
CISUC TECHNICAL REPORT TR-2017-005-December, 2017

Active Learning Metamodels for
Transportation Simulators

Francisco Antunes, Bernardete Ribeiro, Francisco Pereira & Rui Gomes

December 1, 2017

Abstract

Simulation modeling is a well-known and recurrent approach to study
the performance of urban systems. Taking into account the recent and
continuous transformations within increasingly complex and multidimen-
sional cities, the use of simulation tools is, in many cases, the only feasible
and reliable approach to study such dynamic systems. However, simula-
tion models can become very time-consuming when detailed input-space
exploration is needed. To tackle this problem, simulation metamodels are
often used to approximate the simulator results.

In this paper, we propose an active learning algorithm based on the
Gaussian Processes (GP) framework that gathers the most informative
data points in batches, according to both their variances and to the rel-
ative distance between them. This allows us to explore the simulator
input space with fewer data points in a more efficient way, while avoid-
ing computationally expensive simulation runs. We take advantage of the
closeness notion encoded into the GP to select batches of points in such a
way that they do not belong to the same high variance neighborhoods. In
addition, we also suggest two simple and practical user-defined stopping
criteria so that the iterative learning procedure can be fully automated.

We illustrate our methodology using three experimental settings. The
results show that the proposed methodology is able to improve the explo-
ration efficiency of the simulation input space in comparison with non-
restricted batch-mode active learning procedures.

1 Introduction
Urban environments are highly complex systems involving a multitude of both
internal and external variables, and their respective interrelationships, which
are not often easy to identify. Additionally, these systems also exhibit an inher-
ent stochastic nature and other unknown random phenomena that cannot be
realistically described by a closed and tractable mathematical formula.

To successfully overcome the problem of intractability, simulation approaches
are often employed to virtually explore the behavior of these urban systems and
to assess their performances. Urban dynamics require theoretical approaches
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and planning methodologies that are capable of modeling the subjacent spatio-
temporal transformations process from a multidimentional prespective. In fact,
urban planning models usually encompass the possibility of predicting future
scenarios of urban intervention focused on infrastructure improvement and ser-
vice promotion. These models are simplified representations of the urban space,
embedded into a computer-generated reality, considered as an experimental
ground to understand the long-term performance of urban policies decisions
and corresponding interventions [1].

Simulation modeling is a well-known and common approach to study real-
world urban systems, specially those that prove to be highly complex to be
analyzed through conventional analytic methods [2]. Nevertheless, when de-
tailed with enough realism, urban simulation models can become computation-
ally too time-expensive to run due to their overwhelming complexity. Moreover,
if the simulator output space proves to have a complex functional structure,
we might need to systematically explore the input domain with further detail,
which often requires multiple and exhausting simulation experiments, turning
the exploration process virtually intractable.

To address the problem of expensive simulation runs, i.e., simulations that
require great computational workload and exhibit prohibitive runtimes, simula-
tion metamodels are often used to approximate the simulation results and thus
the simulation model itself. Futhermore, in experimental scenarios in which
simulation data is computationally expensive to obtain, active learning also
emerges as a powerful approach, as it aims to provide high prediction perfor-
mance with few data points. Among many significant machine learning tools,
Gaussian Processes (GP) [3], a fully Bayesian modeling approach, allow for an
intuitive way to develop active learning algorithms, by providing the posterior
mean and variance which in turn can be eventually used to search for the most
informative data points.

In this paper, we propose an active learning approach, based on GP, that
gathers the most informative simulation data points in batches, not only accord-
ing to their variance but also taking into account the relative distance between
them. This allows us to explore the simulator input space with fewer training
points in a faster and more efficient manner, while avoiding computationally
expensive simulation runs at the same time. Taking advantage of the closeness
and similarity notion encoded into the GPs, mainly via the kernel function, to
select batches of points that do not simultaneously belong to the same high
variance neighborhoods. In addition, we also suggest two simple and practical
user-defined stopping criteria so that the iterative learning procedure can be
fully automated.

We illustrate our methodology using three independent experimental set-
tings. The first consists of a synthetic data generated by a known function,
which plays the role of an arbitrary simulation model. Then, we proceed to
a one-dimension study of a Demand-Responsive Transportation (DRT) simu-
lator. Finally, we explore the behavior of a road intersection implemented in
a micro traffic simulation software, expanding our study to a two-dimensional
input case. The obtained results show that the proposed batch-mode approach
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is able to improve the exploration efficiency of the simulation input space in
comparison with non-restricted batch-mode active learning procedures.

The remainder of the paper is organized as follows. In the next section we
provide a brief review on the main background topics and related literature.
The proposed approach is detailed in Section 3, followed by the presentation of
studied simulation data, experiments and discussion (see Section 4). Finally, we
end this paper with the conclusion and several lines of future work.

2 Background
Active learning is a special case of supervised machine learning consisting of an
iterative sampling scheme that allows the algorithm to choose the data points
from which it learns, and an oracle, i.e., an instance label provider. It is partic-
ularly useful under scenarios where labeled data is expensive to obtain. Thus,
the general idea of this learning paradigm is to actively select the most infor-
mative data points, as few as possible, in order to simultaneously boost the
model training efficiency and its prediction performance [4]. When the active
learning paradigm was first proposed, the oracle was traditionally represented
by a human annotator. Nowadays, however, due to the development of technol-
ogy, the oracle’s role can be taken by an algorithm, a sensor, a simulator, etc.
Most importantly is that the oracle is able to provide labeled instances from the
ground truth underlying function describing the process of interest.

Depending on how the unlabeled data is presented to the oracle, the active
learning algorithms can be divided into two classes, namely, stream-based and
pool-based. Whereas in the latter the entire unlabelled data set is available for
querying, in the former each data point is presented individually or in sucessive
blocks [5]. In addition, because of its intrinsic iterative nature, active learning
procedures must be stopped at a certain time. Although there is a vast research
under the active learning paradigm, not many approaches suggest a stopping
criteria [6, 7]. Some suggestions can be found in the literature such as [8, 9, 10,
6, 7, 11]. However, all the available criteria are fairly identical [4] and, according
to [5], there is no best stopping rule that is suitable across all applications.

In most of the proposed active learning algorithms, the queries are presented
sequentially, i.e., one at a time. This strategy can become quite inefficient for
some heavy learning tasks. One way to address this issue is to select data points
in batches in order to speed-up the active learning process. However, to avoid
redundancy within the batch, it should simultaneouly account for diversity and
informativeness among the selected data points [5]. Several batch-mode schemes
have addressed this challenge, most of them within classification problems [12,
13, 14].

Although active learning has been applied in many different fields, we are
particularly interested in those of simulation metamodels [15] applications. The
development of simulation metamodels has been around since the early 70’s [16].
Their main purpose is to serve as surrogates, or emulators, for simulation mod-
els so that expensive simulations can be avoided. These models are essentially
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input/output functions that approximate the true and usually much more com-
plex unknown function inherently defined by the simulation model itself [17].
They are fitted to the input-output data generated by computer experiments
and then can be used for prediction purposes, among others [18, 19]. Hence,
these simulation metamodels provide a practical framework to explore the be-
havior of complex and time-consuming simulation experiments in a rather less
expensive way.

In our case, we assume that our simulation model is perfectly validated and
calibrated with respect to the problem of interest. The metamodel, which should
be a valid approximation of the simulation model, is then used to effortlessly
explore its inner structure and, consequently, to provide yet another analysis
tool for the problem under study. The Gaussian Processes (GP) framework has
been widely used for simulation metamodelling [20, 21, 22, 23, 18], and several
works combining GP metamodeling with active learning strategies have also
been conducted, for example, in [24] and [25]. Its Bayesian formalism provides
an easy way to develop algorithms that actively learn with uncertainty. In
the context of active learning and simulation metamodeling, the GPs prove
to be a powerful and flexible machine learning tool for their ability to easily
adapt to the new data sequentially arriving from simulator. This, however,
may give rise to a problem known as concept drift, which, according to Gama
et al. [26], describes those learning scenarios where the relationship between
the input (feature) space and the output variable changes over time. Active
learning has also been proposed as a solution to concept drift, as seen, for
example, in [27], [28], [29], [30] and [31].

Within the transportation literature, the application of simulation meta-
models is relatively recent. Only a handful of works are currently available and,
with respect to their application domain, they can be essentially divided into
two groups, namely, traffic prediction and network optimization. In 2013, Ciuffo
et al. [32] developed a methodology that applies a GP-based metamodel to con-
duct a sensitivity analysis using the mesoscopic traffic simulator AIMSUN as a
case study. Using 512 different input combinations, the authors concluded that
the metamodel estimated outputs and the real simulation outputs were signifi-
cantly similar, thereby showing the strength and parsimony of their methodol-
ogy.

In [33] the authors developed a Bayesian stochastic Kriging metamodel that
simultaneously optimizes travel behavior and dynamic traffic management us-
ing, as case study, the real-world corridors of I-270 and MD355 in the state
of Maryland, USA. Using a similar case study, Chen et al. [34] used a GP
metamodel to approximate the response surface of a transportation simulation
with expensive-to-evaluate objective functions and random noise. The goal was
to minimize the network-wide average travel time by implementing the optimal
toll rates predicted by the metamodel. Similarly, Chen et al. [35] developed a
metamodel-based optimization framework to solve the bilevel Mixed Network
Design Problem (MNDP).

A mesoscopic Dynamic Traffic Assignment (DTA) simulator, DTALite, was
used to evaluate the system response to several network design strategies. The



CISUC TECHNICAL REPORT TR-2017-005-December, 2017

Figure 1: Pool-based batch-mode active-learning scheme with a simulation model as oracle.

authors showed that the optimal investment could reduce the network average
travel time in approximately 18% during the morning period. Finally, and very
recently, Song et al. [36] presented a GP-based metamodeling framework that
approximates Dynamic Network Loading (DNL) models. The authors show that
the tested DNL metamodels attain high accuracy, providing prediction errors
below 8%, and superior computational efficiency, up to 455 times faster than
the traditional DNL approaches. Although these works represent important
applications of simulation metamodeling in transport problems, the research in
this area is still scarce.

3 Approach
In this work, we adopt a pool-based batch-mode active learning approach in
which a simulator plays the role of oracle, as depicted in Figure 1. The machine
learning model, used as metamodel, is a GP and the unlabeled pool, U , is the
input space where we want to explore the simulation behavior. The pool of
labeled instances, L, is formed by the results of the simulation runs already
performed.

From a regression perspective, we want to establish a functional relationship
between the simulation inputs, x ∈ RD, where D is the number of inputs, and
its output, y ∈ R, by assuming a GP prior over this relation, y = f(x). Then,
taking advantage from the Bayesian formalism from which the GP frameworks
derives, we aim to infer the conditional distribution of the output given a set
of unlabeled inputs. By doing so we are not only bypassing the simulation
computational workload but also providing a way to effortlessly approximate and
therefore analyze the simulator behavioral structure. Notice that the simulation
model is treated as a black box from which we aim to get better insights in terms
of its functional behavior, while avoiding as many simulation runs as possible.

In the following we present the basis of the Gaussian Processes and then we
detail the proposed active learning procedure which is build upon this modeling
framework.



CISUC TECHNICAL REPORT TR-2017-005-December, 2017

3.1 Gaussian Processes
A GP [3] is a stochastic process completely characterized its mean and covari-
ance (or kernel) functions, respectively denoted as mf (x) and kf (x,x′), with x
and x′ being two input data points and simply denoted by GP(mf (x), kf (x,x′))
where mf (x) = E[f(x)] and kf (x,x′) = E[(f(x)−mf (x))(f(x′)−mf (x′))].

More formally, the GP framework assumes a prior over functions, i.e., y =
f(x)+ε, where ε ∼ N (0, σ2) and f(x) ∼ GP(mf (x), kf (x,x′)). For simplicity, it
is common practice to fix mf (x) = 0. Thus, the prior over the latent function is
given by p(f|x1,x2, . . . ,xn) = N (0,Kf ) where f = [f1, f2, . . . , fn]

>, fi , f(xi)
and Kf is the covariance matrix, with its elements given by [Kf ]ij = kf (xi,xj).
Most of the covariance functions have several free parameters, which can be
optimized to fit the training data by maximizing the marginal likelihood.

After parameters are obtained, the conditional distribution at a new test
point x∗ is given by f∗|X,y,x∗ ∼ N (k>f∗[Ky]

−1y, kf∗∗ − k>f∗[Ky]
−1kf∗), where

kf∗ = kf (X,x∗), kf∗∗ = kf (x∗,x∗) and y is the vector of the target values.
Thus, we can naturally use the predicted Gaussian distribution at any given test
point to guide the active learning process and therefore learn with its associated
uncertainty.

3.2 Active Learning Procedure
The strategy presented in Figure 2 is the general batch-mode active learning
procedure used in this work and it serves as the base for other algorithms for-
wardly presented and tested. Here, L represents the set of labeled training
points, whereas U the set of unlabeled ones. The latter is defined according to
input space region we aim to explore. This algorithm selects batches of k test
points with highest variance (provided by the GP) in a way that each point does
not originate from the same high variance neighborhood. Taking into account
the spatial notion of closeness and similarity encoded into the GP via its ker-
nel function, it is expected that spatially closer input points are more likely to
have similar output values. Therefore, the hypothesis is that sampling multiple
batch points from the same region may not be efficient. To avoid this situation
we introduce β to therefore control the minimum distance between the selected
active learning points. This parameter is a ratio with respect to the maximum
possible distance between two any points (diameter) in the input space. No-
tice that this approach is only valid for continuous input metric spaces. So, if
β = 0.4, then the minimum distance between the points is 40% of the maximum
distance. The parameter k defines the size of the batch.

We also propose two simple variance-based stopping criteria controlled by
α1 and α2, respectively. The first, which we call Criterion A, states that the
algorithm stops when the total current variance (TCV ) of the test points, at
iteration i, is less than (1−α1)% of the initial total variance (ITV ) at iteration
0. Thus, if, for example, α1 = 0.3, the process stops when TCV is reduced 70%
with respect to ITV , i.e., when ITV (1 − α1) ≥ TCV . Note that, in stead of
the total variance, which is simply the sum of the variances of all test points, we
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could have considered the average variance per iteration. However, since this
criterion is defined as a ratio, the total number of test point would cancel out.

On the other hand, Criterion B is defined as a ratio between the average
variance of the training (AV Tr) points and the average variance of the test
(AV Ts) points at each iteration i. Here, contrary to Criterion A, since the
total number of training and testing points is not the same, it makes sense to
consider the average. When AV Tr/AV Ts ≥ α2, the algorithm stops. The
average variance at training points is less than the average variance at testing
points, so this ratio lies in [0, 1]. Moreover, as the process advances, AV Ts is
likely to decrease, while AV Tr is expected to approximately maintain its values.
However, this is a more demanding criterion to be satisfied if α is close to 1.
If the model, in our case the GP, is very certain at the training points and the
contrary at the test points, AV Tr/AV Ts ≈ 0, which will prevent the algorithm
from converging at an acceptable speed. Its performance will also depend on
the noise structure of the underlying function being estimated.

In each iteration a new GP model is fitted to L. The hyper-parameters
are obtained by maximizing the likelihood function conditional on this training
set in a Leave-One-Out Cross-Validation (LOOCV) scheme. Afterwards, the
trained GP is used to predict the simulation output values (labels) associated
to the unlabeled points in U , therefore avoiding many simulations runs. Then,
several testing points are selected according to the approach described in Fig-
ure 2, their respective true labels are obtained via oracle, i.e., the simulator,
and finally L is expanded. This iterative process is repeated until the chosen
stopping criterion is satisfied.

Given the parametric nature of the proposed algorithm, many variants can
be derived depending on the concrete values assigned to α1, α2, β and k, as well
as on the used stopping criteria. We test the four following combinations which
are built upon the base structure of this general approach:

• Algorithm 1: base approach + Criterion A with no space restriction,
β = 0.

• Algorithm 2: base approach + Criterion A with space restriction, β ≥ 0.

• Algorithm 3: base approach + Criterion B with no space restriction,
β = 0.

• Algorithm 4: base approach + Criterion B with space restriction, β ≥ 0.

The parameters used in these algorithms, α1, α2 and β, vary according to
the different experiments conducted with the different simulators in study and
k = 3. Moreover, note that in Algorithms 1 and 3 we assume β = 0, which
means that there is no spatial restriction during the batch selection. Thus,
these cases correspond to the standard batch-mode scheme, serving us as base-
line approaches. In the following, we present and discuss the results obtained
within three experimental settings. The values of the parameters used in these
algorithms vary according to the experiments conducted with the different sim-
ulators in study.
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Input: α1, α2, β ∈ [0, 1], k ∈ N,L,U .
While ITV−CTV

ITV < α1 or AV T r

AV T s
< α2 do

1: Train a GP with L and obtain the predicted labels for each point in U ,
k>f∗[Ky]

−1y, and their corresponding variances, kf∗∗ − k>f∗[Ky]
−1kf∗.

2: Determine the top k highest variance test points, topk, so that they are not
mutually closer than β × 100% of the diameter of U .

3: Obtain the true labels for topk, via simulator, and define L+ as the new
labeled set.

4: Set L = L ∪ L+.
5: Update stopping criterion.

end
Figure 2: General bath-mode active learning approach with spatial restriction.

4 Experiments
In this section, we illustrate the proposed methodology using three indepen-
dent experimental settings. The first consists of a synthetic data generated
by a known function playing the role of an arbitrary simulation model. Then,
we proceed to a one-dimension study of a Demand-Responsive Transportation
(DRT) simulator. Finally, we move to a two-dimensional study of a simple road
intersection implemented in a free and open-source microtraffic simulation soft-
ware. We use the implementation provided by Rasmussen and Williams [3] and
select the Squared Exponential function as the GP kernel.

4.1 Toy data set
For the first set of experiments, we used a toy data set generated by f(x) =
cos(5x)+ 1

2x+2U(0, 1), which plays the role of oracle, where U(a, b) denotes the
Uniform distribution in the interval [a, b]. Figure 3 shows the initial GP learning
state. The initial labeled pool, L, is comprised of 10 randomly generated training
points, U is formed by 10000 unlabeled test points uniformly spaced in [−6, 6].
Figure 4 and 5 present the results. Each new active learning point added to the
training set is labeled with the number of the iteration in which it was selected.
Consequently, data points with the same number belong to the same batch.

Comparing Algorithms 1 and 2, the superiority of the latter is clear from
an efficiency point-of-view (see Figure 4). For the same criterion threshold
(α1 = 0.6), Algorithm 2 is over than four times faster than Algorithm 1, due
to the space restriction induced by β = 0.2. This means that the testing points
constituting the batches were not selected from the same high variance neigh-
borhoods, scattering the input exploration process and thus turning it more
efficient. Moreover, it is important to note the number of iterations alone does
not directly measure the real involved computational workload, which is intrin-
sically related with the simulation model. As we adopted a batch-mode active
learning scheme, we should additionally take into account the size of the batch,
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Figure 3: Initial learning state for the toy data set, where the first 10 training points were
randomly scattered in the input domain [−6, 6]. This corresponds to iteration 0, which is
shared by the four algorithms in study.

k. Therefore, whereas Algorithm 1 requested the oracle 17 × 3 = 51 times, in
Algorithm 2 this number decreased to 4× 3 = 15.

For Algorithms 3 and 4, a similar scenario has occurred. Using the same
stopping rule, based on Criterion B with α2 = 0.6, Algorithm 4 required three
less iterations than Algorithm 3. This represents a total difference of 3× 3 = 9
simulation requests. However, note that, as previously mentioned in Section 3.2,
Criterion B, may be harder to satisfy, which explains the lesser performance in
comparison in both Algorithms 1 and 2.

4.2 DRT simulator
Demand Responsive Transportation (DRT) systems are a kind of hybrid trans-
portation approach between the taxi and bus solutions that address the prob-
lems that emerge from the use of fixed routes and schedules, typically found
in regular public road transportation. From the transport operators’ point-of-
view, this traditional approach can prove to be quite expensive and inefficient
in lower population density zones, such as rural areas, and in certain periods of
the day. Both cases are characterized by a low, variable and unpredictable de-
mand. Thus, DRT systems aim to provide transportation solutions that are able
to adapt, in real-time, its routes and frequencies to match the actual observed
demand.

Service design is critical for the success of DRT systems, so decision-makers
need to understand well how the different ways of operating the service affect its
performance. The flexibility of DRTs may cause organizational problems such
as, a) the number and type of requests may involve an exceedingly high number
of vehicles, b) very sparse requests that are hard to combine efficiently or c) the
quality of the service in terms of pickup/delivery time and travel duration might
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(a)

(b)

(c)

Figure 4: Final results for the toy data set using (a) Algorithm 1 with user-defined parameters
α1 = 0.6, β = 0 and k = 3, and (b) Algorithm 2 with α1 = 0.6, β = 0.2 and k = 3. Panel (c)
shows the number of iterations for both algorithms.
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(a)

(b)

(c)

Figure 5: Final results for the toy data set using (a) Algorithm 3 with user-defined parameters
α2 = 0.4, β = 0 and k = 3, and (b) Algorithm 4 with α2 = 0.4, β = 0.2 and k = 3. Panel (c)
shows the number of iterations for both algorithms.
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Figure 6: Initial learning state for the DRT simulation data set, where the first 10 training
points were randomly scattered in the input domain [1, 10]. This corresponds to iteration 0,
which is shared by the four algorithms in study.

not be guaranteed with the available resources or when unpredictable events
occur. These effects are often studied through simulation, whose purpose is to
obtain a better understanding of the behavior of a system under a given set of
input conditions, even with uncertain events. The performance of these systems
can be determined by observing what happens on the network, during simu-
lation, for different input conditions. However, when dealing with real-world
events (especially with high degree of dynamism) and extremely complex road
networks and demand, simulation models can become very time-consuming.

We now consider the problem of exploring the outcome of the DRT simula-
tion model developed by Gomes et al. [37]. This simulation system integrates
four submodels, covering the service area, trip requests (demand), vehicles, and
real time events. It has 22 inputs/parameters and, among a few outputs that
measure the system overall performance, we focus on the DRT system total
operating cost. For a given demand structure, different input combinations will
lead to different costs and service quality levels. We loaded the simulator with
a real road-network structure, within the metropolitan region of Oporto (Por-
tugal), with symbolic parameters values. For the sake of illustration, we then
considered the Ticket Price as the input domain for which we aim to explore
the outcome, Total Cost, of the simulator, maintaining the remaining inputs
unchanged. From previous experiments, we concluded that, for our particular
application, the simulation running times do not vary significantly from each
other. Therefore, it does make sense to focus only on the number of iterations
to assess the performances of the studied algorithms.

Similarly to the previous experimental setting, we decided to explore the
input domain contained in the interval [1, 10] using 10000 uniformly spaced test
points. This test set corresponds to U , whereas L is constituted by 10 random
simulation data points within the same interval, as presented in Figure 6. The
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(a)

(b)

(c)

Figure 7: Final results for the DRT simulation data using (a) Algorithm 1 with user-defined
parameters α1 = 0.6, β = 0 and k = 3, and (b) Algorithm 2 with α1 = 0.6, β = 0.2 and
k = 3. Panel (c) shows the number of iterations for both algorithms.
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(a)

(b)

(c)

Figure 8: Final results for the DRT simulation data using (a) Algorithm 3 with user-defined
parameters α2 = 0.1, β = 0 and k = 3, and (b) Algorithm 4 with α2 = 0.1, β = 0.2 and
k = 3. Panel (c) shows the number of iterations for both algorithms.
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results for this simulation data are generally aligned with the results obtained
for the toy set experiment. Again, and as depicted in Figure 7, Algorithm 2 is
more than two times faster than Algorithm 1. For the same level of variance
reduction, induced by α1 = 0.60 (about 40% of the initial total variance), the
former requested the simulator 5 × 3 = 15 times, against 2 × 3 requests in
the latter. It is obvious that the less runs the simulator executes the better.
Therefore, for the same stopping criteria and threshold, Algorithm 2 proved to
be more efficient as it was able to scatter the learning points forming the batch
along different high variance neighborhoods.

For Algorithms 3 and 4 we obtained an interesting result which highlights
our concerns presented in Section 3.2 regarding Criterion B. In Figure 6 we can
obverse that for the first approximation (Iteration 0), the GP model assigned
very little variance to the training points, meaning that, in the context of Cri-
terion B, AV Tr ≈ 0. As the process iteratively evolves, i.e., as more simulation
data points are added to the expanding data set, AV Tr seems to remain close
to zero. On the other hand, AV Ts clearly shows a decreasing behavior towards
zero. In several preliminary experiments, which we do not present due to space
restrictions, we noticed that setting, for example, α2 = 0.6, as we did for α1,
was too ambitious for both Algorithms 3 and 4 to yield competitive perfor-
mance. This means that these algorithms were taking too many iterations to
converge to be fairly comparable to Algorithms 1 and 2. Therefore, after fixing
α2 = 0.1, which is equivalent to say that the stopping criterion is satisfied when
AV Tr is approximately 40% of AV Ts, we concluded that both Algorithms 3
and 4 converged in reasonable and comparable running times. Despite these
initial configuration problems, these algorithms attained similar results to those
of Algorithm 1 and 2. It is worthwhile to mention that, once again, the restric-
tion applied during the formation of the batches was a decisive factor in the
reduction of the number of iterations.

4.3 Traffic simulator
In this section we move to a microscopic traffic simulation example, by ex-
ploring a road intersection implemented with the Simulation of Urban Mobility
(SUMO) [38]. The studied example consists of a simple signalized intersection,
depicted in Figure 9. Traffic flows in three directions only, North-South (NS),
West-East (WE) and East-West (EW). The vertical axis is dedicated to impor-
tant heavy vehicles, whereas in the horizontal axis we only have light passenger
car traffic. Moreover, the simulation model is designed to give priority to the
NS traffic over the remaining flows. Therefore, it is expected that if this flow in-
creases, the horizontal traffic flows will potentially form more and longer queues,
consequently increasing the overall total waiting time.

During each simulation run, the demand, or traffic flow, generated from
each operational axis is randomly generated according to a Poisson distribu-
tion, approximated by a Binomial distribution with parameter p ∈ [0, 1]. This
parameter sets how many vehicles are generated, on average, within a certain
period of time. For example, if p = 1/s, then it means that one vehicle is ex-



CISUC TECHNICAL REPORT TR-2017-005-December, 2017

Figure 9: Visualization of the intersection with four approach lanes implemented in SUMO.

pected every interval of s seconds. Notice that the traffic flow actually increases
when s→ 0.

The simulated example encompasses three input parameters that have a di-
rect influence in the intersection performance, namely, the NS, WE and EW
demands, each of which associated with different Binomial parameters. More-
over, it is assumed that the three different traffic flows are mutually independent.
To assess the performance of the simulated road networks, SUMO has a large
number of different output measures. Raw vehicle positions, trip and route
information and simulation state statistics are just a few examples of possible
outputs. For the sake of illustration of our methodology, we decided to focus on
the total waiting time spent by all the vehicles crossing the intersection as our
aggregated traffic performance measure. Our objective is to use the proposed
active learning scheme to explore the simulation input space and to evaluate
how it affects the total waiting time. Therefore, following a similar experimen-
tal design of the one-dimensional analyses presented in Sections 4.1 and 4.2,
we now extend our study to a two-dimensional case where the traffic demands
from NS and WE operational axes are considered as inputs, and the expected
vehicular waiting time is our output performance of interest.

The new input region of interest (U) is defined by the square [0, 40]× [0, 40],
from which 10 random training points were selected, corresponding to the initial
set of simulation runs (L), as depicted in Figure 10(a). On the other hand, Fig-
ure 10(b) shows the variance across the entire test region. As expected, the
variance near the training points is lower than the variance associated to the
test points. Starting from this initial learning stage, our approach is designed
to actively search for the top k highest variance neighborhoods (yellow tones
regions), that are not mutually within a radius of β × 100% of the diameter of
the input region. In any case, in this first approximation we can already ob-
serve that the values of the average waiting time (z-axis) tend to increase when
both NS and WE demands increase. This observation matches our initial guess
regarding the simulator output behavior.
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(a)

(b)

Figure 10: (b) Initial learning state for the traffic simulation data, where the first 10 training
points were randomly scattered in the input space [0, 40]×[0, 40]. This corresponds to iteration
0, which is shared by the four algorithms in study. (c) Variance behavior across the input
region.
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(a)

(b)

(c)

Figure 11: Final results for the traffic simulation data using (a) Algorithm 1 with user-defined
parameters α1 = 0.95, β = 0 and k = 3, and (b) Algorithm 2 with α1 = 0.95, β = 0.3 and
k = 3. Panel (c) shows the number of iterations for both algorithms.
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(a)

(b)

(c)

Figure 12: Final results for the toy data set using (a) Algorithm 3 with user-defined parameters
α2 = 0.2, β = 0 and k = 3, and (b) Algorithm 4 with α2 = 0.2, β = 0.2 and k = 3. Panel (c)
shows the number of iterations for both algorithms.
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Figure 11 and 12 present the final results, showing fairly identical GP ap-
proximations across the four algorithms. We observe that Algorithm 1 took 11
iteration to achieve a total variance reduction of 95%, against seven iterations
from Algorithm 2 (see Figure 11(c)). Both are based on Criterion A and on
the same stopping threshold. However, due to the proposed space restriction
(imposed by β = 0.3), the latter presents a more efficient performance than the
former, with a difference of (11 − 7) × 3 = 12 simulation runs. Finally, we can
see from Figure 12(c) that Algorithm 4 took three iterations to stop, whereas
Algorithm 3, whose batch formation is not restricted by β, required seven to
satisfy Criterion B with α2 = 0.2. Although these differences in the iteration
numbers may seem to be of little significance for the current academic exam-
ple, they can prove to be quite relevant in real-world and thus computationally
heavy simulation models, which can take up to several days to accomplish.

5 Conclusion and Future Work
In this paper we presented a restricted batch-mode active learning approach,
along with two practical user-defined stopping criteria, in the context of trans-
port simulation metamodeling. The proposed algorithm seeks for the most in-
formative test points in restricted batches. The parameter β, which represents
a fraction of the maximum possible distance (diameter) within the input region
of interest, controls the minimum distance between each gathered point. This
prevents each batch from being formed with points from the same high variance
regions, thus making the learning process faster and more efficient. Ultimately,
our objective is to obtain a reasonable understanding of the simulator under
study with as few simulation runs as possible.

The results obtained from three independent experimental settings show
that the introduction of a spatial restriction, induced by β, in the formation of
the batch seems to turn the metamodeling process more efficient. Additionally,
we concluded that different data contexts and experimental settings require
different parameter values in order to attain comparable results.

There are several ways in which this work can be improved. The procedure
to select the algorithm parameters (α1, α2 and k) was conducted in a rather
informal way, essentially for the sake of illustration. We intend to expand the
current study not only with more parameter configurations but also explore
their relationship with the size, shape and dimensionality of the input spaces
of interest. Additionally, we aim to test our approach using a large-scale trans-
portation problem in order to assess its feasibility in comprehensive real-world
applications. Finally, other challenging problems such as developing strategies
to fine tune these parameters, generalization to higher input space dimensions
and sensitivity analysis, will also be addressed in future lines of work.
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