
Security and Privacy in a Middleware for Large Scale Mobile and Pervasive
Augmented Reality

Pedro Ferreira, João Orvalho and Fernando Boavida
Centro de Informática e Sistemas, Department of Informatics Engineering, University of Coimbra

Polo II, Pinhal de Marrocos, 3030-290, Coimbra, Portugal
E-mail: {pmferr, orvalho, boavida}@dei.uc.pt

Abstract: Ubiquitous or pervasive computing is a new kind of
computing, where specialized elements of hardware and
software will have such high level of deployment that their use
will be fully integrated with the environment. Augmented reality
extends reality with virtual elements but tries to place the
computer in a relatively unobtrusive, assistive role. In this paper
we propose, test and analyse a security and privacy architecture
for a previously proposed middleware architecture for mobile
and pervasive large scale augmented reality games, which is the
main contribution of this paper. The results show that the
security features proposed in the scope of this work do not affect
the overall performance of the system.

1. INTRODUCTION

A significant requirement of pervasive applications is fast
service development and deployment [1], which implies the
introduction of various service and application frameworks
and platforms. For this, middleware is a common solution.
The benefits of middleware utilization are the improved
programming model, and the hiding of many implementation
details, which make middleware based application
development much faster. It is now becoming quite clear that
entertainment, and more specifically mobile gaming, will be
one of the killer applications of future wireless networks [2].
Augmented reality extends reality with virtual elements while
keeping the computer in an assistive, unobtrusive role [3]. It
is possible to create games that place the user in the physical
world through geographically aware applications. Most of the
latest mobile phones are equipped with cameras and some of
the latest ones are coming with some form of 3D rendering
technology [4] [5]. Bluetooth technology and increasing
miniaturization will lead, in the near future, to low-cost,
specialized pervasive equipment for augmented reality. In [6]
we described the main objectives of our research concerning
systems that satisfy the requirements of network middleware
for large scale mobile and pervasive augmented reality
games. In [7] we described a middleware system that is being
developed for large scale mobile and pervasive augmented
reality games that satisfies these objectives. The system
targeted by the middleware is composed of 3 levels: the back-
office central level, the large scale network level, and the
personal area network level.
The full architecture of this system is described in more detail
in [8], so here we just going to worry ourselves with
describing the security and privacy issues and the solutions
we added.

This paper focuses on security and privacy issues of the
middleware proposed.
The main contribution of the paper is a security and privacy
architecture for a middlware for mobile and pervasive large-
scale augmented reality games.
The main objective of this paper is to show that while
security and privacy is achieved with this architecture it does
not adversely impact the performance of the whole system,
and running augmented reality applications on top of it is still
possible.
The paper is divided in Introduction (this section), Security
and Privacy, Testing, and Conclusions, aside from abstract,
keywords, acknowledgments and references.

3. SECURITY AND PRIVACY

Security and privacy are issues of significant importance on
our middleware architecture for mobile and pervasive large
scale augmented reality games.
Many times the information that is passed on the system
should be kept secret for any other purpose other than
gaming, and for any one else than the appropriate other
players.
A striking example of this information is the location and
orientation context information of the central device on the
personal area network.
Of course this information needs to circulate on the system,
but needs to be kept secure from outside attack.
So, we need encryption on the system. We also need
authorization and authentication, to know which players and
which devices can be connected.
Its all that architecture we be discussing in this section, for all
the levels of the system.
We have built an architechture of security on our system that
goes a step beyond and effectively extends the 3GPP security
architecture (it is meant to work along side with it) [9][10] .

3.1 Personal Area Network Level Security
 In the personal area network level of the system, we have a
network of sensors and actuators that is connected to the
central device through Bluetooth[11][12] and a central device
that is connected to a large scale distributed level server
through the use of TLS/SSL[13] over TCP.
So, the security we apply here is the following, we demand
that all the Bluetooth connections be authenticated and
encrypted. We apply security certificates do ensure

authentication and authorization in TLS/SSL over TCP and
the encryption itself (witch is RSA).
This is all possible without using nothing more than Java
capacities in J2ME and J2SE, including the capacity to install
security certificates.
In doing so, we secure communications in the personal area
network and in the communications between the personal
area network and the large scale distributed server level.

3.2 Large Scale Distributed Level Security
On the large scale distributed server level, we communicate
between servers using sixrm reliable multicast[14] using ipv6
[15], trough the use of our updated ARMSV6 corba event
system using multicast, that evolved from previous work in
ARMS – Augmented reliable corba Multicast System
[16][17].
To be secure, we now symmetrically encrypt all
communications that go trough ARMSV6 (and sixrm), in
RCA5.
Communications are symmetrically encrypted (and not
asymmetrically) because sixrm is an any-to-any multicast
protocol and so there is no direct correspondence between the
sender and the receiver.
The key of encryption is distributed by the central server to
the distributed servers in the authenthication process.

3.3 Central level security
The central level is responsible for distributed server
authenthication and authorization.
Every distributed server must know a login and password to
the distributed server so that it can access this server trough
TLS/SLL over TCP so it can receive the encryption key to
use on symmetric encryption.
The key is passed encrypted over the secure channel.
Certificates for this are pre-installed on the Java Virtual
Machines the servers run on (J2SE).

4. TESTING AND ANALYSIS

To test our security architecture, we are going to test its
usability for our target middleware objectives, which are
mobile and pervasive large scale augmented reality games.
These objectives put scalability constrains on security
architecture and also QoS constraints such as delay and jitter.
We can test the security architecture for delay and jitter
targets, and we can analyse it to derive conclusions about its
scalability.
We can divide these tests into the various parts of the system,
namely in the personal area network, on the link between the
personal area network on the large scale network level, and in
the large scale network level itself.
This is because the central level works essentially as a key
distribution level and so does not get itself involved in any
realtime communications.

4.1 Personal Area Network Level Security Testing
The personal area network part of the system, both the STF

PAN API and the STF SENSACT API, was subject to
extensive functional and performance tests, with various
kinds of simulated sensors and actuators and a simulated
reading and actuating application using Java Wireless Toolkit
2.5 Beta from Sun Microsystems running in a series of
emulators in a Pentium 4 3.6 GHz System with 1 Gb
Memory. These tests give the same results as the tests run in
[18] as nothing has changed, we still use Bluetooth
encryption and authenthication. So, we do not present
graphics here due to lack of space. So, we did not add any
delay or jitter to the previous architecture.

4.2 Testing the communications between the PAN and the
Large Scale Distributed Level Server

Between the personal area network central device, that
runs Java 2 Microedition Mobile Information Device Profile
2.0 over the Connected Limited Device Configuration 1.1
(MIDP 2.0 and CLDC 1.1), and the distributed server where
it happens to be connected there is a TLS connection over
TCP where STF messages are exchanged according to our
protocol.

To be able to test for delay and jitter on this connection,
which is handled by specialized classes of STFPAN (the
library of classes for the central device of the personal area
network) and STFServer (the library of classes for the
distributed servers and central server), we implemented
timestamping of messages with the current time when
sendingthe message, and automatically calculating the delay
based on that timestamp and the current time on the receiving
machine when receiving the messages. For the test to be
meaningful, both machines must be synchronized through
NTP, preferably to a common timeserver.

We also implemented logging to a file both on STFPAN
and STFServer of the received delay values so that we can
calculate the delay and jitter values for the various UE
(mobile terminals or central devices of the personal area
network), and elaborate graphics.

Jitter from dist. server to PAN

0

20

40

60

80

100

120

140

160

180

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298 307

Message numbe r

M
ill

is
ec

on
ds

Jitter

Figure 1 - Delay received at PAN from distributed
server

Jitter from dist. server to PAN

0

20

40

60

80

100

120

140

160

180

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298 307

Message number

M
ill

is
ec

on
ds

Jitter

Figure 2 - Jitter received at PAN from distributed server

Delay from PAN to dist. server

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

Message number

M
ill

is
ec

on
ds

Delay

Figure 3 - Delay received at the distributed server from

the PAN
We then made the tests with only one UE connected to one

distributed server working in connection to one central
server. In this situation, even if we do not have a working
application to test messaging, there are messages exchanged
between the distributed server and the central device of the
personal area network, between the central device of the
personal area network and the central server and between the
distributed server and the central server.

Jitter received from PAN on dist. server

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

Message number

M
ill

is
ec

on
ds

Jitter

Figure 4 - Jitter received on the distributed server from
the PAN

The messages we are interested in are the messages
between the central device of the personal area network and
the distributed server. At this stage, those messages are only
messages of virtual time synchronization of STF’s internal
virtual time synchronization mechanism, which keeps a
virtual clock synchronized between the central device of the
personal area network and the distributed server. Is the delay
and jitter of those messages that is evaluated in the graphics
shown on this section.

Figure 1 shows the delays for all the messages received at
the central personal area network device that were sent from
the distributed server, and Figure 2 shows the jitters for the
same messages, calculated as the difference between current
and previous delay.

Figure 3 shows the delays for all the messages received at
the distributed server that were sent from the central personal
area device, and Figure 4 shows the jitters from the same
messages.

From these figures we can see that the delay from the
messages received at the central device of the PAN is always
between 9 and 218 milliseconds. The Jitter from the same
messages is always between 0 and 160 milliseconds.

We can also see that the delay from the messages received
at the distributed server from the central device of the PAN is
always between 7 and 215 milliseconds and the jitter varies
from 0 to 134 milliseconds.

4.3 Testing communication between large scale
distributed level servers

For testing communications between the large scale
distributed level servers, we also implemented time stamping
of messages the same way we implemented on the connection
between the central device of the personal area network and a
distributed server.

Delay received at Julian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365 379 393 407 421 435 449 463 477 491

Message number

M
ill

is
ec

on
ds

Delay

Figure 5 - Delays received from the distributed server
Gillian on the distributed server Julian

Jitter received at Julian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365 379 393 407 421 435 449 463 477 491

Message number

M
ill

is
ec

on
ds

Jitter

Figure 6 - Jitter received from the distributed server
Gillian on the distributed server Julian

The message is marked with a timestamp equal to current
time when sending and is marked again with the delay when
receiving the message at the receiving end.

We also implemented logging of the received message
delays (from which we can also derive the jitter), on the
distributed servers.

Because we still do not have a concept application to run
on the architecture, the only messages running on the
distributed servers are the virtual time synchronization
messages. And is the delay and jitter of these messages that’s
is shown on the graphics below.

So, Figure 5 represents the delays of all the messages
transmitted from distributed server Gillian to distributed
server Julian, while Figure 6 represents the jitters for the
same messages.

Figure 7 represents the delays for messages received at
distributed server Gillian transmitted from distributed server
Julian, while Figure 8 represents the jitters for the same
messages.

We only tested with two distributed servers, because that
were sufficient for testing the effects of cryptography on
communication and we are not full of resources.

Delay received at Gillian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365 379 393 407 421 435 449 463 477 491

Message number

M
ill

is
ec

on
ds

Delay

Figure 7 - Delay received from distributed server Julian
on distributed server Gillian

Delay received at Gillian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365 379 393 407 421 435 449 463 477 491

Message number

M
ill

is
ec

on
ds

Delay

Figure 8 - Jitter received from distributed server Julian
on distributed server Gillian

From these figures we can see that the delay from
distributed server Gillian to distributed server Julian is
always between 7 and 62 milliseconds, in fact most below 30
milliseconds, with the exception of some isolated values in
the order of 4-5 seconds witch are obviously due to network
loss or to processor overload or some other external factor.
Jitter is normally between 0 and 50 (normally below 30),
with the same isolated values.

Values for delay and jitter for the case where the
transmission was from Julian tio Gillian are similar.

5. CONCLUSIONS

Through this work, we contributed with a privacy and

security architcture for our middleware for large scale mobile
and pervasive large scale mobile and pervasive augmented
reality games.

We can conclude that our privacy and security architecture
for our middleware for large scale mobile and pervasive
augmented reality does its function well: It keeps data secure
by encrypting it , it authorizes and authenticates users,

servers and devices.
We also, through testing, proved that it has a acceptable

amount of contribution to delay and jitter of the total
architecture of the middleware, which, after applying
security, continues running with acceptable values for delay
and jitter for most interactive applications, including
augmented reality.

Future work on this middleware platform will include QoS
related work, Management related work, and proof-of-
concept applications.

Acknowledgment
This work is being financed in part by the FCT – Portuguese
Foundation for Science and Technology and FP6 CONTENT
Network of Excelence (NoE).

REFERENCES

[1] Kimmo Raatikainen, Henrik Bærbak Christensen, Tatsuo

Nakajima, “Application Requirements for Middleware for
Mobile and Pervasive Systems”, Mobile Computing and
Communications Review, Volume 6, Number 4, October
2002, pp. 16 – 24 , ACM Press

[2] Keith Mitchell, Duncan McCaffery, George Metaxas, Joe
Finney, Stefan Schmid and Andrew Scott, “Six in the City:
Introducing Real Tournament – A Mobile IPv6 Based
Context-Aware Multiplayer Game”, Proceedings of
NetGames'03, May 22-23, 2003, Redwood City,
California, USA, pp. 91-100, ACM Press

[3] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro
Katayama, “Mixed Reality:Future Dreams Seen at the
Border between Real and Virtual Worlds”, Virtual Reality,
November/December 2001, pp. 64 –70, IEEE

[4] Nokia – Developer resources (Forum Nokia),
http://www.forum.nokia.com/, Accessed April 2004

[5] Sony Ericsson Developer World,
http://developer.sonyericsson.com/, Accessed April 2004

[6] Pedro Ferreira, “Network Middleware for Large Scale
Mobile and Pervasive Augmented Reality Games” in Proc.
of the CoNext 2005 - ACM Conference on Emerging
Network Experiment and Technology, pp. 242-243,
CoNext 2005 - ACM Conference on Emerging Network
Experiment and Technology, Toulouse, France, October-
2005

[7] Pedro Ferreira, João Orvalho, Fernando Boavida, ”Large
Scale Mobile and Pervasive Augmented Reality Games”,
in Proc. of the EUROCON 2005 - The International
Conference on "Computer as a Tool", pp. 1775-1778, Vol.
1, # 1, EUROCON 2005 - The International Conference
on "Computer as a Tool", Belgrade, Serbia and
Montenegro, November-2005

[8] Pedro Ferreira, João Orvalho, Fernando Boavida, “A
Middleware Architecture for Mobile and Pervasive Large
Scale Augmented Reality Games”, in Proc. of the 5th

Annual Communication Networks and Services Research
Conference (CNSR 2007), pp. 203-212 , Vol. 1, #1, ISBN
0-7695-2835-X, IEEE Computer Society, 2007,
Fredericton, New Brunswick, Canada

[9] 3GPP TS 33.102 v7.0.0, “3rd Generation Partenership
Project; Technical Specification and System Aspects; 3G
Security; Security architecture (Release 7)”, December
2005

[10] 3GPP – 3rd Generation Partnership Project ,
http://www.3gpp.org/

[11] Bluetooth Specifications,
http://www.bluetooth.org/specs/

[12] Java APIs for Bluetooth (JSR-82),
http://jcp.org/en/jsr/detail?id=82

[13] Pedro Ferreira, João Orvalho and Fernando Boavida
,”Sixrm: Full Mesh Reliable Source Ordered Multicast”, in
Proc. of the SoftCom2006 - 14th International Conference
on Software, Tellecommunications & Computer
Networks, SoftCom2006 - 14th International Conference
on Software, Tellecommunications & Computer
Networks, Split, Croatia, September 2006

[14] T.Dierks, E.Reskorla, “The Transport Layer Security
(TLS) Protocol version 1.1”, RFC 4346, IETF, April 2006

[15] S. Deering, R. Hinden, “Internet Protocol Version 6
(Ipv6) Specification”, RFC2460, IETF, December 1998

[16] João Gilberto de Matos Orvalho, “ARMS – Uma
plataforma para aplicações multimédia distribuídas, com
qualidade de serviço”, Phd Thesis, December 2000, DEI-
FCTUC

[17] João Orvalho, Fernando Boavida, “Augmented Reliable
Multicast CORBA Event Service (ARMS): a QoS-
Adaptive Middleware”, in Lecture Notes in Computer
Science, Vol. 1905: Hans Scholten, Marten J. van
Sinderen (editors), Interactive Distributed Multimedia
Systems and Telecommunication Services, Springer-
Verlag, Berlin Heidelberg, 2000, pp. 144-157.
(Proceedings of IDMS 2000 – 7th International Workshop
on Interactive Distributed Multimedia Systems and
Telecommunication Services, CTIT / University of
Twente, Enschede, The Netherlands, October 17-20,
2000).

[18] Pedro Ferreira, João Orvalho and Fernando Boavida,
“Middleware for embedded sensors and actuators in
mobile pervasive augmented reality”, in Proc. of the
INFOCOM 2006 (IEEE XPLORE), INFOCOM 2006
Student Workshop, Barcelona, April 2006

