

Scalability and Mobility in a Network Middleware for Large
Scale Mobile and Pervasive Augmented Reality Games

3HGUR�)HUUHLUD��-RmR�2UYDOKR�DQG�)HUQDQGR�%RDYLGD�
Centro de Informática e Sistemas, Departament of Informatics Engeneering

University of Coimbra
Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

{pmferr,orvalho,boavida}@dei.uc.pt

$EVWUDFW� �� 8ELTXLWRXV� RU� SHUYDVLYH� FRPSXWLQJ� LV� D� QHZ�
NLQG�RI�FRPSXWLQJ��ZKHUH�VSHFLDOL]HG�HOHPHQWV�RI�KDUGZDUH�
DQG�VRIWZDUH�ZLOO�KDYH�VXFK�D�KLJK�OHYHO�RI�GHSOR\PHQW�WKDW�
WKHLU� XVH� ZLOO� EH� IXOO\� LQWHJUDWHG� ZLWK� WKH� HQYLURQPHQW��
$XJPHQWHG�UHDOLW\�H[WHQGV�UHDOLW\�ZLWK�YLUWXDO�HOHPHQWV�EXW�
WULHV� WR� SODFH� WKH� FRPSXWHU� LQ� D� UHODWLYHO\� XQREWUXVLYH��
DVVLVWLYH�UROH��,Q�WKLV�SDSHU�ZH�H[DPLQH�WKH�VFDODELOLW\�RI�D�
LQQRYDWLYH�QHWZRUN�PLGGOHZDUH�IRU�ODUJH�VFDOH�PRELOH�DQG�
SHUYDVLYH� DXJPHQWHG� UHDOLW\� JDPHV�� DQDO\WLFDOO\� DQG� E\�
FRPSDULVRQ� RI� WKH� DUFKLWHFWXUH� SURSRVHG� ZLWK� DOWHUQDWLYH�
SRVVLEOH� DUFKLWHFWXUHV�� ZLWK� WKH� DLP� RI� SURYLQJ� RXU�
DUFKLWHFWXUH� LV� WKH� PRUH� VFDODEOH� RQH�� :H� DOVR� DQDO\]H�
PRELOLW\� LVVXHV� RI� WKH� DUFKLWHFWXUH� DQG� KRZ� WKH\� DUH�
KDQGOHG��

.H\ZRUGV�� 3HUYDVLYH� FRPSXWLQJ�� DXJPHQWHG� UHDOLW\��
VFDODELOLW\��PRELOLW\��

�� ,QWURGXFWLRQ�
 A significant requirement of pervasive applications is
fast service development and deployment [1], which
implies the introduction of various service and application
frameworks and platforms. For this, middleware is a
common solution. The benefits of middleware utilization
are the improved programming model, and the hiding of
many implementation details, which make middleware
based application development much faster. It is now
becoming quite clear that entertainment, and more
specifically mobile gaming, will be one of the killer
applications of future wireless networks [2].

Augmented reality extends reality with virtual elements
while keeping the computer in an assistive, unobtrusive role
[3]. It is possible to create games that place the user in the
physical world through geographically aware applications.
Most of the latest mobile phones are equipped with cameras
and some of the latest ones are coming with some form of
3D rendering technology [4] [5]. Bluetooth technology and
increasing miniaturization will lead, in the near future, to
low-cost, specialized pervasive equipment for augmented
reality. In [6] we described the main objectives of our
research concerning systems that satisfy the requirements of
network middleware for large scale mobile and pervasive
augmented reality games. In [7] we described a middleware

system that is being developed for large scale mobile and
pervasive augmented reality games that satisfies these
objectives. The system targeted by the middleware is
composed of 3 levels: the back-office central level, the
large scale network level, and the personal area network
level. This paper focuses on scalability and mobility issues
of the middleware proposed. The paper is divided in
Introduction (this section), Architecture, Scalability,
Mobility, and Conclusions, aside from abstract, keywords,
acknowledgments and references.

The main objective of this paper is to prove that our
architecture is the most scalable from a number of alternate
architectures that represent the main architectural trends in
modeling distributed systems.

�� $UFKLWHFWXUH�
 The system targeted by the proposed middleware is
composed of 3 levels: the back-office central level, the large
scale network level, and the personal area network level.
The back-office central level consists of one or more of a
series of parallel servers and serves as the main controlling
station of the game administrator, the person responsible for
starting, stopping and managing game performance and
general maintenance tasks.
The large-scale network is the standard 3GPP network,
where servers are distributed according to some logic of
spatial distribution, typically corresponding to aggregations
of cells of the mobile communications network.
The personal area network level consists of the network of
pervasive devices dedicated to personal communications
and to augmenting reality, which the person carries. These
may be sensors, actuators, and other devices that can
communicate using Bluetooth or other means of
communication. All these communicate with the mobile
host, probably just a cell phone or specialized device
connected to the large-scale 3GPP network. In this way, the
player is so enabled to play games of augmented reality
irrespective of his/her location.
Targeting this architecture allows the study, evaluation and
proposal of mechanisms to deal with issues of scalability,
multimedia data heterogeneity, data distribution and
replication, consistency, security, geospatial location and
orientation, mobility, quality of service, management of

networks and services, discovery, ad-hoc networking and
dynamic configuration.
We consider that building augmented reality applications
using a network middleware (option B) is better that
building them standalone (option A). This is because with
option B many game applications may then use the same
application programming interface (API) to leverage
network resources, giving it much faster service
development and deployment.
The middleware presented in this paper is being built
according to the characteristics of agile pervasive
middleware [8], such as application-awareness, mobility,
integration, interoperability, scalability, portability,
adaptability, robustness and simplicity of evolution.

���� &HQWUDO�OHYHO�
 At the central level, there is one server, which may be
constituted by more than one parallel server, running Java
Standard Edition 1.5.0. There will also be database servers,
which may or may not be integrated with the same server.
This server or collection of servers will be connected to the
HSS (Home Subscriber Server) of the 3GPP Network by the
DIAMETER protocol SH application and are, together, an
IMS (IP Multimedia Subsystem) application server.
All authentication, accounting, and authorization will
happen through this interface. All management of the game
servers will happen through this server.
Status Transmission Framework version 2.0 APIs for the
server side include a DIAMETER [9] API which includes
the base protocol, the CX and DX [10] applications and the
SH applications [11] of 3GPP. This would communicate
preferably through SCTP [12][13] (we also developed a
java SCTP API that presently only works under Linux, but
can be easily extended to other platforms, as soon as those
platforms support SCTP natively) if available. If not, TCP
will be chosen. The DIAMETER API implementation
supports TLS [14] and works over IPSec.
The terminal (UE) from the personal area network will
communicate with the central server through SIP [15] to
initiate the session, authenticate itself and get the details for
the session through SDP [16] negotiation (that’s another
API we have developed, the J2ME SDP API - in the server
side we use JAIN SDP API based on JSR 141). The SIP
and SDP exchanges include enough information to choose a
distributed server to communicate with, according to the
terminal’s geographical location. The terminal geographical
location is acquired through the use of the J2ME Location
API (JSR 179).

���� 7KH�ODUJH�VFDOH�GLVWULEXWHG�VHUYHU�OHYHO�
 At the distributed server level, there are multiple
distributed servers, linked to geographical coverage areas
which in the extreme may even be linked to the cells of the

mobile network, which will distribute the load off the main
server.

These servers run Java Standard Edition 1.5.0, also. They
will have integrated database servers running on the same
or different computers.

These servers will be interconnected by a reliable multicast
protocol capable of working in an IPv6 network, without
the support of network elements, capable of working in the
many-to-many scenario, without the nak implosion problem
but nak based, source ordered and avoiding duplicates: The
Sixrm Protocol [17]. The Sixrm Protocol is integrated in a
new version of ARMS – of which version 1 is published in
[18] [19] – the Augmented Reliable Corba Multicast
System, that is capable of running over Ipv6 networks.

���� 7KH�SHUVRQDO�DUHD�QHWZRUN�OHYHO�
 At the personal area network level we will find the
most diversified types of devices. The main device will
probably be a cell phone or a specialized device for game
playing.

The required characteristics for this device is that it must
support the Java language , more specifically, Java Micro
Edition, in its Connected Limited Device Configuration
(CLDC) version 1.1, and the MIDP – Mobile Information
Device Profile - version 2.0..

This central device must support also the Java Bluetooth
API (JSR-82), the Java SIP (Session Initiation Protocol)
API for J2ME (JSR-180) and the location API for J2ME
(JSR-189).

Other devices that are needed on the personal area network
level are input and output devices. These devices must also
support at least Java (same version and configuration) and
the Bluetooth API.

Output devices are essentially video and audio output
devices. Video and audio output devices should also
support, besides Java (CLDC 1.1) and Bluetooth for Java
Micro edition (JSR-82), the Mobile 3D graphics API (JSR-
184), and the Mobile Media API for J2ME (JSR-135).

As for input devices, in the real world environment, the user
is often used to using one or both hands to perform a task.
Therefore, the input devices used with wearable computers
need to be designed with this requirement in mind.
Appropriate input devices need to be utilized to allow the
user to efficiently manipulate and interact with objects. For
data entry or text input, body mounted keyboards, speech
recognition software, or hand held keyboards are often
used. Devices such as IBM’s Intellipoint, trackballs, data
gloves, etc., are used to take the place of a mouse to move a
cursor to select options or to manipulate data. One of the

main advantages of using a wearable computer is that it
allows the option of hands free use.

Common factors in the design of input devices are that they
all must be unobtrusive, accurate, and easy to use on the
job.

In order for any digital system to have an awareness of and
be able to react to events in its environment, it must be able
to sense the environment.

This can be accomplished by incorporating sensors, or
arrays of various sensors (sensor fusion) into the system.
Sensors are devices that are able to take an analogue
stimulus from the environment and convert it into electrical
signals that can be interpreted by a digital device with a
microprocessor.

For a sensor or array of sensors to be supported by the
Status Transmission Framework version 2.0, it must be
accompanied by hardware that translates its electrical
impulses to digital signals transmitted over Bluetooth
communications over the personal area network to the
central device.

The central device will coordinate all the augmented reality
experience for the user, using all the multimedia capacities
of the other devices and eventually, even own multimedia
capacities of the central personal area network device.

�� 6FDODELOLW\�
 To analyse the scalability of our architecture, we are
going to analyse the network traffic that is probably going
to be generated in an analytical way. The network traffic
generated also affects the processing time at the nodes so
all aspects of scalability are affected in this way. To do this,
we must analyse all levels of the system and the way they
work together.

���� 7KH�SHUVRQDO�DUHD�QHWZRUN�OHYHO�
 The first level that is analysed is the personal area
network level. Within this level are sensors, actuators and
the main game device. All sensors and actuators
communicate with the game device that communicates with
the large scale distributed level servers of the system. The
API for sensor and actuator communication with the central
game device is the SENSACT API on the sensors and
actuators and the API on the game device is the STF PAN
API. The STF PAN API coordinates all sensors and
actuators and sends and receives only one stream of data to
the current distributed server.

If we note by Ai and Si the messages (it’ s size in bytes) sent
from a sensor i to the central game device on the PAN and
the messages sent to actuator i from the central game

device, and we suppose that set of actuators and sensors the
central game device can process that data so that only the
minimal messages Mk ,in bytes, get transmitted or received
from the distributed servers, we get that Tm, the total
maximum number of messages (it’ s size in bytes) handled
by the central game device on a period of time between
instants t0 and t1 is:

 ∑∑ ∑
== =

++= ��
�

�� ��
�� 06$7P

..1..1 ..1

. (1)

Where N is the number of sensors active, M is the number
of actuators active and L is the number of messages
received from the distributed server on that period of time,
which depends on the number of objects we are getting
updates from, which is limited by partitioning. So we can
consider L approximately equal to the number of objects in
a period of time sufficiently small between t0 and t1
multiplied by 2, because we both send and receive.

We so have that:

1. The maximum number of messages from the sensors
increases linearly number of sensors active;

2. The number of messages to the actuators increases
linearly with the number of messages relevant received
from the distributed servers (objects in view that trigger the
activators) and the number of sensors active.

3. The number of messages to the distributed servers
increases not with sensor number, but with the number of
objects in view, and this is limited by partitioning the
virtual world.

���� 7KH�ODUJH�VFDOH�GLVWULEXWHG�VHUYHU�OHYHO�
At the large scale distributed server level each distributed
server, at the same time interval, will be responsible for the
users in its area and only minimal communication will be
maintained between the servers. We can denote that
minimal communication by MCi, in bytes. We can denote
the user communication at each server by Mk, in bytes, as
we did on the personal area network level. Note that this
user communication depends on the number of objects in its
view, but that largely is limited, due to partitioning that is
made by the system of the virtual world. So the messages
are even further minimized in that way in a location
oriented dependent manner. As we communicate through
ARMSV6 and Sixrm reliable multicast, the formula for the
maximum number of messages TDm (it’ s size in bytes),
which each distributed server will handle, will be
approximated by:

 ∑∑
==

+= ��
�

�	
	 0&07'P

..1..1

. (2)

Where N is the number of users and M is the number of
distributed servers. We have that the total number of
messages handled by the distributed server will:

1. Increase linearly with the number of users on that
distributed server.

2. Increase linearly but in a much slower rhythm with the
number of distributed servers (because MCj is really a small
amount).

���� 7KH�EDFNRIILFH�FHQWUDO�OHYHO�
 The back office central level will be handling
management and session initiation and termination. In
management, messages exchanged depend linearly on the
number of distributed servers on the network. In session
initiation and termination messages, as also mobility
handling messages, the total number of messages also
depends linearly on the total number of users on the system.
But these kinds of messages happen infrequently, only
when users join or leave the system, or when the manager
wants to look, examine data or change things.

���� $QDO\VLQJ� WKH� VFDODELOLW\� RI� SRVVLEOH� DOWHUQDWH�
DUFKLWHFWXUHV�

������ 7KH�WRWDOO\�FHQWUDOL]HG�DUFKLWHFWXUH�
 We assume that by the totally centralized architecture
we mean that the central game device on the PAN will do
no processing on sensors and activator messages and send
all to a central server to do all processing related to the user
and send the result back to this user sensors and activators.

This would be of course a situation where the server would
be a major bottleneck, as the equation for the total number
of messages on the server clearly shows, for the time
between instants t0 and t1:

 2
..1 ..1 ..1

[$67P
� �
 ��
�

















+= ∑ ∑ ∑

= = =

. (3)

We use here the same notation used until now with Tm
being the total maximum number of messages, in bytes,
handled by the central server. We multiply the sum by 2

because we both receive and send messages. N is the
number of users, M the number of sensors per user and L
the number of actuators per user.

We now have the entire load on one component, and loose
the benefits of distributing the load for more than one
component.

Here we are not counting with session initiation, session
termination, mobility handling, and management messages.
These tend to happen infrequently.

������ 7KH�WRWDOO\�GLVWULEXWHG�DUFKLWHFWXUH�
 In the total distributed architecture, we would have
only the large scale distributed level of the system doing all
the processing. There would be no processing on the PAN
and no processing on the Central BackOffice Level.

This leads to problems of finding the correct server to
connect to in the first place, we would have to build a list of
servers in each user central device. And these lists must be
maintained synchronized with the configuration of the
network, witch would be no easy task.

Mobility and management will also be moved to the
distributed level completely, complicating things a little
more. On our architecture mobility and management have a
distributed component, but are centrally coordinated, which
does not happen in this scenario.

But, seeing things in number of messages transmitted and
using the same notation we have in each distributed server,
between instants t0 and t1, taking that the PAN central
device does not do any processing, TDm the total maximum
number pf messages (it’ s size in bytes) processed in one
distributed server is:

∑∑ ∑ ∑
== = =

+















+= ��

�
�� �� ��

�� 0&[$67'P
..1..1 ..1 ..1

2 (4)

Where N is the number of users on this distributed server,
M is the number of sensors by user, L is the number of
actuators per user and O is the number of distributed
servers on the system.

We have that the total number of messages handled by the
distributed server will:

1. Increase linearly with the number of distributed servers

2. Not increase linearly but in a faster rhythm with the
number of users, sensors, and actuators on the users of this
distributed server.

So we have that the solution is more scalable than the
totally centralized one, but less scalable than our solution,
because the load on the distributed servers is much more.

������ 7KH�SXUH�SHHU�WR�SHHU�DUFKLWHFWXUH�
 By the peer-to-peer architecture, we aim to analyse a
situation where the central game device has all the work of
the system, communicating only with other central game
devices through the 3GPP network. It has processing
capabilities and processes the sensor and actuator messages.
It only sends and receives messages from all other nodes on
the system. We denote by Si the sensor messages, Ai the
actuator messages and Mi the node messages to and from
other nodes. We have that TPm, the total maximum number
of messages (it’ s size in bytes), on the main game device,
the main device on the personal area network, is, on the
time between t0 and t1:

 ∑∑∑
−===

++=
1..1..1..1 ��

�
��

�
��

� 06$73P . (5)

Where N is the number of sensors active on the PAN, M is
the number of users on the system and O is the number of
actuators active on the PAN. We see that this formula is
very similar to our formula in our 3 levels system for the
PAN level, but now the Mk factor depends on the number
of users and not on the number of distributed servers, which
clearly is worse than in our case. So, the totally peer-to-peer
architecture is not as scalable as ours.

���� *UDSKLFDO� FDVH� VWXG\� RI� WKH� DOWHUQDWH�
DUFKLWHFWXUHV�

 For a more visually appealing comparison, we will do
a graphical comparison between de various alternatives. For
this, we will fix the number of sensors in 5 and the number
of actuators in 3. We will start with 100000 users and work
our way up to 3000000 users in steps of 100000. We will
analyse a network, in our case, with 100 distributed servers
uniformly distributed and with users uniformly distributed,
on the three levels architecture and on the totally distributed
architecture. We will analyse output variables. We will fix
the size of messages in 50 bytes for the sensors, 300 bytes
for the actuators (in reality this maybe more depending on
the kind of actuator but for our study this will do), 300
bytes for MCi and Mk. We will fix the number of objects in
view to 10. We will build a program to run the simulation

and output the results to a CSV file that then gets analysed
by Microsoft Excel to output the graphs shown here.

� � "! # $ # ! % & ')(# * + , # * ,

0

1000

2000

3000

4000

5000

6000

7000

8000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
000

13
000

14
000

15
000

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

23
00

0

24
00

0

25
00

0

26
000

27
000

28
00

0

29
00

0

30
00

0- . / 0 . 1 2 3 4 . 5 6 . / 0 7 / 0

8 9:; <
= >?@

Number of users

Figure 1 - Personal Area Network level
A B C D EGF H B I EKJ L M N C L O P N E QKF E C R E C

0

50000000

100000000

150000000

200000000

250000000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
000

11
000

12
000

13
00

0

14
000

15
000

16
00

0

17
00

0

18
00

0

190
00

200
00

21
00

0

22
00

0

230
00

240
00

25
00

0

26
00

0

27
00

0

28
000

29
00

0

30
00

0S T U V W X Y Z T [W X [

\] ^_` a
b cde

TDm

Figure 2 - Large Scale Distributed Server Level
f gih f j k l m m n o p q k r l m s t p uKl r o v s k p o k w r p

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

10
00

00

200
00

0

300
00

0

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

11
000

00

12
000

00

13
000

00

14
000

00

15
000

00

16
000

00

17
00

00
0

18
00

00
0

19
00

00
0

200
00

00

21
00

000

22
00

00
0

23
00

00
0

24
000

00

25
000

00

26
000

00

27
000

00

28
000

00

29
00

00
0

30
00

00
0

x y z { | } ~ � y � | } �

� ��� �
� ���

Tm

Figure 3 - Totally centralized architecture
� � � � � � � � � � � � � � � � � �K� � � � � � � � � � � �

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

23
00

0

24
00

0

25
000

26
00

0

27
00

0

28
000

29
000

30
00

0� � � � � � � � ¡ � � ¡

¢£ ¤¥¦ §
¨ ©ª«

TDm

Figure 4 - Totally distributed architecture

¬ ­ ® ¯ ° ° ± ² ³ ³ ´ ® ­K² ³ ³ ´ ¯ ´ µ ¶ · ® ³ µ ® ¸ ´ ³

0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

1800000000

2000000000

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

11
00

00
0

12
00

00
0

13
00

00
0

14
00

00
0

15
00

00
0

16
00

00
0

17
00

00
0

18
00

00
0

19
00

00
0

20
00

00
0

21
00

00
0

22
00

00
0

23
00

00
0

24
000

00

25
00

00
0

26
00

00
0

27
00

00
0

28
00

00
0

29
00

00
0

30
00

00
0

¹ º » ¼ ½ ¾ ¿ À º Á ½ ¾ Á

ÂÃ ÄÅÆ Ç
È ÉÊË

TPm

Figure 5 - Totally peer-to-peer architecture

Notice how the PAN level on our architecture does not
depend on the number of users, contrary to what happens
on the totally peer to peer architecture. Notice on how on
the totally distributed architecture when the users go up to
3000000, we go exponentially to 6E+11 bytes in each
server (corresponding to 30000 users on each server),
contrary to only 214560000 bytes linearly in our solution
in each of the distributed servers. In the fully centralized
architecture, the maximum number of messages linearly
increases to a maximum of 6900060000 bytes, when we
have a maximum of 3000000 users, which is much more
than any of our distributed servers on our large scale
network.

We may have had better results yet if we had allowed our
distributed servers to grow to accommodate the ever
growing user base, but that was not the scenario envisioned.
In reality, probably we will have more distributed servers
with a growing user base. Even so, when comparing our
solution to the totally distributed one, our solution has
linear increase with the number of users and the totally
distributed solution has exponential increase with the
number of users. Our solution would be better none the
less.

�� 0RELOLW\�
 Mobility in our architecture happens in two ways,
both when the user changes cell on the 3GPP network, or
routing areas, and then the mechanisms defined in 3GPP for
these situations work as expected, and when the user
changes from the area controlled by one distributed server
to the area controlled by another distributed server. Is this
last kind of mobility we discuss.

In our architecture, at the personal area network, the user is
localized using the Java Location API (JSR-179), which,
with correct hardware, can provide the user with 3D
position and orientation.

When initiating a session, we, the central game device,
provide the central back office server with our current
position, in a SUBSCRIBE sip message with a special

header defined by us with our 2D coordinates, and the
server replies by inviting us to a session of augmented
reality gaming in a distributed server adequate to our
position by sending us a INVITE with SDP (Session
Description Protocol) session information and a bounding
box ,in a special header defined by us, that defines the
region the distributed server controls.

If we have not changed position outside of that region in the
meanwhile, we accept the invite, negotiate the SDP session
protocol QoS and parameters, do what else is necessary to
initiate the session and start the game session. If we stepped
outside the bounds, we repeat the process by sending
another SUBSCRIBE and not accepting the INVITE.

During the game, we update our position and orientation
using JSR-179 and if we fall outside the 2D bounds of the
region the current distributed server gived us, we close the
session connections with this distributed server and
SUBSCRIBE to another distributed server through the
central back office server.

Each distributed server maintains a rectangular region for
which it is responsible. Communication between distributed
servers is only needed if an object falls in the frontier
region for which it may be visible on the neighbourhood
distributed servers.

�� &RQFOXVLRQV�

 We conclude that our solution is adequate for large
scale mobile and pervasive augmented reality games. We
have proven it is a more scalable architecture than
alternative architectures and talked about its mobility
aspects. Future work on this middleware platform will
include optimization, further testing, and developments in
the area of QoS – Quality of Service – , security, and
management.

$NQRZOHGJPHQWV� This work is being partially financed by
the Portuguese Foundation for Science and Technology
(FCT) and by the European FP6 CONTENT Network of
Excelence (NoE).

��� 5HIHUHQFHV�
[1] Kimmo Raatikainen, Henrik Bærbak Christensen,
Tatsuo Nakajima, “Application Requirements for
Middleware for Mobile and Pervasive Systems”, Mobile
Computing and Communications Review, Volume 6,
Number 4, October 2002, pp. 16 – 24 , ACM Press

[2] Keith Mitchell, Duncan McCaffery, George Metaxas,
Joe Finney, Stefan Schmid and Andrew Scott, “Six in the
City: Introducing Real Tournament – A Mobile IPv6 Based
Context-Aware Multiplayer Game”, Proceedings of

NetGames’03, May 22-23, 2003, Redwood City, California,
USA, pp. 91-100, ACM Press

[3] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro
Katayama, “ Mixed Reality:Future Dreams Seen at the
Border between Real and Virtual Worlds” , Virtual Reality,
November/December 2001, pp. 64 –70, IEEE

[4] Nokia – Developer resources (Forum Nokia),
http://www.forum.nokia.com/, Accessed April 2004

[5] Sony Ericsson Developer World,
http://developer.sonyericsson.com/, Accessed April 2004

[6] Pedro Ferreira, “ Network Middleware for Large Scale
Mobile and Pervasive Augmented Reality Games” in Proc.
of the CoNext 2005 - ACM Conference on Emerging
Network Experiment and Technology, pp. 242-243,
CoNext 2005 - ACM Conference on Emerging Network
Experiment and Technology, Toulouse, France, October-
2005

[7] Pedro Ferreira, João Orvalho, Fernando Boavida,
” Large Scale Mobile and Pervasive Augmented Reality
Games” , in Proc. of the EUROCON 2005 - The
International Conference on "Computer as a Tool", pp.
1775-1778, Vol. 1, # 1, EUROCON 2005 - The
International Conference on "Computer as a Tool",
Belgrade, Serbia and Montenegro, November-2005

[8] Eila Niemelä, Teemu Vaskivuo, Agile Middleware of
Pervasive Computing Environments, Proceedings of the
Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops (PERCOMW’ 04), 2004,
IEEE

[9] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J.
Arkko, “ Diameter Base Protocol” , RFC 3588, September
2003

[10] 3GPP TS 29.229 v7.0.0 , “ 3rd Generation Partnership
Project; Technical Specification Group Core Networks and
Terminals; Cx and Dx interfaces based on Diameter
protocol; Protocol details (Release 7)” , January 2006

[11] 3GPP TS 29.329 V7.0.0, “ 3RD generation
Partnership Project; Technical Specification Group Core
Network and Terminals; Sh interface based on the Diameter
protocol; Protocol details (Release 7)” , December 2005

[12] L.Ong., J. Yoakum, “ An Introduction to the Stream
Control Transmission Protocol (SCTP)” , RFC 3286, May
2002

[13] Stewart, R., Xie, Q., Morneault, K. Sharp, C.,
Shwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang,

L. and V. Paxson, “ Stream Control Transmission Protocol” ,
RFC 2960, October 2008

[14] T.Dierks, E.Reskorla, “ The Transport Layer Security
(TLS) Protocol version 1.1” , RFC 4346, IETF, April 2006

[15] J. Rosenberg, H. Schulzrinne, G. Camarillo, A.
Johnston, J. Peterson, R. Sparks, M. Handley, E. Schooler,
“ SIP: Session Initiation Protocol” , RFC 3261, June 2002

[16] M. Handley, V. Jacobson, “ SDP: Session Description
Protocol” , RFC 2327, April 1998

[17] Pedro Ferreira, João Orvalho and Fernando Boavida ,
“ Sixrm: Full Mesh Reliable Source Ordered Multicast” , in
Proc. of the SoftCom2006 - 14th International Conference
on Software, Tellecommunications & Computer Networks,
SoftCom2006 - 14th International Conference on Software,
Tellecommunications & Computer Networks, Split,
Croatia, September 2006

[18] João Gilberto de Matos Orvalho, “ ARMS – Uma
plataforma para aplicações multimédia distribuídas, com
qualidade de serviço” , Phd Thesis, December 2000, DEI-
FCTUC

[19] João Orvalho, Fernando Boavida, “ Augmented
Reliable Multicast CORBA Event Service (ARMS): a QoS-
Adaptive Middleware” , in Lecture Notes in Computer
Science, Vol. 1905: Hans Scholten, Marten J. van Sinderen
(editors), Interactive Distributed Multimedia Systems and
Telecommunication Services, Springer-Verlag, Berlin
Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS
2000 – 7th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication
Services, CTIT / University of Twente, Enschede, The
Netherlands, October 17-20, 2000).

