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Abstract—This paper proposes a method to provide secrecy
for digital communications with arbitrarily large quadrature
amplitude modulation (QAM) constellations for transmission over
a Gaussian fading wiretap channel. This is accomplished by
breaking the constellation down into nested quadrature phase-shift
keying (QPSK) symbols and randomizing the assignment between
message bits and modulated symbols using channel state infor-
mation (CSI). If enough random bits can be generated from CSI
it becomes possible to uniquely map an arbitrary message to any
symbol in the large QAM constellation. The proposed method can
thereby provide perfect secrecy while maintaining high reliability
by exclusively assigning minimum-distance-mapped constellations
through the randomization for use by the legitimate decoder.

I. INTRODUCTION

Development of the 5G standard and the phenomenon of
the Internet of things (IoT) have received a great deal of
interest among many, including those who study physical-
layer security. Both of these topics demonstrate an underlying
technological trend toward massively distributed, networked
computing. Under this emerging computational model, securing
communications at the physical-layer can enhance traditional
cryptographic security. Physical-layer security is information
theoretically secure rather than computationally secure, i.e.,
security is measured with regard to the mutual information
between signals in a Markov chain rather than the resources
required to defeat a system. Also, physical-layer security
schemes are generally less computationally demanding, which
is particularly advantageous for the low-power devices expected
in IoT applications.

The seminal work by Shannon [1] presents the notion of
perfect secrecy wherein an encrypted message E alone pro-
vides no information about the unencrypted message M, i.e.,
I(M;E) = 0. He showed that the only way to achieve perfect
secrecy is to use an encryption key that has entropy at least
as high as the unencrypted message. Given the impracticality
of key distribution for such a system, focus was shifted for
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many years into securing communications using shorter keys.
In exploring this, it was noticed that the state of a fading
wireless channel is randomly distributed and uncorrelated from
itself beyond half a wavelength, and that this could be used
to generate short random sequences for cryptographic keys
[2]. Later work focused on improving the key generation rate
by more efficiently extracting randomness from the channel
state, specifically by optimizing the process of agreement upon
random bits and the hashing of those bits into a smaller set
that is completely unknown to an eavesdropper [3]–[5]. The
advent of widespread multiple antenna wireless systems and
particularly massive multiple-input, multiple-output (MIMO)
has allowed progress due to the presence of a larger pool of
channel states from which secret key bits can be drawn [6],
[7]. Nonetheless, the key generation rate remains a significant
hurdle impeding practical implementation.

Other research has focused on the notion, first shown by
Wyner for the physically degraded wiretap channel [8], that
secrecy can be achieved when the legitimate channel is better
than the eavesdropper channel. Toward this end, beamforming
techniques have been proposed both to maximize the signal
power for a legitimate receiver and to actively degrade the
signal for eavesdroppers by transmitting interference that sits in
the nullspace of the legitimate receiver [9], [10]. Alternately, a
degenerate constellation can be created for eavesdroppers by
transmitting a QAM constellation as a sum of beamformed
binary phase-shift keying (BPSK) signals [11], [12]. This
approach has the added advantage that it requires less power for
a given constellation since non-linear amplifiers can be used.

The above techniques depend on the assumption that there
are more antennas available for transmission and jamming than
for eavesdropping. If this is not so, then the eavesdropper is able
to resolve the signal from each antenna [13], [14] and remove
the jamming signals or properly reconstruct the constellation.

One way for a legitimate receiver to gain an advantage
over an unknown eavesdropper is to create greater uncertainty
on the assignment from message to broadcast symbol at the
eavesdropper’s receiver. Schemes such as original symbol phase
rotation (OSPR) have been proposed that use CSI to drive
randomization of this assignment through choices on antenna
and/or phase assignments [15]. However, for each of these there



is a trade-off. For the former, there is a reduction in the maxi-
mum constellation size that can be transmitted as antennas are
reassigned as jamming transmitters. For the latter, the reliability
between legitimate users is reduced because minimum distance
assignments cannot be maintained as individual QPSK sub-
constellations are rotated. One instance of this is illustrated
in Fig. 1 where a rotation of π/2 in each quadrant of the
constellation mapping causes a third of all adjacencies to have
a Hamming distance of three.

In this paper, a novel scheme called mirror-mapped encoding
is proposed that uses CSI to randomize the assignment of
message bits to sets of contemporaneously transmitted QPSK
symbols in such a way that assignments into the generated
QAM constellation are minimum distance and distributed ac-
cording to the CSI. As such, a party with the relevant CSI is
able to work within a minimum-distance-mapped QAM constel-
lation and one without it can only guess among all minimum
distance mappings of a given size. It will be shown that this
prevents the eavesdropper from gaining any information about
the transmitted message.

The remainder of the paper is organized as follows. In
Section II, a system model, variable definitions, and metrics
are discussed, while Section III presents the mirror-encoded
mapping scheme. Section IV consists of analysis to verify the
validity of the scheme, and Section V concludes the paper.

II. MODEL AND METRICS

Throughout this work, random variables are denoted as cap-
ital letters, while their alphabets are denoted with calligraphic
capital letters. Vectors of random variables are represented as
boldface capital letters, and the ith element of X is given as
X[i], with indexing beginning at i = 1. Finally, an estimate
of a random variable X is denoted X̂ . Alice wants to transmit
an n-bit message M ∈ Fn

2 = M to Bob. She broadcasts a
symbol X to Bob over a Gaussian fading channel and Eve
intercepts the transmission as in Fig. 2. The mutual channel
between Alice and Bob has parameters Hb and Nb, with Hb

being the zero-mean, normally distributed complex channel
state that describes the gain and phase shift applied to the
symbol through the channel, and Nb being the zero-mean,
normally distributed complex noise present at Bob. Thus, Bob
receives Y = HbX+Nb. Eve’s mutual channel with Alice has
parameters He and Ne so she receives Z = HeX + Ne. For
convenience, it is assumed that over each mutual channel, both
Alice and the receiving party have perfect knowledge of the
channel state. It is additionally assumed that the parameters for
Bob’s and Eve’s mutual channels with Alice are not correlated,
so Bob does not know Eve’s channel state and vice versa.

Bob makes a maximum likelihood (ML) estimation

X̂ = X ∈ X
∣∣∣ |X − Y | = min

x∈X
|x− Y | , (1)

from which he maps to M̂ ∈ M, forming an estimation of
the original message. Since Eve’s presence and capabilities are
unknown it must be assumed that she can perfectly estimate X
from Z and extract all mutual information between X and M.

This assumption may seem problematic, but it will be shown
that the proposed scheme guarantees that I(M;X) = 0.

A. Metrics
In discussing the reliability provided over the model in Fig. 2

for communications between Alice and Bob, it is necessary to
have some metric for the similarity between elements in M as
well as a metric for the distance between constellation symbols
of X in the complex plane.

For an arbitrary pair of binary vectors Ma and Mb, the
Hamming distance |Ma −Mb| is the number of bit positions
where the two vectors differ in value.

A Gaussian integer, e.g. X , is a complex valued number
for which the real and imaginary components are integers. The
Euclidean distance between Gaussian integers Xa and Xb is
defined as

|Xa −Xb| =
√
<e{Xa −Xb}2 + =m{Xa −Xb}2. (2)

The mapping from a binary vector to an element from a
set of Gaussian integers, e.g. a QAM constellation, maintains
minimum distance if an arbitrary pair of binary vectors Ma,
Mb with |Ma −Mb| = 1 map to some pair of Gaussian
integers Xa, Xb with minimum Euclidean distance for the set if
and only if their Hamming distance is 1. That is, for a minimum
distance mapping,

|Ma −Mb| = 1⇔ |Xa −Xb| = min
a 6=c
|Xa −Xc| . (3)

The mutual information between a binary vector M and a
Gaussian integer X is calculated as

I(M, X) = H(M)−H(M|X)

=
∑

m∈M
Pr(m)

∑
x∈X

Pr(x|m) log2

Pr(x|m)

Pr(x)
. (4)

The reliability of the proposed scheme will be verified
through simulation and quantified using the probability of bit
error Pb. For nt transmissions of n-bit messages Pb can be
calculated by averaging the Hamming distances between each
message and the estimate of that message

Pb =
1

nt

nt∑
i=1

∣∣∣Mni
− M̂ni

∣∣∣ . (5)

III. MIRROR-MAPPED ENCODING

The goal of the proposed scheme is to simultaneously achieve
both perfect secrecy and minimize Pb across all possible
mappings from M to X . Given a minimum distance mapped
constellation built up from QPSK symbols, CSI is used to
permute the constellation while maintaining minimum distance
mapping. The set of unique permutations available is as large
as the set of symbols in the constellation, resulting in a
permutation space as large as the message space and, thus,
allowing us to achieve both reliability and perfect secrecy.

To begin, a method of assigning binary vectors into a Gray
coded constellation using QPSK symbols is developed by
exploring the case of a 16-QAM constellation. Subsequently, a
means of altering this method using CSI to provide the requisite
permutations for perfect secrecy is presented.
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Fig. 1. A Gray coded 16-QAM constellation generated from two QPSK signals (left). Rotating the smaller QPSK constellation by π/2, the message assignments
in each quadrant are shifted counter-clockwise by one symbol (right). This assigns messages of Hamming distance three adjacently across axis boundaries.
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Fig. 2. Gaussian fading broadcast channel with known CSI.

A. Mapping Messages into the Default Symbol Space

Consider the left constellation in Fig. 1 and assume the scale
is such that 0000 sits at 3+j3 and 1111 sits at −1−j. By super-
position, any symbol X in the constellation can be represented
by two QPSK symbols as X = 21(±1 ± j) + 20(±1 ± j).
For example, the QAM symbol for 0000 can be created as
X0000 = 3+j3 = 21(1+j)+20(1+j) where the larger QPSK
symbol pushes 0000 into the first quadrant at 2 + j2, and the
smaller symbol increases the magnitude to 3 + j3. In general,
the larger QPSK constellation describes the quadrant where
the QAM symbol resides and the smaller QPSK constellation
describes the position of the QAM symbol within that quadrant.

Again observing the left constellation in Fig. 1, define that
each message vector is indexed from left to right. Given this,
there are three important patterns to notice regarding the Gray
mapping.
• The values of M[1] and M[2] are consistent for a given

location on the real axis, and the values of M[3] and M[4]
are consistent for a given location on the imaginary axis.
From this we propose that M[1] and M[2] describe the
real value of the symbol, M[3] and M[4] describe the
imaginary value of the symbol.

• A 1 in M[1] or M[3] accompanies symbols with a negative
value on the real or imaginary axis, respectively, and
a 0 accompanies positive values. Thus, M[1] and M[3]
describe the quadrant where the symbol resides.

• A 1 in M[2] or M[4] accompanies symbols with a
magnitude of 1 in the real or imaginary axis, respectively,
and a 0 accompanies a magnitude of 3. Thus, M[2] and
M[4] describe the magnitude of the symbol.

Clearly, M[1] and M[3] describe the larger QPSK symbol.
For a 16-QAM symbol composed of two QPSK symbols X =
X(1) +X(2), the larger symbol can be directly described as

X(1) = 21
[
(−1)M[1] + j(−1)M[3]

]
; (6)

however, M[2] and M[4] do not directly describe the smaller
symbol X(2). Instead X(2) is described by the sum of M[2]
and M[4] with M[1] and M[3], respectively,

X(2) = 20
[
(−1)M[1]+M[2] + j(−1)M[3]+M[4]

]
. (7)

Extending this analysis, it is possible to describe the mapping
for any n-bit vector M to a symbol X in a square 2n-QAM
Gray mapped constellation (i.e. n is even) as a sum of n/2
QPSK symbols

X =

n/2∑
i=1

X(i), (8)

where the value of the ith QPSK symbol is a function of all
the preceding symbol values and consequently

X(i) = 2n/2−i [(−1)p1 + j(−1)p2 ] (9)

p1 :=

i∑
k=1

M[k], p2 :=

i∑
k=1

M
[n

2
+ k
]
.
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Fig. 3. Rearranging the elements of a Gray-code sequence by mirroring
the arrangement of subsequences. The bars denote the axis around which a
subsequence has been mirrored.

B. Mapping Messages into the Symbol Space Using CSI

The above framework will now be extended to utilize CSI
to permute the mapping from message to symbol, while main-
taining minimum distance.

Consider a two bit Gray coded sequence. Clearly, minimum
distance will be maintained between adjacent elements if the
sequence is reversed. Additionally, as can be seen in Fig. 3, if
the sequence is divided in half and the order of the halves is
reversed or the order of the elements in each half is reversed,
minimum distance is maintained in the resulting sequence.
If the order of the halves, and the order of the elements in
each half are reversed, the result is the reverse of the original
sequence.

For any n-bit Gray coded sequence that is recursively divided
evenly into two subsets, any element order reversal that is
consistently applied to all subsets of a given size results in
a sequence that maintains minimum distance between adjacent
elements. If the order of all subsets are reversed, the result is
the same as reversing the order of the original set.

Notice from Fig. 1 that in a 16-QAM constellation, the first
two message bits reproduce the reversed sequence moving from
left to right in the constellation and the last two message bits
reproduce this sequence moving from top to bottom in the
constellation. With a short intuitive leap it can be observed
that reversing the order of the halves in the two bit sequence
corresponds to reversing the sign of the real or imaginary part of
the larger QPSK symbol and reversing the order of the elements
in each half corresponds to reversing the sign of the smaller
QPSK symbol.

Recall that it is assumed the two parties, Alice and Bob, with
a mutual channel have perfect knowledge of the CSI for that
channel, i.e., Hb, and all other parties have no knowledge of that
CSI, but rather the CSI of their own mutual channel with Alice.
Since the CSI is assumed zero-mean, normally distributed, its
phase is a continuous, uniformly distributed random variable.
Thus an arbitrarily long binary vector C can be used to describe
the phase of the CSI by assigning values of C evenly into the
range [0, 2π) and each bit in this vector will be independent
and uniformly distributed. For convenience it is defined that C
contains n-bits, the same as the message M.

The assignments for each QPSK constellation can then be
mirrored using one bit of channel state information for each
axis, where each bit determines whether the corresponding axis
is mirrored. To do this (9) is modified to

X(i) = 2n/2−i
[
(−1)p1+C[i] + j(−1)p2+C[n/2+i]

]
. (10)

IV. ANALYSIS

The scheme for mapping has been described but it remains
to be proven that the scheme provides minimum distance
mapping for all permutations of the mapping into a 2n-QAM
constellation that would result from C. Once this is proven
it will be shown through simulation that this scheme provides
better reliability than a method that does not ensure minimum
distance mappings. We will then proceed to prove that the
mutual information through the mapping from binary message
to QAM symbol is zero and thus the scheme provides per-
fect secrecy. Finally, we will verify through simulation-based
estimates of I(M, M̂) that the mutual information through a
Gaussian fading channel between message M and estimate M̂
is zero for an eavesdropping party.

A. Minimum Distance

The minimum Euclidean distance of a 2n-QAM constellation
is found between symbols that are horizontally or vertically
adjacent, i.e. their values differ in only the real or only the
imaginary component. Thus, to ensure all adjacent symbols
have minimum distance messages mapped to them it is suf-
ficient to show equivalent vectors will be mapped to the same
value along a given axis and that it is impossible for binary
vectors with Hamming distance greater than 1 to have minimum
Euclidean distance mapping along a given axis.

Define A, B as n-bit vectors mapped to symbols Xa, Xb

using n-bit CSI vector C. For convenience, define m = n/2.
The change in Euclidean distance of the mappings on the real
axis contributed by the ith bits can be determined from (10) as

(Xa −Xb)i = 2m−i(−1)C[i]×[
(−1)

∑i
k=1 A[k] − (−1)

∑i
k=1 B[k]

]
. (11)

Note that the summations can be thought of as parity checks
on the first i bits of each message, and the subtraction as a
comparison of parity between the two messages over those bits.
The channel state bit C[i] does not affect the magnitude of the
change in distance, only whether the change to the distance is
positive or negative.

Begin by considering the case A = B. For each i, the
first i bits in A and B are identical and have the same
parity. The result is a zero inside the brackets in (11) and the
distance in symbol assignment is zero as expected. Summing
the results for all i yields the Hamming distance, |Xa−Xb| =
2m−1(−1)C[1][0] + · · ·+ 2(−1)C[n−1][0] + 1(−1)C[n][0] = 0,
i.e., the vectors are mapped to the same symbol.

Now take the case A 6= B. Examine the first i for which
the ith bit in A and B differ. The first i bits in A and B have
opposite parity and the value inside the bracket becomes either
+2 or -2. This results in a change in distance (from zero) of
2n−i+1. At this point we remind ourselves that given a positive
common ratio, a geometric series is less than the next element
in the sequence, i.e., 2m >

∑m−1
k=1 2k for m > 1. Thus, once the

distance between Xa and Xb leaves a value it cannot return to
or cross that value. The only way to acquire minimum distance
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Fig. 4. Comparison of the bit error rate as a function of SNR over a Gaussian
fading channel for 16, 64, and 256 QAM transmissions using mirror-mapped
encoding and using OSPR encoding.

is for all further parity comparisons to push the distance back
toward zero,

|Xa −Xb| = 2m−1(0) + · · ·+ 2m−i(±2)

+ 2m−(i+1)(∓2) + · · ·+ 20(∓2) = 2.

This requires all further parity checks to be unequal. For
subsequent i, A[i] 6= B[i] causes the first i bits in either A
or B to switch parity, resulting in an equivalent parity check.
The remaining bits in A and B must be equivalent. Thus, to
have minimum distance assignments, A and B can only differ
by one bit.

Further, after A and B have diverged, all subsequent parity
checks must have the opposite result so, ignoring C, both A
and B must flip parity and then keep that parity. The next
bit of both A and B must have value 1 and all further bits
must have value 0. However, C can flip the result of each
parity comparison, so the remaining bits of A and B must be
(10 · · · 0)⊕C, yielding

A = {A1, · · · , Ai, C̄i+1, Ci+2, · · · , Cn},
B = {A1, · · · , Āi, C̄i+1, Ci+2, · · · , Cn}.

B. Reliability

To evaluate the reliability of our scheme, we simulate a
Gaussian fading channel and calculate the bit error rate (BER)
using (5) over ten-thousand transmissions. Each bit is randomly
generated since it is assumed that the message has been
encrypted and encoded. This is done for message lengths of
four, six and eight bits. The results are presented in Fig. 4 for
our scheme (mirror-mapped encoding) as well as for OSPR.
Both schemes have BER that approaches zero as signal-to-noise
ratio (SNR) increases, but mirror-mapped encoding has lower
BER for all SNR. For small constellations such as 16-QAM
the advantage is minimal; however, as the constellation size
increases so does the reliability gain of our scheme over OSPR.
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Fig. 5. Mutual information between M and M̂ of a 16-QAM broadcast over
a Gaussian fading channel for Bob using the same CSI as Alice, Eve using
uncorrelated CSI, and Eve using a static constellation

C. Perfect Secrecy

To prove that this scheme provides perfect secrecy what is
shown is that given M, each value X in the QAM constellation
X is assigned using (10) with a unique CSI value C. If this
is true and C is uniformly distributed then M is mapped
to each symbol in the constellation with equal probability.
Consequently, H(X) = H (X|M) and by (4) the mutual
information between M and X is zero.

Define Cx as the binary vector that is used to map M to X
using (8). Define Msum as a vector containing the p1 for each
k followed by the p2 for each k, i.e., the cumulative sums of
each half of M. For example, M = 1111 ⇔ Msum = 1212.
Then clearly, each constellation element X can result from (10)
by defining C = Cx ⊕ (Msum mod 2). Since the sets X and
C are the same size, and each X can be mapped from any
M using some C, there must be a one-to-one correspondence
between C and X through the mapping, and C uniquely maps
M to X .

D. Mutual Information over Gaussian Fading Channel

To supply some evidence of perfect secrecy through simu-
lation of mirror-mapped 16-QAM broadcasts over a Gaussian
fading channel, the mutual information between M and M̂ is
experimentally estimated. The distribution on M̂ is determined
through Monte Carlo simulation for each message M . The
mutual information is then calculated using (4). The results
can be seen in Fig. 5 for the legitimate receiver Bob, for
eavesdropper Eve using the CSI from her mutual channel with
Alice, and for Eve using the default Gray coded constellation.

The mutual information through the channel for Bob is
a function of the SNR of the channel. As SNR becomes
large, the mutual information asymptotically approaches the
information in the message. Conversely, for Eve the mutual
information through the channel is near zero regardless of the
SNR. The experiment corroborates the analytical result that
perfect secrecy is achieved using mirror mapping.



V. CONCLUSION

In this paper the technique of mirror-mapped encoding is
presented that assigns binary messages to locations in a QAM
constellation using CSI and that provides optimal reliability
and perfect secrecy. It is shown through simulation that the
proposed scheme provides better reliability than a similar
scheme (OSPR) that can provide perfect secrecy but does not
guarantee minimum distance mapping. The gains in reliability
increase with QAM constellation size. It is additionally shown
through simulation that the amount of information received per
broadcast symbol for a legitimate receiver is a function of the
SNR of the channel and zero for eavesdroppers.

Given a sufficiently large set of QPSK transmitters it is
possible to transmit any symbol from an arbitrarily large QAM
constellation. It is also possible to assign binary message
vectors into a QAM constellation in such a way that minimum
distance mapping holds for all symbols. In this paper it is
proven that using a random binary vector, generated in this
case from the state of Alice and Bob’s mutual channel, of equal
length to a binary message vector, it is possible, using (8) and
(10), to uniquely assign an arbitrary message to any symbol in
the constellation while maintaining minimum distance mapping
for all assignments into the constellation. As such, it is possible
to broadcast a message over a Gaussian fading channel with
optimal reliability and perfect secrecy.
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