case 1) 
Patient 19; case 2) Patients 3, 4 and 5; case 3) Patients 4 and 
34. 

III. METHODS 

A.  Assessment of Heart Rate obtained from ECG R-peaks 

and Pulse Rate from different PPG characteristic points 

In HRV and PRV analysis, it is essential to first extract 
the HR and the PR. HR was calculated from detected 
consecutive R-peaks in the ECG signal, while PR was 
inferred as the time span between the characteristic points of 
two consecutive PPG pulses. 

Characteristic points for PRs were as follows: 1) the onset 
of the PPG pulse – PPGonset; 2) time instant corresponding to 
20% of the PPG pulse’s total amplitude, at the systolic rise – 
PPG20%; 3) time instant corresponding to the local maxima of 
the PPG pulse’s first derivative – PPGderiv; 4) time instant 
corresponding to 50% of the PPG pulse’s total amplitude, at 
the systolic rise – PPG50%; 5) time instant corresponding to 
80% of the PPG pulse’s total amplitude, at the systolic rise – 
PPG80% and; 6) the peak of the PPG pulse – PPGpeak. 

B. HRV and PRV analysis 

Using a 180 sec. sliding window, shifted by 5 sec. 
increments, time and frequency domain HRV and PRV 
features were extracted using the same algorithm. Noisy 
segments and signal artifacts in the ECG and PPG signals 
were carefully removed from the analysis. 

We analyzed the following six time domain features: 
Mean – mean of the time intervals within the sliding window; 
SDNN – standard deviation of normal-to-normal (NN) 
intervals; SDSD – standard deviation of successive 
differences between adjacent NN intervals; RMSSD – square 

root of the mean squared differences between adjacent NN 
intervals; NN50 – number of interval differences of 
successive NN intervals greater than 50ms; pNN50 – ratio 
between NN50 and the total number of NN intervals [3]. 

Additionally, four frequency domain parameters were 
extracted from the analysis of the estimated spectra (Burg’s 
method [13]): aVL – normalized area of the spectrum of very 
low frequency (VLF) band (0.003-0.04 Hz); aLF – 
normalized area of the spectrum of low frequency (LF) band 
(0.04-0.15 Hz); aHF – normalized area of the spectrum of 
high frequency (HF) band (0.15-0.4 Hz); RaLH – ratio 
between aLF and aHF [3]. While the HF component is 
widely accepted as a marker of parasympathetic activity (and 
influenced by the respiratory activity), the LF component is 
thought to be the result of both sympathetic and 
parasympathetic activities [1, 14]. RaLH is commonly 
defined as a marker of sympatho-vagal balance [14]. 

C. Statistical Evaluation Methods 

In this study, we evaluate the accuracy of the extracted 
PRV features (in the time and frequency domains, extracted 
from different characteristic intervals) by comparing them to 
the reference HRV features, extracted from the analysis of 
the ECG signal. Data were synchronized in time, ensuring the 
correct correspondence between the analyzed features. This 
comparison was performed using the Spearman’s rank 
correlation (SRC), the normalized root mean squared error 
(NRMSE) and the Wilcoxon’s rank sum test (WRST). 
MATLAB R2014b

®
 was used for signal processing and 

subsequent data analysis. 

First, a one-sample unequal-tailed Kolmogorov-Smirnov 
test (KST) was performed in each set of parameters’ values to 
test if the data belong to a standard normal distribution (at the 
5% significance level). The results show that almost none of 
our data fulfilled this criterion. Exceptions were observed in 
cases: 1) patient 20 / feature pNN50 (p-value = 0); 2) patients 
1, 2, 17 and 30 / feature pNN50 (p-value = 0), and patient 2 / 
feature RaLH (p-value ∈ [0.0482, 0.1565]). Therefore, non-
parametric methods were used to assess the agreement 
between the extracted features and to test the hypothesis that 
those features came from the same distribution. 

Using a two-tailed SRC we aim to assess the agreement 
between the HRV and PRV features, i.e. the existence of a 
monotonic relationship between them. The normalized error 
between each PRV feature and its homologous HRV feature 
was assessed using the NRMSE, defined as: 

 𝑁𝑅𝑀𝑆𝐸 =
√
1

𝑁
∑ (𝑃𝑅𝑉

𝑓𝑒𝑎𝑡𝑖

𝑗
[𝑚]−𝐻𝑅𝑉𝑓𝑒𝑎𝑡𝑖

[𝑚])2𝑁
𝑚=1

𝐻𝑅𝑉𝑓𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

where 𝐻𝑅𝑉𝑓𝑒𝑎𝑡𝑖  is the i
th
 extracted feature (e.g.: aVL,…, 

pNN50) from the ECG analysis, 𝑃𝑅𝑉𝑓𝑒𝑎𝑡𝑖
𝑗

 is the i
th
 extracted 

feature from the analysis of the j
th
 PPG interval (e.g.: 

PPGonset,…, PPGpeak) and 𝐻𝑅𝑉𝑓𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean of the values 

of the HRV-derived feature. To test if the HRV and PRV 
features came from the same population, i.e. could be 
classified as samples from continuous distributions with 
equal medians (p-value < 0.05), a two-sided WRST was 
performed. 



  

IV. RESULTS AND DISCUSSION 

Our results are summarized in Figure 1 and Figure 2, 
which present the average of the results (SRC and NRMSE) 
presented TABLE I and TABLE II of the APPENDIX, 
obtained for each feature category (time and frequency 
domains) and according to the different PPG characteristic 
points and to the different datasets.  

Almost all correlation values were statistically significant 
(p-value < 0.05), except for those found to belong to a 
standard normal distribution (the KST exceptions discussed 
in section III C. Statistical Evaluation Methods). 

From Figure 1, it is possible to observe that under ideal 
conditions, i.e. healthy patients at rest (case 1), the agreement 
between the features extracted from HRV and PRV analysis 
is high (SRC ∈ [82.4±17.1; 90.6±6.2] %) in the majority of 
the analyzed parameters. Exceptions were found for NN50 
and pNN50 (see TABLE I). Contrarily, in cases 2 and 3, the 
agreement between the analyzed features decreases 
drastically (SRC ∈  [68±9.7; 80.6±16.2] %). An exception 
was found for the frequency domain features in case 2, which 
range from 81.9±13.4 % to 88±8.4 %. It is also shown that 
the agreement between PRV and HRV features tend to 
decrease from case 1 to case 3, and that the achieved 
correlations within frequency domain features present higher 
values when compared to the time domain features (except 
for case 3). 

Regarding the estimation error of the PRV features, it is 
possible to observe from Figure 2 that the time domain 
features extracted from PRV analysis achieved the lowest 
estimation errors (comparing to frequency features), in each 
of the three cases (NRMSE ∈ [5.3±3.9; 15.6±18.3] %), being 
the case 2 where the worst estimates were achieved (NRMSE 
∈ [13.7±14.6; 15.6±18.3]). As for the frequency features, it is 
shown that there is a drastic increase in the estimation error 
from case 1 (NRMSE ∈ [14.7±5.3; 17.4±6.4] %) to case 3 
(NRMSE ∈ [38.9±8.5; 47.1±13.2] %). 

From the analysis of each specific feature in the time 
domain, one observes in TABLE I and TABLE II that the 
direct comparison between HRV and PRV signals (specified 
as HRV-PRV) returns excellent estimation errors (NRMSE ∈ 
[1.3±0.6; 2.8±2.6] %), followed by high correlations (SRC ∈ 
[88.6±16; 98.3±2.1] %) in the three cases under study. This 
observation shows a close agreement and high similarity 
between the estimated PRV and HRV signals under different 
physiological conditions. It is also noticed that the features 
presenting better accuracy (i.e. lowest NRMSE) are the mean 
(NMRSE ∈  [0.1±0.1; 0.4±0.6] %) and SDNN (NMRSE ∈ 
[2.6±2; 8.7±8.2] %). 

It shall be noticed that the NN50/pNN50 features present 
a very low agreement in all the three cases, ranging from 
36.2±46.2% to 69.1±30.6% (see TABLE I.), representing one 
of the main contributes to the decrease in the global 
correlation of the time domain features depicted in Figure 1. 
Nevertheless, these two features presented a good estimation 
error (NRMSE ∈  [5.7±3.6; 10.6±7.7] %). In order to 
investigate the reason for such observations, a histogram of 

the error (𝐻𝑅𝑉𝑓𝑒𝑎𝑡𝑖 − 𝑃𝑅𝑉𝑓𝑒𝑎𝑡𝑖
𝑗

) for each feature of each PRV 

interval was calculated, showing an overestimation of the 

PRV features, as mentioned in the literature [3, 6], but not for 
NN50 and pNN50. Moreover, the tails of their histograms are 
longer, with more widespread values. One possible reason for 
the low correlation within these two features relies on the fact 
that they are based on the counting of interval differences 
among a very short amount of time (50 ms), which is 
approximately 5% of the RR interval (considering an HR of 
60 min

-1
). Therefore, it is expected that even the smallest 

estimation error produces a highly negative impact on the 
agreement of these features with their reference. 

Regarding the frequency domain features, the RaLH 
presented a more complex behavior, since the accuracy in the 
estimation of this feature is highly dependent on the 
estimation errors of both aLF and aHF, a high uncertainty in 
the estimation of one of these features results in a dramatic 
increase in the estimation error of the RaLH. It is also shown 
in TABLE I that the agreement between the frequency 
features and their reference decreases from VLF (aVL) to HF 
(aHF). This trend is also clear when inspecting the estimation 
error, with a special emphasis to the aHF, where the NRMSE 
is clearly higher in all the three cases. 

Issues for HF-related features have been previously found 
already [3, 4, 12]. Many PPG artifacts (e.g. motion artifacts) 
influence the HF component, as well as stronger breathing 
patterns induced by exercise or mental stress (such as in case 
2), which induce higher uncertainty in the estimation of this 
feature. Similarly, in case 3 subjects (older subjects and with 
CVD), abnormal patterns in breathing and in the Frank-

 
Figure 2.  Mean of the Means of NRMSE (%) between ECG-derived 

and each PPG interval-derived features, in time and frequency (freq.) 
domains. 

 

 
Figure 1.  Mean of the Means of SRC (%) between ECG-derived and 

each PPG interval-derived features, in time and frequency (freq.) 

domains. 

 



  

Starling mechanism (which cause stronger fluctuations in 
HR/PR) [3, 6], as well as the existence of a poorer blood 
perfusion and a lower compliance (stiffer arteries), can 
represent an obstacle to the correct detection of the PPG 
characteristic points. Moreover, elderly subjects are known to 
have distinct skin characteristics that prevent the reflectance/ 
transmittance of light to the photo-detector (mimicking a 
low-pass filter behavior), which can also prevent the correct 
characterization of the PPG pulse. These aspects increase the 
uncertainty in the calculation of the heartbeat intervals and 
consequently have a negative impact on the agreement 
between aHF estimated from PRV and the reference HRV. 

Analyzing the characteristic points that achieved the best 
results, it is possible to observe, from Figure 1 and Figure 2, a 
small variation in the correlation and NRMSE values (ap. < 
3%), for the various PPG characteristic points of case 1. The 
only exception was observed in the correlation of time 
domain features for the PPGpeak. As for the cases 2 and 3, 
although the NRMSE within time domain features increases 
when compared to case 1, it is shown in Figure 2 that it 
remains with a low range of values ([9±5.9; 15.6±18.3] %). A 
lower agreement within these features was observed, being 
the best values achieved for PPG80% (after-exercise 
individuals) and for PPGderiv (subjects with CVD). In these 
cases, a higher range of correlation values was also seen for 
the frequency domain features (SRC ∈ [68±9.7; 88±8.4] %), 
suggesting that the selection of a suitable PPG characteristic 
interval is much more important in these sets, than in healthy 
individuals. 

The characteristic points exhibiting the best estimation 
error (NRMSE) were, in general, the PPG50%, PPG80% and 
PPGpeak, while the agreement between features did not follow 
a consistent pattern, depending on the context and analyzed 
feature category. However, there is more accordance between 
the intervals with best correlation and with best NRMSE in 
case 1 subjects, rather than in the remaining cases. 

PPGpeak underperformed in almost all cases. One 
plausible reason for this is the change in the characteristics of 
the PPG pulse, leading to a very broad maximum of the PPG 
pulse and preventing the correct estimation of PR intervals 
and, consequently, the derived PRV features. Effects such as 
breathing are reported to have a strong influence on PR 
detection accuracy [6, 11]. 

Finally, one must notice that in cases 1 and 2, the WRST 
of PRV and HRV features always stated that the tested 
features came from continuous distributions with equal 
medians. In case 3, the same results were observed, with an 
exception to 3 subjects and a marked decrease in the 
performed tests’ p-value. 

The spread between the least and the most accurate values 
suggest that the choice of the best characteristic point is 
dependent on the physiological condition of the subject and 
on the analysis’ context, which highlights the need for an 
automatic decision-making algorithm to select the most 
suitable PPG intervals. To our knowledge, in such a system, 
the SRC may provide better guidelines, since the trend 
between HRV and PRV features can be corrected through 
algebraic means. 

V. CONCLUSION 

This study focuses on the evaluation of commonly used 

HRV features calculated from PR signals, both in frequency 

and time domains. This was achieved by comparing HRV 

and PRV-derived parameters (including HR and PR) using 

the Spearman’s rank correlation (SRC), the normalized rout 

mean square error (NRMSE) and Wilcoxon’s rank sum test 

(WRST). 

Our results confirm that the majority of PRV indexes may 

be used as surrogates for ECG-based HRV in healthy 

subjects at rest, as reported in the literature [3, 5, 6, 7]. 

Accurate results can be observed in subjects after exercise, 

especially for aVL, aLF, HRV-PRV, Mean and SDNN. 

However, in CVD patients, we found a lower performance in 

the estimation of PRV features, with an exception to the 

abovementioned features, where some acceptable results 

were achieved. Low agreement and/or high estimation errors 

within aHF, NN50 and pNN50 were identified and justified. 

In general, time domain features present a mean NRMSE 

below 15% in the three case studies, whereas frequency 

domain features show such a result in healthy subjects at rest 

only. As for the achieved correlation values, the features 

extracted from CVD patients are the only ones with results 

below 75%. Therefore, time domain features may be used 

for PRV analysis covering the three presented protocols, 

whereas frequency domain features require more caution. 

Our results show that, for healthy subjects at rest the most 

suitable characteristic point (highest agreement with the 

reference) is PPGderiv, while for healthy subjects after 

exercise the best characteristic point is PPG20%. As for the 

subjects with CVD, the characteristic point achieving the 

highest agreement was the PPGonset. 

Summing up, this study provides a ranking of PRV 

parameters, which might be used depending on the obtained 

PPG characteristic interval and analyzed context. 

Future work will focus on the adaptation of our previous 

algorithm for syncope prediction [15] to resort only on PPG 

analysis including PRV, which will benefit from our 

findings in this study. 

APPENDIX 

TABLE I.  SPEARMAN’S RANK CORRELATION (%) BETWEEN ECG-
DERIVED FEATURES AND EACH PPG INTERVAL-DERIVED FEATURES 

Feature 
Intervals between characteristic PPG points 

PPGonset PPG20% PPGderiv PPG50% PPG80% PPGpeak 

Dataset: Case 1 

aVL 97.1±4.6 96.5±9.7 95.2±18.6 97.9±3 96.4±8.1 97.7±3.4 

aLF 95.6±7.8 96.2±4.9 95.3±10.6 95.5±8.6 96.4±7.2 92±17.4 

aHF 81.3±31.7 83.9±20.2 87.1±19.9 83.9±23.1 84.9±21.7 81.2±23 

RaLH 81.8±22.6 82.7±21.8 84.1±20.7 85±19.9 80.6±29.4 81.2±29.2 

HRV-PRV 98.2±2 98.1±2.4 98.1±2.2 98.3±2.1 98.1±2.4 97.9±2.4 

Mean 99.3±2 98.8±4.3 99.5±1 99.4±1.8 99.2±2.6 98.6±4 

SDNN 93.6±21.1 93.4±18.8 93.2±23.4 91.8±23.3 93.2±17.4 93.6±17.3 

SDSD
†
 89.3±13.9 90.6±13 90.7±11.2 87.9±18 90.9±12.1 87±15.2 

NN50* 68±22.7 61.9±32.1 69.1±30.6 66.4±30.6 60.4±34.2 56.1±37.5 



  

Dataset: Case 2 

aVL 98.5±2.3 98.6±2.3 98.6±2.2 99.1±1.5 98.9±1.9 98.9±1.8 

aLF 86.5±34.5 88.9±28.9 87.1±30.9 86.8±30.1 86.7±29.2 84.4±38.8 

aHF 79.7±27.6 89.3±16.2 77.2±30.8 86.4±19 83±38.9 82.8±24.5 

RaLH 68.1±34.4 75.1±27 68.8±34.9 64.9±40.4 70.5±37.5 61.3±46.5 

HRV-PRV 97.5±2.2 97.5±2.3 97.6±2.4 97.5±2.5 97.4±2.6 97.2±3.1 

Mean 99.9±0.4 99.8±0.5 99.7±1 99.7±1 99.7±1 99.6±1.1 

SDNN 98.8±4 97.5±7.7 99±3.9 97.3±9 98.8±4 97.5±7.7 

SDSD
†
 62±54.3 72.6±41.4 63.5±49.4 66.7±46.6 72.5±43.3 72.6±40.8 

NN50* 55.3±40.5 56.5±36.6 60.7±30.3 62.4±40.4 61.8±30.3 55.7±39.7 

Dataset: Case 3 

aVL 85.1±21.2 81.1±35.5 83.9±30.8 78.8±37 84.4±28.7 85.1±28.8 

aLF 81.5±27.3 79.3±35.8 78.3±37.9 76.5±41 74.5±43 70.6±51.1 

aHF 71.3±42.1 56.7±53.9 62.2±51.2 57.5±53 55±56.8 56.3±56.3 

RaLH 67.8±37.9 67±36.1 65.9±38.9 59.1±42.9 68±38.8 67.1±38.5 

HRV-PRV 89.1±15.6 89.5±15.9 89±15.7 89.3±15.7 89.4±16.1 88.6±16 

Mean 96±6.8 95.7±9.4 95.2±9.1 95.2±8.9 96.2±6.7 94.9±7.9 

SDNN 92.9±9.4 90.4±14.6 87.4±22.4 87.3±21 85.7±26.3 87.6±23.7 

SDSD
†
 73.9±35.7 75.8±26.7 75±29.4 73.1±31.1 72.6±32.7 68.2±42.7 

NN50* 43.6±42.8 39.8±42.6 48.4±38.4 41.9±49.2 45±44.3 36.2±46.2 

*and pNN50; 
†
and RMSSD 

TABLE II.  NRMSE (%) BETWEEN ECG-DERIVED FEATURES AND 

EACH PPG INTERVAL-DERIVED FEATURES 

Feature 
Intervals between characteristic PPG points 

PPGonset PPG20% PPGderiv PPG50% PPG80% PPGpeak 

Dataset: Case 1 

aVL 11.3±10.9 11.3±9.9 10.5±13.4 10.1±8.3 9.1±5.5 13.2±14.2 

aLF 11.5±10.6 9.7±5.8 10.1±6.5 10.3±7.4 10.4±8.1 11.6±10.8 

aHF 26.4±21.5 23±20.6 24.9±19.1 21.1±11.7 22.2±13.8 18.1±11.1 

RaLH 20.6±9.6 18.6±10.2 20.6±11.4 17.9±8.9 17.1±10 16.6±7.9 

HRV-PRV 1.3±0.8 1.3±0.9 1.3±0.9 1.3±0.9 1.3±0.9 1.4±0.9 

Mean 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 

SDNN 3±2.5 2.6±2 2.7±1.8 2.7±1.8 2.7±1.9 2.6±2.1 

SDSD
†
 12.6±6.7 11.4±7.5 11.4±6 10.5±6.3 10.4±6.2 10.7±7 

NN50* 6.1±3.6 6.4±3.4 5.7±3.6 6.2±3.7 6.6±3.8 6.3±3.6 

Dataset: Case 2 

aVL 15.5±16.7 17.3±39.1 21.9±63.5 24.2±68.8 22.5±65 22.3±73.3 

aLF 13.4±10.5 12.9±9.2 21.9±50.7 14.3±17.1 13.8±11.8 14.5±13.5 

aHF 63.2±65.7 57.8±63.8 60.4±64.8 54.7±48.9 55.6±71.4 44.3±41.3 

RaLH 30±20.3 26.5±19.5 27.3±20.2 28±19.5 26.6±20.3 26.4±18.1 

HRV-PRV 1.3±0.6 1.4±0.9 1.3±0.8 1.4±0.8 1.4±0.9 1.4±1 

Mean 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.2 0.1±0.1 0.1±0.1 

SDNN 3.1±2.9 3.1±3.6 4.4±10.5 3.8±7.2 3.7±6 3.6±7.4 

SDSD
†
 44.1±42.8 40.1±40.4 37.8±34.6 36.3±34.7 36.2±34.8 37±37.1 

NN50* 8.2±5.3 8.9±5.3 9.6±5.5 9.1±5.5 9.8±5.9 10.1±5.5 

Dataset: Case 3 

aVL 28.8±33.4 36.4±40.9 38.8±43.2 33.5±33.6 32.6±34.1 30.9±29.7 

aLF 27±24 31.6±41.3 33.2±31.6 31.4±36.3 29.5±31.9 39.8±44.8 

aHF 55.4±57 67.2±112.7 67.8±93.7 50.2±39.1 50.9±42.3 54.7±66.2 

RaLH 44.5±31.4 45.6±37.6 48.6±37.9 52.8±48.1 42.6±32.6 44.5±37.1 

HRV-PRV 2.6±2.5 2.7±2.5 2.8±2.6 2.6±2.4 2.6±2.3 2.8±2.5 

Mean 0.2±0.3 0.2±0.3 0.4±0.6 0.3±0.4 0.3±0.5 0.3±0.3 

SDNN 6.6±4.9 7±5.8 8.6±7.7 7.4±6.4 7.5±7 8.7±8.2 

SDSD
†
 20.1±18 19.3±16.1 20.5±16.7 16.9±12.6 17.8±13.6 18±16.1 

NN50* 9.3±6 9.3±5.9 8.7±5.7 9.7±6.9 10.3±7 10.6±7.7 

*and pNN50; 
†
and RMSSD 
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