
Quality of Service APIs for a 3GPP Mobile and Pervasive Large Scale
Augmented Reality Gaming Middleware

Pedro Ferreira, João Orvalho and Fernando Boavida
Centro de Informática e Sistemas, Department of Informatics Engineering,

 University of Coimbra, Pólo II, Pinhal de Marrocos, 3030-290, Coimbra, Portugal
{pmferr,orvalho,boavida}@dei.uc.pt

Abstract

Ubiquitous or pervasive computing is a new kind of
computing, where specialized elements of hardware
and software will have such a high level of deployment
that their use will be fully integrated with the
environment. Augmented reality extends reality with
virtual elements but tries to place the computer in a
relatively unobtrusive, assistive role. Specialized
network middleware solutions for large scale mobile
and pervasive augmented reality games are, to our
knowledge, inexistent. The work presented in this
paper focuses on the creation of such type of network
middleware for mobile and pervasive entertainment,
applied to the area of large scale augmented reality
games.
In this paper we propose and describe APIs and
architecture for Quality of Service specification,
negotiation and provision on the client side (using
J2ME) and on the server side (using J2SE). The paper
discusses architectural and implementation aspects.

Keywords. Quality of Service, Pervasive Computing,
3GPP, Augmented Reality, Mobile Gaming

1. Introduction

Mark Weiser theorized about a new kind of
computing, called ubiquitous or pervasive computing,
where specialized elements of hardware and software
would be so ubiquitous no one would notice their
presence [1]. According to Mark Weiser the
technology required for ubiquitous computing would
come in three parts: inexpensive, low power computers
including equally convenient displays, software for
ubiquitous applications, and networks that tie them all
together.

In the current decade we are witnessing the merging
of telecommunications and IT worlds [2]. The Internet

Protocol (IP) is the network layer protocol in the 3GPP
specifications, and the current trend in developing new
telecommunications networks is to utilize Internet
protocols. So, the network that ties all things together
is now possible. But there are many issues under study
in the Internet community. These are mobility, quality
of service, security, management of networks and
services, discovery, ad - hoc networking and dynamic
configuration, and geospatial location.

Low cost, low power computers including equally
convenient displays are also coming closer to reality.
In fact, we can consider the latest PDA’s and mobile
phones an early version of Weiser’s ubiquitous
computers.

A significant requirement of pervasive applications
is fast service development and deployment [2], which
implies the introduction of various service and
application frameworks and platforms. For this,
middleware is a common solution. The benefits of
middleware utilization are the improved programming
model, and the hiding of many implementation details,
which make middleware based application
development much faster.

It is now becoming quite clear that entertainment,
and more specifically mobile gaming, will be one of
the killer applications of future wireless networks [3].
However, mobile gaming applications face issues that
are different from fixed network applications. These
issues include fluctuating connectivity, quality of
service and host mobility. Another issue is how to
manage game state consistency with a dynamic mobile
networked environment in which devices may be
physically close but topologically distant. Further yet,
there is the issue of how to manage multiple wireless
network connections such as, for example, GPRS and
IEEE 802.11 at the same time.

Augmented reality extends reality with virtual
elements while keeping the computer in an assistive,

unobtrusive role [4]. It is possible to create games that
place the user in the physical world through
geographically aware applications. The latest mobile
phones are being equipped with GPS receivers and
there are software and hardware tendencies from the
largest manufacturers to equip mobile phones with
more advanced context-aware technology. Current
mobile phones are equipped with cameras and some of
the latest ones are coming with some form of 3D
rendering technology [5][6]. Bluetooth technology and
increasing miniaturization will allow, in the near
future, specialized pervasive equipment for augmented
reality. The opportunity for some inexpensive
augmented reality is here.

To the best of our knowledge, there is no specialized
network middleware solution for large-scale mobile
and pervasive augmented reality games. The main
objective of this work is the creation of such network
middleware for mobile communications that will
enable integrated large-scale augmented reality
applications to be built around it.

The middleware that is being created evolved from
previous work in the area of interactive distributed
multimedia, more specifically in state transmission for
a collaborative virtual environment middleware
platform, the Status Transmission Framework (STF)
[7][8]. This platform extended ARMS – Augmented
Reliable CORBA Multicast System [9][10] – with
capabilities for the handling of state transmission in
distributed collaborative virtual environments.

In this context mechanisms are being studied,
proposed and evaluated to deal with issues such as
Mobility (fluctuating connectivity, host mobility and
handling of multiple simultaneous network
connections), quality of Service – QoS (minimizing
delay and jitter ,and reliability), security
(authentication and prevention of cheating),
management of Networks and Services, discovery,
ad-hoc networking and dynamic configuration,
geospatial location and orientation, scalability,
consistency, multimedia data heterogeneity, data
distribution and replication.

The architecture we are talking here has been partly
published (without the QoS handling capabilities) in
previous work. In [11] we talked about the general
architecture we were thinking of building, in seminal
terms, in [12] we specified a little more about the
architecture that was going to be built. In [13] we
introduced a sensor-actuator personal area network
controller API for sensors and actuators based on Java
CLDC and Java Bluetooth, and the corresponding API
on the central coordinating device of that personal area

network.
In [14] we described a new reliable multicast

protocol capable of working in the many to many
scenario, nak based, that avoided duplicated and was
source based, and that worked on ipv4 or ipv6 – sixrm.

This protocol is the base for communication
between distributed servers, as part of ARMSV6, a
corba event system extended to use multicast.

In [15] we completely describe the architecture of
the system already built and working, and tested, still
without QoS.

This paper concentrates on the QoS handling issues
of the middleware, that are a new contribution to Java
2 Micro Edition and to our knowledge, also to J2SE,
and to our system.

The main contribution of this paper is the definition
of an QoS handling architecture both on the client (UE)
and on the distributed gaming server.

To our knowledge, this is the first java API for
Quality of Service handling in 3GPP networks ever
proposed.

In the rest of the paper, first we address quality of
service in 3GPP, after which we describe the general
architecture of the STF QOS API on J2ME (client UE).
We then proceed to discuss the general architecture of
the STF QOS API on the distributed servers, and
immediately after that the functional tests to which the
implementation was subject and the carried out
simulations. Subsequently, we discuss the integration
of the API with the rest of the STF architecture,
following which we present some conclusions and
guidelines for further work.

2. Quality of Service in 3GPP

In this section we briefly introduce the 3GPP End-
to-End QoS architecture.

2.1 General Architecture

The 3GPP general architecture for End-to-End QoS
is relatively complex. Basically, QoS is present in all
levels of UMTS, from the radio protocols to the higher
level voice and packet data protocols. And in this way
3GPP guarantees end-to-end QoS in UMTS. For more
details, please see [16]. Here, we just describe the more
important elements for our API.

2.2 The role of the PDP context

The PDP (Packet Data Protocol) Context is a virtual
link between the UE and the GGSN, passing by the
SGSN, that transports packets of some protocol,
usually IPv4 or IPv6. The PDP Context is defined by
some properties like the QoS profile it uses, the APN

(Access Point Name) it connects to, and the type of
packets it transports.

By changing the QoS profile, we change the QoS
properties of the connection.

2.3 The role of RSVP

Resource Reservation Protocol (RSVP) [21] and
related standards [17][18][19][20] may be used on the
UE client side for QoS resource reservation after initial
secondary PDP Context activation and influence the
way the network will handle packets for our flows of
media. They may also be used on the server side to
handle reservations.

3. General architecture of the STF QOS
API for J2ME

We now discuss the general architecture of the
Status Transmission Framework version 2 QoS API on
J2ME (that is, on the UE, the central coordinating
device of the personal area network).

3.1 General Architecture

The general architecture is based on two APIs for
QOS: The PDP Context Handler API and the RSVP
API. Both are used at the same time to guarantee
quality of service on a 3GPP network with RSVP
support (witch is optional) and that may or may not use
uses Service Based Local Policy between the PDF
(Policy Decision Function) and the GGSN as specified
on [16].

3.2 The PDP Context handler API

The PDP Context handler API is an Application
Programming Interface that allows us to activate and
deactivate PDP contexts with all its characteristics
including QoS characteristics.

Table 1 shows the classes of package
pt.uc.dei.lcst.stf.pan.qos, the package of the PDP
Context handling API and corresponding functions.

3.3 The RSVP API
The RSVP API on the UE (J2ME) is based on the

RSVP specifications [17][18][19][20][21] and is used
to alter the way the GGSN in particular (if it supports
RSVP) and other routers on the way to the distributed
servers (which are located on the IP Multimedia
Subsystem) allocate resources to the connection in
question.

The GGSN affects (see [16]), if supporting RSVP,
the PDP context traffic handling.

Table 2 shows the classes of package
pt.uc.dei.lcst.stf.pan.qos.rsvp, the package of the RSVP
API and corresponding functions. This package
belongs to the bigger STFPAN API.

Class Function
DestinationPortRangeType Defines a port

range
FlowLabelType Defines a Ipv6 flow

label
IPV4SourceAddress An Ipv4 Source

Address
IPV6SourceAddress An Ipv6 Source

Address
PDPContext A PDP Context per

se
PDPContextListener Listener for event

related to PDP
Contexts

PDPContextManager The manager of
PDPContexts

PDPPacketFilter Base class of all
Packet filters

PDPTrafficFlowTemplate A PDPContext
traffic flow
template

QoSException An exception
occurred

QoSProfileIE The QoS
Specification

ProtocolIDNextHeaderType A Protocol ID
NextHeader

SecurityParameterIndexType A Security
Parameter Index

SingleDestinationPortType A single destination
port.

SingleSourcePortType A single source
port.

SourcePortRangeType A source port
range.

TypeOfServiceTrafficClassType A type of service
traffic class.

Table 1 - Classes of pt.uc.dei.lcst.stf.pan.qos

4. General architecture of the STF QOS
API on the distributed servers

On the distributed servers, we use RSVP (Resource
Reservation Protocol) and related standards
[21][17][18][19][20].

4.1 The RSVP Architecture

The RSVP architecture on the distributed servers is
very similar to the architecture on the UE clients, with
differences in implementation and in configuration of
course. But the list of classes is the same as in Table 2,
except that the package is now
pt.uc.dei.lcst.stf.qos.rsvp that is part of the bigger
STFServer API.

Class Function
RSVPMessage Base message
RsvpException A

RsvpException
RsvpExceptionNoService RsvpException:

No service
available

RsvpListener Listener of
messages

RsvpManager Rsvp manager
RsvpObject Base object
RsvpObjectForwarded Forwarded

object
RsvpObjectIgnored Ignored object
RsvpObjectIntServAdSpec AdSpec object
RsvpObjectIntServFlowSpecObject FlowSpec object
RsvpObjectIntServerSenderTSpec TSpec object
RsvpObjectIntegrity Integrity object
RsvpObjectIpv4ErrorSpec Ipv4 Error Spec

object
RsvpObjectIpv4FilterSpec Ipv4 Filter Spec

object
RsvpObjectIpv4ResvConfirm Ipv4

ResvConfirm
object

RsvpObjectIpv4RsvpHop Ipv4 RsvpHop
object

RsvpObjectIpv4ScopeList Ipv4 ScopeList
object

RsvpObjectIpv4SenderTemplate Ipv4
SenderTemplate
object

RsvpObjectIpv4UDP Ipv4 session
object

RsvpObjectIpv6ErrorSpec Ipv6 ErrorSpec
object

RsvpObjectIpv6FilterSpec Ipv6 FilterSpec
object

RsvpObjectIpv6ResvConfirm Ipv6
ResvConfirm
object

RsvpObjectIpv6RsvpHop Ipv6 RsvpHop

object
RsvpObjectIpv6ScopeList Ipv6 ScopeList

object
RsvpObjectIpv6SenderTemplate Ipv6

SenderTemplate
object

RsvpObjectIpv6UDP Ipv6 Session
object

RsvpObjectList List of objects
RsvpObjectNull Null object
RsvpObjectPolicyData PolicyData

object
RsvpObjectStyle Style object
RsvpObjectTimeValues TimeValues

object
RsvpPATH PATH message
RsvpPathErr PATHERR

message
RsvpPathTear PATHTEAR

message
RsvpRESV RESV message
RsvpResvErr RESVERR

message
RsvpResvTear RESVTEAR

message
RsvpResvConf RESVCONF

message
Table 2 - classes of package

pt.uc.dei.lcst.stf.pan.qos.rsvp

5. Functional tests

To test our architecture we have made some
functional tests, on a simulated implementation of the
PDP context Handler architecture and on a protocol
implementation of RSVP.

5.1 Emulation of the PDP Context Handler
architecture

We did not have access to a platform where we
could implement real PDP context activation and
deactivation, in a way that we could test it, in Java. So,
we emulated the API, implementing all its
functionality internally in such a way that applications
can be made in the emulator using this API and in the
future, a real implementation (not emulated), probably
using a native interface to the native features of real
UEs, can really allocate and deallocate PDP contexts.

Using this emulation environment, functional tests
were made to the proposed API, enabling us to confirm
its operational capabilities.

5.2 RSVP implemented by UDP encapsulation
with a simulated router in between

As for RSVP, we implemented RSVP, both on the
emulated UE and on the distributed server using UDP
encapsulation, which is a feature of the protocol [21].

Our implementation does not support the features of
integrity checking (optional in all messages), and
policy data (stated in the RFC as further study item).

A future alternative implementation could
implement these items.

For testing, we built a program that simulated a
router with UDP encapsulation support and tested in an
isolated fashion the communications of the RSVP
protocol between a program that sent and received data
(so it needed reservations), an RSVP simulated router,
and a similar program (actually the same program)
running on another machine.

The functional tests consisted of, considering both
computers as senders and receivers at the same time,
setting up reservations in RSVP having a router in
between the two (actually, the simulated router).

The tests only targeted the protocol, no real
reservations at the network layer were made.

The tests were successful and we proceeded with the
integration of the API with the rest of the Status
Transmission Framework Middleware.

6. Integration of the API with the STF
middleware

We now describe the process of integrating the QoS
APIs on the rest of the Status Transmission Framework
version 2.0 Middleware.

6.1 On the PAN

On, the PAN, that is, on the STFPAN API, we added
the package pt.uc.dei.lcst.stf.pan.qos and the package
pt.uc.uc.dei.lcst.stf.pan.qos.rsvp to the already existent
other packages of the STFPAN API.
Then we altered the session initiation sequence to
include QoS negotiation with PDP activation and
modification and RSVP negotiation.
We also altered the sequence of session termination to
include RSVP resource freeing.

6.2 On the Distributed Servers and Central
Server

On the distributed servers and central server we added
to the STFSERVER API the pt.uc.dei.lcst.stf.qos.rsvp
package.
Then we altered the sequence of session initiation and
termination.

6.3 Session Management with our APIs for
QoS

Session initiation and termination with our APIs for
QoS is done in the way specified in [16] when using
RSVP. The only change is that we have a central
application server that coordinates the distributed
server, that does all the RSVP handling.

7. Conclusions
In this paper we have proposed a set of APIs for QoS
handling in both the 3GPP UE (in J2ME) and the
distributed server of a middleware for mobile and
pervasive large scale augmented reality games
previously proposed.
We provided a simulated implementation of PDP
contexts and a real implementation of RSVP through
UDP encapsulation and functionally tested the RSVP
protocol.
The tests that were carried out enabled us to conclude
that the API is adequate for our platform over 3GPP
networks according to the latest specifications of 3GPP
End-To-End Quality of Service.
Future work on this API will consist of implementing,
testing, and evaluating it on real devices.

Aknowledgments. This work was partially financed
by the Portuguese Foundation for Science and
Technology (FCT) and the FP6 CONTENT Network
of Excellence (NoE)

8. References

[1] M. Weiser, “The Computer for the Twenty - First

Century”, Scientific American, pages 94–104, Sept. 1991.

[2] Kimmo Raatikainen, Henrik Bærbak Christensen, Tatsuo

Nakajima, “Application Requirements for Middleware for
Mobile and Pervasive Systems”, Mobile Computing and
Communications Review, Volume 6, Number 4, October
2002, pp. 16 – 24 , ACM Press

[3] Keith Mitchell, Duncan McCaffery, George Metaxas, Joe

Finney, Stefan Schmid and Andrew Scott, “Six in the
City: Introducing Real Tournament – A Mobile IPv6
Based Context-Aware Multiplayer Game”, Proceedings of
NetGames'03, May 22-23, 2003, Redwood City,
California, USA, pp. 91-100, ACM Press

[4] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro
Katayama, “Mixed Reality:Future Dreams Seen at the
Border between Real and Virtual Worlds”, Virtual
Reality, November/December 2001, pp. 64 –70, IEEE

[5] Nokia – Developer resources (Forum Nokia),

http://www.forum.nokia.com/, Accessed April 2004

[6] Sony Ericsson Developer World,

http://developer.sonyericsson.com/, Accessed April 2004

[7] João Orvalho, Pedro Ferreira and Fernando Boavida,

“State Transmission Mechanisms for a Collaborative
Virtual Environment Middleware Platform”, Springer-
Verlag, Berlin Heidelberg New York, 2001, pp. 138-153,
ISBN 3-540-42530-6 (Proceedings of the 8th International
Workshop on Interactive Distributed Multimedia Systems
– IDMS 2001, Lancaster, UK, September 2001)

[8] Pedro Ferreira, “State transmission in distributed,

collaborative, virtual reality environments”, M.Sc. thesis,
Universidade de Coimbra - FCTUC – Department of
Informatics Engineering, October-2002

[9] João Orvalho, Fernando Boavida, “Augmented Reliable

Multicast CORBA Event Service (ARMS): a QoS-
Adaptive Middleware”, in Lecture Notes in Computer
Science, Vol. 1905: Hans Scholten, Marten J. van
Sinderen (editors), Interactive Distributed Multimedia
Systems and Telecommunication Services, Springer-
Verlag, Berlin Heidelberg, 2000, pp. 144-157.
(Proceedings of IDMS 2000 – 7th International Workshop
on Interactive Distributed Multimedia Systems and
Telecommunication Services, CTIT / University of
Twente, Enschede, The Netherlands, October 17-20,
2000).

[10] João Gilberto de Matos Orvalho, “ARMS – Uma

plataforma para aplicações multimédia distribuídas, com
qualidade de serviço”, Phd Thesis, December 2000, DEI-
FCTUC

[11] Pedro Ferreira , “Network Middlware for Large Scale

Mobile and Pervasive Augmented Reality Games”, in
Proc. of the CoNext 2005 - ACM Conference on
Emerging Network Experiment and Technology, pp. 242-
243, CoNext 2005 - ACM Conference on Emerging
Network Experiment and Technology, Toulouse, France,
October 2005

[12] Pedro Ferreira and João Orvalho and Fernando Boavida,

Large Scale Mobile and Pervasive Augmented Reality
Games, in Proc. of the EUROCON 2005 - The
International Conference on "Computer as a Tool", pp.
1775-1778, Vol. 1, # 1, EUROCON 2005 - The
International Conference on "Computer as a Tool",
Belgrade, Serbia and Montenegro, November 2005

[13] Pedro Ferreira, João Orvalho and Fernando Boavida,

“Middleware for embedded sensors and actuators in
mobile pervasive augmented reality”, in Proc. of the
INFOCOM 2006 (IEEE XPLORE), INFOCOM 2006
Student Workshop, Barcelona, April 2006

[14] Pedro Ferreira and João Orvalho and Fernando Boavida,

“Sixrm: Full Mesh Reliable Source Ordered Multicast”, in
Proc. of the SoftCom2006 - 14th International Conference
on Software, Telecommunications & Computer Networks,
SoftCom2006 - 14th International Conference on
Software, Telecommunications & Computer Networks,
Split, Croatia, September 2006

[15] Pedro Ferreira, João Orvalho and Fernando Boavida, “A

middleware architecture for Mobile and Pervasive Large
Scale Augmented Reality Games”, to be published in
Proceedings of the Conference on Networks and Services
Research (CSNR) 2007, Fredericton, New Brunswick,
Canada, May 2007

[16] 3GPP TS23.207 V6.0.0, “3rd Generation Partnership

Project; Technical Specification Group Services and
System Aspects; End to End Quality of Service (QoS)
concept and architecture (Release 6)”, September 2005

[17] J. Wroclawski, “The Use of RSVP with IETF Integrated

Services”, RFC2210, IETF Network Working Group,
September 1997

[18] S.Shenker, J. Wroclawski, “General Characterization

Parameters for Integrated Service Network Elelements”,
RFC 2215, IETF Network Working Group, September
1997

[19] J.Wroclaswki, “Specification of the Controlled-Load

Network Element Service”, RFC 2211, IETF Network
Working Group, September 1997

[20] S.Shenker, C.Partridge, R. Guerin, “Specification of

Guaranteed Quality of Service”, RFC2212, IETF Network
Working Group, September 1997

[21] R. Braden (Ed.), L.Zhang, S. Berson, S. Herzog, S.

Jamin, “Resource Reservation Protocol – version 1
Fuctional Specification”, RFC 2205, IETF Network
Working Group, September 1997

