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Abstract: This paper provides an overview of current state-of-the-art approaches for melody extraction 

from polyphonic audio recordings, and it proposes a methodology for the quantitative evaluation of 

melody extraction algorithms. We first define a general architecture for melody extraction systems and 

discuss the difficulties of the problem in hand; then, we review different approaches for melody 

extraction which represent the current state-of-the-art in this area. We propose and discuss a 

methodology for evaluating the different approaches, and we finally present some results and 

conclusions of the comparison.     

Index Terms—Melody Extraction, Music Information Retrieval, Evaluation 

1. Introduction 

Music Content Processing has recently become an active and important research area, largely due to the 

great amount of audio material that has become accessible to the home user through networks and other 

media. The need for easy and meaningful interaction with this data has prompted research into 

techniques for the automatic description and handling of audio data. This area touches many disciplines 

including signal processing, musicology, psychoacoustics, computer music, statistics, and information 

retrieval. 

In this context, melody plays a major role. Selfridge-Field (1998, p.4) states that: "It is melody that 

enables us to distinguish one work from another. It is melody that human beings are innately able to 

reproduce by singing, humming, and whistling". The importance of melody for music perception and 

understanding reveals that beneath the concept of melody there are many aspects to consider, as it carries 
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implicit information regarding harmony and rhythm. This fact complicates its automatic representation, 

extraction and manipulation. In fact, automatic melody extraction from polyphonic and multi-

instrumental music recordings is an issue that has received far less research attention than similar music 

content analysis problems, such as the estimation of tempo and meter. 

This is changing in recent years with the proposal of a number of new approaches (Goto 2000, Eggink 

2004, Marolt 2004, Paiva 2004), which is not surprising given the usefulness of melody extraction for a 

number of applications including: content-based navigation within music collections (query by humming 

or melodic retrieval), music analysis, performance analysis in terms of expressivity, automatic 

transcription and content-based transformation. As with any emergent area of research, there is little 

agreement on how to compare the different approaches, so as to provide developers with a guide to the 

best methods for their particular application.  

This paper aims to provide an overview of current state-of-the-art approaches for melody extraction from 

polyphonic audio recordings, and to propose a methodology for the quantitative evaluation of melody 

extraction systems. Both this objectives were pursued under the context of the ISMIR 2004 Melody 

Extraction Contest (2004), organized by the Music Technology group of the Universitat Pompeu Fabra. 

The rest of this paper is organized as follows: In Section 2 we propose a general architecture for melody 

extraction systems and discuss the difficulties of the problem in hand; in Section 3 we present an 

overview of the participants’ approaches to the ISMIR 2004 melody extraction contest, hence reflecting 

the current state-of-the-art in this area; Section 4 proposes a methodology for the evaluation of melody 

extraction approaches; results of this evaluation on the reviewed approaches are presented and discussed 

in Section 5; and finally, section 6 presents the conclusions of our study and proposes directions for the 

future.     

2. Melody Extraction 

Figure 1 roughly illustrates the procedure employed in the majority of melody extraction algorithms: a 

feature set is derived from the original music signal, usually describing the signal’s frequency behavior. 
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Then, fundamental frequencies are estimated before finally segregating signal components from the 

mixture to form melodic lines or notes. These are, in turn, used to create a transcription of the melody.  

music
signal

melody
transcript

Frequency
analysis

(Multiple)
F0 estimation

Note/melody
extraction

 

Figure 1: Overview of melody extraction system 

Fundamental frequency is then the main low-level signal feature to be considered. It is important in both 

speech and music analysis, and is intimately related to the more subjective concept of pitch, or tonal 

height, of a sound. Although there has been much research devoted to pitch estimation, it is still an 

unsolved problem even for monophonic signals (as reviewed by Gomez et al. 2003).  

Several approaches have been proposed for polyphonic pitch estimation (Klapuri 2000, Klapuri 2004, 

Marolt 2004, Dixon 2000, Bello 2004), showing different degrees of success and mostly constrained to 

musical subsets, e.g. piano music, synthesized music, random mixtures of sound, etc. 

However, melody extraction and proposed approaches to polyphonic pitch estimation differ on that, 

along with the estimation of the predominant pitch in the mixture, melody extraction requires the 

identification of the voice that defines the melody within the polyphony. This later task is closer to using 

the principles of human auditory organization for pitch analysis, as implemented by Kashino et al. (1995) 

by means of a Bayesian probability network, where bottom-up signal analysis could be integrated with 

temporal and musical predictions, and by Wamsley & Godsill (1999), that use the Bayesian probabilistic 

framework to estimate the harmonic model parameters jointly for a certain number of frames. An 

example specific to melody extraction is the system proposed by Goto (2000). This approach is able to 

detect melody and bass lines by making the assumption that these two are placed in different frequency 

regions, and by creating melodic tracks using a multi-agent architecture. Other relevant methods are 

listed in (Gomez et al. 2003) and (Klapuri 2004).     

There are other, more musicological aspects that make the task of melody extraction very difficult 

(Nettheim 1992). In order to simplify the issue, one should try to detect note groupings. This would 
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provide heuristics that could be taken as hypothesis in the melody extraction task. For instance, 

experiments have been done on the way the listener achieves melodic groupings in order to separate the 

different voices (see (Mc Adams 1994) and (Scheirer 2000 p.131)). 

Other approaches can also simplify the melody extraction task by making assumptions and restrictions 

on the type of music that is analyzed. Methods can be different according to the complexity of the music 

(monophonic or polyphonic music), the genre (classical with melodic ornamentations, jazz with singing 

voice, etc) or the representation of the music (audio, midi etc). 

For many applications, it is also convenient to see the melody as a succession of pitched notes. This 

melodic representation accounts for rhythmic information as inherently linked to melody. This poses the 

added problem of delimitating the boundaries of notes, in order to be able to identify their sequences and 

extract the descriptors associated to the segments they define.  

ID System Frequency 
analysis 

Feature 
computation 

F0 estimation Post-processing  

1 Paiva Cochlear model Autocorrelation Peaks in 
summary auto-
correlation 

Peak tracking, 
Segmentation and 
filtering 
(smoothness, 
salience) 

2 Tappert 
& Batke 

Multirate 
filterbank 

Quantization to 
logarithmic 
frequency 
resolution  

EM fit of tone 
models within 
selected range 

Tracking agents 

3 Poliner 
& Ellis 

Fourier transform Energies of 
spectral lines 
<2kHz 

 
Trained SVM classifier 

 

4 Bello HP filtering; frame-based 
autocorrelation 
 

Peak picking Peak tracking and 
rule-based 
filtering 

Table 1. Comparison of different approaches 

3. Approaches to melody extraction 

As mentioned before, a number of approaches have been recently proposed to tackle the problem of 

automatically extracting melodies from polyphonic audio. To capitalise on the interest of both 

researchers and users, the ISMIR 2004 Melody Extraction Contest was proposed, aiming to evaluate and 
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compare state-of-the-art algorithms for melody extraction. Following an open call for submissions, four 

algorithms were received and evaluated. The corresponding methods represent an interesting and broad 

range of approaches, as can be seen in Table 1.  

3.1. Paiva 

This approach comprises five modules, as illustrated in Figure 2. A detailed description of the method 

can be found in (Paiva et al. 2004, 2004b and 2004c). 

Raw Musical
Signal Melody Notes

Melody Detection System

MPD MPTC Trajectory
Segmentation

Note
Elimination

Melody
Extraction

 

Figure 2. Overview of Paiva’s melody detection system. 

In the first stage of the algorithm, Multi-Pitch Detection (MPD) is conducted, with the objective of 

capturing a set of candidate pitches that constitute the basis of possible future musical notes. Pitch 

detection is carried out with recourse to an auditory model, in a frame-based analysis, following Slaney 

and Lyon (1993). This analysis comprises four stages:  

i) Conversion of the sound waveform into auditory nerve responses for each frequency channel, using a 

model of the ear, with particular emphasis on the cochlea, obtaining a so-called cochleagram. 

ii) Detection of the main periodicities in each frequency channel using auto-correlation, from which a 

correlogram results. 

iii) Detection of the global periodicities in the sound waveform by calculation of a summary correlogram 

(SC). 

iv) Detection of the pitch candidates in each time frame by looking for the most salient peaks in the SC.  

The second stage, Multi-Pitch Trajectory Construction (MPTC), aims to create a set of pitch tracks, 

formed by connecting consecutive pitch candidates with similar frequencies. The idea is to find regions 
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of stable pitches, which indicate the presence of musical notes. This is based on Serra’s peak 

continuation algorithm (Serra 1997). In order not to loose information on the dynamic properties of 

musical notes, e.g., frequency modulations, glissandos, this approach had especial care in guaranteeing 

that such behaviors were kept within a single track.  

Thus, each trajectory that results from the MPTC algorithm may contain more than one note and should, 

therefore, be segmented in the third step. Such segmentation is performed in two phases: frequency and 

salience segmentation. Regarding frequency segmentation, the goal is to separate all the different 

frequency notes that are present in the same trajectory, taking into consideration the presence of 

glissandos and frequency modulation. As for pitch salience segmentation, it aims at separating 

consecutive notes with equal values, which the MPTC algorithm may have interpreted as forming only 

one note. This requires segmentation based on salience minima, which mark the limits of each note. In 

fact, the salience value depends on the evidence of pitch for that particular frequency, which is lower at 

the onsets and offsets. Consequently, the envelope of the salience curve is similar to an amplitude 

envelope: it grows at the note onset, has then a steadier region and decreases at the offset. Thus, notes 

can be segmented by detecting clear minima in the pitch salience curve. 

The objective of the fourth stage of the melody detection algorithm is to delete irrelevant note candidates, 

based on their saliences, durations and on the analysis of harmonic relations. Low-salience notes, too-

short notes and harmonically-related notes are discarded. Hence, the perceptual rules of sound 

organization designated as “harmonicity” and “common fate” are exploited (Bregman 1990 pp. 245-

292).  

Finally, in the melody extraction stage the objective is to obtain a final set of notes comprising the 

melody of the song under analysis. In the present approach, the problem of source separation is not 

attacked. Instead, the strategy is rooted in two assumptions, designated as the “salience principle” and the 

“melodic smoothness principle”. The salience principle makes use of the fact that the main melodic line 

often stands out in the mixture. Thus, in the first step of the melody extraction stage, the most salient 



MTG-TR-2006-01  7 

notes at each time are selected as initial melody note candidates. One of the limitations of only taking 

into consideration pitch salience is that the notes comprising the melody are not always the most salient 

ones. In this situation, erroneous notes may be selected as belonging to the melody, whereas true notes 

are left out. This is particularly clear when abrupt transitions between notes are found. In fact, small 

frequency intervals favour melody coherence, since smaller steps in pitch result in melodies more likely 

to be perceived as single ‘streams’ (Bregman 1990 pp. 462). Thus, melody extraction is improved by 

taking advantage of the melodic smoothness principle, where notes corresponding to abrupt transitions 

are substituted by salient notes in the allowed range. 

3.2. Tappert and Batke 

This transcription system is originally a part of a query by humming (QBH) system (Batke et al. 2004). It 

is implemented using mainly parts of the system PreFEst described in (Goto 2000). 

The audio signal is fed into a multirate filterbank containing five branches, and the signal is down 

sampled stepwise from Fs/2 to Fs/16 in the last branch, where Fs is the sample rate (see also (Fernández-

Cid and Casajús-Quirós 1998) for using such a filterbank). A short-time Fourier transform (STFT) is 

used with a constant window length N in each branch to obtain a better time frequency resolution for 

lower frequencies. In our system, we used Fs = 16 kHz and N = 4096. 

Quantization of frequency values following the equal tempered scale leads to a sparse spectrum with 

clear harmonic lines.  The band pass simply selects the range of frequencies that is examined for the 

melody and the bass lines. 

The expectation-maximization (EM) algorithm (Moon 1996) uses the simple tone model described above 

to maximize the weight for the predominant pitch in the examined signal. This is done iteratively leading 

to a maximum a posteriori estimate, see (Goto 2000). A set of F0 candidates is passed to the tracking 

agents that try to find the most dominant and stable candidates. The tracking agents are implemented 

similarly to those in Goto's work, but in a modified manner. The agents contain four time frames of F0 

probability vectors - two of the past, the actual and the upcoming frame. These agents are filled with the 
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local maxima of the F0 probability vectors. To find the path of the predominant frequency, all maxima 

values over four frames within an agent are added, and to punish discontinuities this sum is divided by 

the number of gaps in the agent, e.g. the probability is zero. Finally, the agent with the highest score 

determines the fundamental frequency found. 

3.3. Poliner and Ellis 

In this system, the melody transcription problem was approached as a classification task. The system 

proposed by Poliner and Ellis uses a Support Vector Machine (SVM) trained on audio synthesized from 

MIDI data to perform N-way melodic note discrimination. Labeled training examples were generated by 

using the MIDI score as the ground truth for the synthesized audio features. Note transcription then 

consists simply of mapping the input acoustic vectors to one of the discrete note class outputs. 

Although a vast amount of digital audio data exists, the machine learning approach to transcription is 

limited by the availability of labeled training examples. The analysis of the audio signals synthesized 

from MIDI compositions provides the data required to train a melody classification system. Extensive 

collections of MIDI files exist consisting of numerous renditions from eclectic genres.  The training data 

used in this system is composed of 32 frequently downloaded pop songs from www.findmidis.com.    

The training files were converted from the standard MIDI file format to mono audio files (.WAV) with a 

sampling rate of 8 kHz using the MIDI synthesizer in Apple’s iTunes. A Short Time Fourier Transform 

(STFT) was calculated using 1024-point Discrete Fourier Transforms (128 ms), a 1024-point Hanning 

window, and a hop size of 512 points. The audio features were normalized within each time frame to 

achieve, over a local frequency window, zero mean and unit variance in the spectrum, in an effort to 

improve generalization across different instrument timbres and contexts. The input audio feature vector 

for each frame consisted of the 256 normalized energy bins below 2 kHz.   

The MIDI files were parsed into data structures containing the relevant audio information (i.e. tracks, 

channels numbers, note events, etc).  The melody was isolated and extracted by exploiting MIDI 

conventions for representing the lead voice.  This is made easy because very often the lead voice in pop 
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MIDI files is represented by a monophonic track on an isolated channel. In the case of multiple 

simultaneous notes in the lead track, the melody was assumed to be the highest note present.  Target 

labels were determined by sampling the MIDI transcript at the precise times corresponding to each STFT 

frame.  

The WEKA implementation of Platt’s Sequential Minimal Optimization (SMO) SVM algorithm was 

used to map the frequency domain audio features to the MIDI note-number classes (Witten and Frank 

1999).  The default learning parameter values (C=1, γ=0.01, ε= 10-12, tolerance parameter = 10-3) were 

used to train the classifier.  Each audio frame was represented by a 256-feature input vector, and there 

were 60 potential output classes spanning the five-octave range from G2 to F#7.   Approximately 128 

minutes of audio data corresponding to 120,000 training points was used to train the classifier.   

In order to predict the melody of the evaluation set, the test audio files were resampled to 8 kHz and 

converted to STFT features as above. The SVM classifier assigned a MIDI note number class to each 

frame.  The output prediction file was created by interpolating the time axis to account for sampling rate 

differences and converting the MIDI note number to frequency using the formula  ·
m

f
−

=
69

12440 2 Hz, 

where m is the MIDI note number (which is 69 for A440). 

3.4. Bello 

The approach here presented is previously unpublished. It is based on the limiting assumption that 

melody is a sequence of single harmonic tones, spectrally located at mid/high frequency values, carrying 

energy well above that of the background, and presenting only smooth changes in its frequency content. 

The implemented process, illustrated in Figure 3, can be summarized as follows: First, the signal is pre-

processed; then potential melodic fragments are built by following peaks from a sequence of 

autocorrelation functions (ACF); using a rule-based system, the fragments are evaluated against each 

other and finally selected to construct the melodic path that maximizes the energy while minimizing 

steep changes in the tonal sequence.    
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Figure 3. Overview of Bello’s approach to melody extraction: polyphonic audio signal (top); F0 

trajectories built from following peaks from the ACF (middle); melody estimated from selecting the path 

of trajectories that maximizes energy and minimizes frequency changes between trajectories (bottom). 

The first stage of the analysis is to limit the frequency region where the melody is more likely to occur. 

To this end, a high-pass zero-shift elliptic filter is implemented, with cut-off frequency of 130 Hz. The 

aim of the filtering is to avoid any bias towards the bass-line contents of the signal, which is also 

expected to be very salient. The process is similar to the one used in (Goto 2000). 

After pre-processing, the system attempts to detect strong and stable fundamental frequency (F0) 

trajectories in the audio signal. To do so, it explicitly assumes the melody to be composed of high-energy 

tones, strongly pitched and harmonic, and immersed in non-tonal background noise. This overly-

simplistic model allows us to see the signal as monophonic, and the process of identifying melodic 

fragments in the mixture as segregating between voiced and unvoiced segments. This is simply not true 
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for most music signals, but results in later sections show that the approach is nevertheless able to 

estimate melodic lines from more complex backgrounds than the model seems to suggest. 

An autocorrelation function-based algorithm (ACF) is chosen for the estimation of salient tones. ACF 

algorithms are well suited for the above model, given their known robustness to noise. They have been 

extensively used for pitch estimation in speech and monophonic music signals with harmonic sounds 

(Talkin 1995, Brown and Zhang 1991). The short-time autocorrelation r(n) of a K-length segment of 

x(k), the pre-processed signal, can be calculated as the inverse Fourier transform of its squared 

magnitude spectrum X(k), after zero-padding it to twice its original length (Klapuri 2000). For real 

signals, this can be expressed as: 

∑
−

=






=

1

0

2 2cos)(1)(
K

k K
nkkX

K
nr π

 

The predominant-F0 period usually corresponds to one of the maxima in the autocorrelation function, in 

most cases the global maximum (excluding the zero-lag peak). The prominence of these maxima can be 

used to separate melodic fragment from other F0 trajectories: the ratio between the amplitude of the zero-

lag peak and the amplitude of period-peaks (Yost 1996, Wiegrebe et al. 1998), and the ratio between 

peaks and background (Kaernbach and Demany 1998) have been used for measuring pitch strength, or 

for segregating voiced and unvoiced segments in the signal. Experiments have also shown that wider 

period peaks and the multiplicity of non-periodic peaks are signs of pitch weakness.  

To create F0 trajectories, we use a peak continuation algorithm similar to the scheme used in (McAulay 

and Quatieri 1986) in the context of sinusoidal modelling. The algorithm tracks autocorrelation peaks 

across time. While constructing these trajectories, the algorithm also stores useful information about the 

relative magnitudes of the period peaks incorporated into these tracks. It also cleans the data by 

eliminating short trajectories that are likely to belong to noisy and transient components in the signal. 

Once all F0 trajectories are created, the system uses a rule-based framework to evaluate the competing 

trajectories and determine the path that is most likely to form the melody. In a first stage of the 

competition, the system selects strong (i.e. with high energy content) and voiced (i.e. with high period-
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peak to zero-lag peak ratio and high period-peak to background ratio) trajectories. For octave-related 

simultaneous trajectories, selection is biased towards higher-frequency trajectories, as ACF usually 

presents maxima in the position of the integer multiples of the F0 period (twice too-low pitches (Klapuri 

2000)). Surviving trajectories are organized into time-aligned melodic paths. As mentioned before, the 

algorithm works on the assumption that melody is more distinctly heard than anything else in the mixture 

and that it will only present smooth frequency changes. Therefore, it selects the path of F0 trajectories 

that minimizes frequency and amplitude changes between them and maximizes the total energy of the 

melodic line. Future implementations of the system will explore the use of standard clustering algorithms 

to group trajectories according to the mentioned features (Marolt 2004). 

4. Methodology for evaluation 

There are a number of issues that make a fair comparison of existing approaches to melody extraction a 

hard task. First there is a lack of standard databases for training and evaluation. Researchers choose the 

style, instrumentation and acoustic characteristics of the test music as a function of their particular 

application. To this fact, we need to add the difficulties of producing reliable ground-truth data, which is 

usually a deterrent towards the creation of large evaluation databases. Furthermore, there are no standard 

rules regarding annotations, so different ground-truths are not compatible. Finally, different studies use 

different evaluation methods rendering numeric comparisons useless. 

In the following, we propose solutions to the above issues, as first steps towards the generation of an 

overall methodology for the evaluation of melody extraction algorithms.  

4.1. Evaluation material  

Music exists in many styles and facets, and the optimal method for melody extraction for one particular 

type of music might be different from the one for another type. This implies that the material used for the 

evaluation needs to be selected from a variety of styles. The goal is to identify the style dependencies of 

proposed algorithms, and to determine which algorithm works best as a general-purpose melody 

extractor. An attempt was made to compile a set of musical excerpts that would present the algorithms 
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with different types of difficulties. A total of 20 polyphonic musical excerpts were chosen, each of 

around 20 seconds in duration. These segments can be categorized as shown in Table 2. 

Category Real/ 
Synthetic 

Instrument carrying 
the melody 

Style Quantity 
of 

excerpts 

Item number 
 

Midi Synthetic MIDI instruments Folksong 
(2), pop(2) 

4 5,6 

Jazz Real Saxophone Jazz 4 3,4 
Daisy Synthetic Voice Pop 4 1,2 
Pop Real Voice (male) Pop 4 9,10 

Opera Real Voice: male(2), 
female(2) 

Classical 
(opera) 

4 7,8 

Table 2: Evaluation Material. 

This limited set was collected as a representative sample, as it was not possible to cover all existing types 

of music in our evaluation set. The main limiting factors were the problems of access to copyright free 

material and the need for ground truth annotations. 

A subset of the evaluation material (including the ground truth data) was made available to the 

participants in advance, thus allowing for training of the methods prior to the evaluation. For reasons of 

consistency, we combined half of the items from each category in this tuning set. Also, a software tool 

(Matlab script) was provided along with the training set. These scripts allowed the contestants to use the 

same evaluation method as in the final evaluation (see 4.3). The tuning set and the evaluation documents 

can be found at (ISMIR Contest Definition Page 2004). 

4.2. Annotations 

One of the most complex issues when generating an evaluation test set for melody extraction is that of 

obtaining ground truth annotations. Besides the well-known problems of access to licensed material, 

there are a number of practical issues that make the process of annotation very difficult indeed, as is 

already explained in (Lesaffre et al. 2004).  

For recordings of polyphonic music presenting a multiplicity of instruments plus voice, we usually do 

not have a temporally synchronised annotation of the melodic notes. A way of overcoming this problem 

is using MIDI-controlled instruments that by definition produce a sonic output for which we have a 
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symbolic representation of its components. This is the case of the Midi and Daisy categories in our test 

set. However, synthesized music does not present the same acoustic complexity as music from real 

sounds. This makes for a test set which is not representative of the issues faced in real recordings, thus 

results in the evaluation will not be a good indication of the usefulness of extraction approaches in real 

applications. 

Alternatively, melody transcriptions could be made from real data using trained individuals (such as 

musicians and musicologists). However, manual transcription is a very difficult and time-consuming 

process, and this solution has proven to be highly unpractical and usually costly. 

We propose an alternative solution, where multi-track recordings of real music are used to create 

synchronised signals for both: the whole mixture and the melody only. The melody-only signal is 

processed through a monophonic pitch estimator (Cano 1998) and finally corrected manually to eliminate 

estimation errors. As a convention, a value of 0 Hz was assigned to non-melodic frames. Although this 

solution is limited by the availability of copyright-free multi-track recordings, it represents the best 

compromise we could find to deal with the problem of generating ground-truth data. 

Furthermore, we propose a standard for the annotation of both, frame-by-frame and segmented melody 

information (ISMIR Contest Definition Page 2004).   

4.3. Evaluation metrics 

Three different evaluation metrics are proposed, as they were considered of interest to both, participants 

and potential developers. The code for computing the evaluations can also be found on the internet 

(ISMIR Contest Definition Page 2004).  

4.3.1 Fundamental frequency 

Metric 1 consists on a frame-based comparison of the estimated F0 and the annotated F0 on a logarithmic 

scale. The extracted pitch estimations are therefore converted to the cent: 









−






⋅= 25.0

75.13
log1200 2 Hz

ff Hz
cent  
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The concordance is measured by averaging the absolute difference between the reference pitch values 

and the extracted ones. The error is bounded by 1 semitone (i.e. 100 cents):  







−

≥−
=

elseifif
ififfor

err ref
cent

est
cent

ref
cent

est
cent

i )()(
100)()(100

 

 We obtain the final accuracy score in percent by subtracting the bounded mean absolute difference from 

100:  

∑
=

−=
N

i
iN errscore

1

1100  

Non-melodic frames are coded as zeros, so the bounded absolute error will be 100 in case of a mismatch.  

Each frame contributes to the final result with the same weight. 

4.3.2 Fundamental frequency disregarding octave errors 

In Metric 2, the values of F0 are mapped into the range of one octave before computing the absolute 

difference. Octave errors, which are a very common problem in F0 estimation, are disregarded this way.  

It should be stated that these two metrics operate in a domain which is still close to the signal and not yet 

as abstract as a transcribed melody. The objective of the first two evaluation metrics is to measure the 

reliability of the fundamental frequency estimation. 

4.3.3 Melodic similarity 

For this metric, melodies are considered as sequences of segmented notes. Metric 3 is the edit distance 

between the estimated melody and the annotated melody according to the previous definition. The 

annotated melody was obtained by manual score alignment. Compared to the other two metrics, the 

abstraction level here is clearly higher, because note segmentation is required. Especially for sung 

melodies this is non-trivial, because of vibratos and strongly varying pitch. 

The edit distance metric calculates the cost for transformation of one melody to another one. Different 

weights can be assigned to different transformation operations (insertion, deletion, replacement, etc.). It 

is very difficult to find the right configuration in order to model a human listener’s impression of melodic 
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similarity or dissimilarity in a general way. We did not optimize or adapt the configuration in any way, 

because the main concern was the consistency of the evaluation. The disadvantage of this approach is 

that it is difficult to interpret the resulting numbers beyond a nature as an ordinal scale. In order to give 

the opportunity of a subjective comparison, we provide the extracted melodies as synthesized MIDI 

tracks on the contest webpage (ISMIR Contest Definition Page 2004). More information on the edit 

distance and its implementation is found in (Gratchen et al. 2002). 

5. Results and discussion 

5.1. About the experiments 

The experiments were performed on the musical items described in Section 4.1. The sound file format 

was specified as 16-bit PCM wave files of monaural recordings sampled at 44.1 kHz. No interpolations 

were performed between the extracted and the annotated melodies, so all participants were requested to 

use an analysis window size of 2048 samples (46.44 ms), and a hop size of 256 samples (5.8 ms).  

Algorithms were submitted by email. Deleting or updating a submission was possible until the final 

deadline. Participants were allowed to make their submissions either in binary format or as 

MATLAB/Octave script files. The only restrictions being the input/output definitions, which 

corresponded to the filenames of the input sound file and the output text file respectively. The output text 

file needed to follow the same formatting as provided for the annotations of the tuning material (ISMIR 

Contest Definition Page 2004). To avoid conflicts with disclosure agreements or the like, it was not 

mandatory for the participants to make their complete algorithms public.  

5.2. Overall results 

Figure 4 presents a summary of average results per approach, using metrics 1 and 2. This metrics 

evaluate the accuracy in pitch estimation for both melodic and non-melodic frames (thus implicitly 

evaluating melodic/non-melodic discrimination). A monophonic pitch tracker, developed in the context 

of the SMSTools (Cano 1998), is used to establish a baseline performance for the evaluation.  
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Results clearly show that the method proposed by Paiva (ID 1) outperforms all other approaches for the 

two depicted evaluation metrics. When octave-errors are discarded, the performance of the other three 

approaches is almost the same. In all cases, proposed approaches outperform the baseline system by a 

considerable margin. The best average result (69.7% for system 1 using metric 2) indicates that there is 

plenty of room for improvement on the development of an automatic melody extraction algorithm.  

Participant ID Paiva (1)
Tappert and 

Batke (2)
Poliner and 

Ellis (3) Bello (4) 
Metric 1: 
Average pitch accuracy rate 75.25 39.73 50.95 48.99 
Maximum 92.21 80.15 86.87 82.20 
Minimum 35.99 7.64 12.47 0.00 
Metric 2: 
Average pitch accuracy rate 75.83 56.11 52.12 56.89 
Maximum 92.21 80.71 87.18 82.22 
Minimum 37.78 32.62 16.30 20.38 

Table 3: Performance statistics for the individual approaches (all values in %). 

 

 

Figure 4: Summary of results for metrics 1 and 2. 
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5.3. About pitch estimation 

Table 3 shows pitch estimation results in melodic frames only. It supports the observations made from 

Figure 4, on that approach 1 (Paiva) performs best at estimating pitch. Its relative performance increase 

between metrics is of 0.77%, compared to 2.30% for approach 3 (Poliner and Ellis), 16.13% for approach 

4 (Bello) and 41.23% for approach 2 (Tappert and Batke). This shows clearly that approaches 1 and 3 are 

less prone to octave-related errors than the other approaches, as could be deduced from Figure 4 already. 

The susceptibility to octave errors appears as a weakness of signal-driven methods when compared to the 

auditory-driven approach implemented by Paiva, and to the machine learning approach of Poliner and 

Ellis. The latter approach is particularly interesting, as it demonstrates that a pure classification approach 

to melody extraction, that makes no assumptions about spectral structure, performs relatively well in 

comparison to traditional approaches that assume particular frequency structures for musical notes. 

However, for machine learning approaches the question of generalization arises. Figure 5 shows that the 

algorithm performed considerably better on the training set (64.9% on average) than on the previously 

unknown test set (50.35% on average), a relative decrease of 27.6%. This effect is not observed for the 

other methods. 
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Figure 5: Accuracy in pitch estimation (metric 2, only melodic frames) for the training set (-+-) and the 

test set (-o-). Item numbers are listed in Table 2. 

 

Figure 6: Metric 1 and 2 results averaged for each category of the evaluation material. 

Another effect that can be observed here is that the pitch accuracy of approaches 3 (Poliner/Ellis) and 4 

(Bello) has a large variation across the set. They seem better suited for certain musical styles than for 

other ones. However, the very limited size of the data set must be considered before drawing such 
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conclusions. Approach 2 (Tappert/Batke) shows a relatively greater consistency but it also stretches from 

80% down to slightly above 30%. With the exception of only one track (opera_male2) approach 1 

(Paiva) always yields a pitch accuracy above 60%, thus appearing to be the least dependent on the 

musical style in the quartet. 

Figure 6 shows the evaluation results sorted by musical style of the evaluation material.  We can observe 

that approach 1 (Paiva) is the one that performs the best in all categories. Only for jazz approach 4 and 3 

are at the same level. Bello (4) even gets marginally better results in this category, when octave errors are 

not considered. We can also see that opera is the most difficult material, showing the worst results for all 

approaches except for approach 2 (Tappert/Batke) which performed slightly worse on the pop items. An 

explanation for the difficulty of the opera items is the complexity of the pitch envelop, which includes 

vibratos and other expressive characteristics (cp. Figure 7). From Figure 7 it can also be noticed that 

Paiva’s algorithm can cope best with fast pitch variations. The precision in tracking the extreme vibrato 

(across 3 semitones) in this example is quite impressive. Bello’s algorithm seems to be too strongly 

restricted by rules for smooth continuation in order to follow the fast pitch changes. Approach 2 

(Tappert/Batke) shows a tendency to quantizing the output to stable frequency values when the pitch is 

varying heavily. For an annotation task this is not a disadvantage, but it might be problematic when the 

pitch needs to be tracked more precisely for example in order to obtain information about expressivity. 

Since approach 3 (Poliner/Ellis) only deals with pitch at semitone resolution it is no surprise that strong 

vibratos cause problems. However, the algorithm manages to roughly track the turning points. 

On the other side, the Daisy category seems to be the easiest one to deal with. All approaches show the 

best results here. This can be due to the fact that it is a synthetic voice with simpler pitch envelopes (cp. 

Figure 8). Also the intensity relation between the voice and the background is higher than for the other 

items. For the first frames of the depicted excerpt it can be seen how approaches 1 and 2 are focussing on 

a voice of the accompaniment, while approaches 3 and 4 manage to detect the absence of the melodic 

voice. 
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 Figure 7: Short excerpt from female opera singing mapped into one octave (solid = reference pitch, dots 

= extracted pitch). Non-melodic frames are coded as 0 cents.  

 

 Figure 8: Short excerpt from synthetic singing (daisy) mapped into one octave (solid = reference pitch, 

dots = extracted pitch). Non-melodic frames are coded as 0 cents. 

5.4. About melodic/non-melodic discrimination 

An important aspect of the melody extraction task is the segregation of melodic information from the 

mixture. In these experiments, non-melodic frames account for a little subset of the test data, and 
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therefore they have limited impact on the results of the evaluation. However, a good discrimination can 

make the case for an approach to be useful in real-world applications, where the ratio between melodic 

and non-melodic frames may differ from the numbers in the test set. 

Participant ID Paiva (1) 
Tappert and 

Batke (2) 
Poliner and 

Ellis (3) Bello (4) 
Median of recall 32.05 55.59 88.25 63.67 
Median of precision 48.59 62.73 25.37 40.73 

Table 4: Individual recall and precision values for non-melodic frame detection (all values in %). 

Table 4 shows the statistics for non-melodic frame detection, where recall gives the percentage of 

annotated non-melodic frames recognized as non-melodic, and precision gives the percentage of frames 

recognized as non-melodic being annotated as non-melodic. The median values were chosen to 

compensate for outliers due to the small number of non-melodic frames in some of the tracks. It shows 

that the machine learning approach of Poliner and Ellis has a strong tendency to classify dubious frames 

as non-melodic. This leads to by far the best recall rate among the methods under test. However, due to 

many false positives, the achieved precision is clearly the poorest. Bello’s approach works surprisingly 

well for discrimination, considering that it uses basic autocorrelation-based measures for melodic/non-

melodic discrimination deriving from monophonic signal processing. The auditory driven approach from 

Paiva (1) reveals a weakness here, which comes from the fact that the proposed algorithm does not tackle 

the melodic/non-melodic discrimination issue. In fact, the most salient notes in the defined allowed range 

are output, no matter if they belong to the melody or not. The approach by Tappert and Batke is showing 

the best precision while still obtaining a moderately high recall. This might be an indication for the 

advantage of using explicit tone models. Still, the results are far from an optimal solution. 

5.5. About note segmentation 

As mentioned before, for a number of applications it is useful to see the melody as a MIDI-like sequence 

of quantised notes. Segmenting the melody into notes also allows for the measuring of note attributes that 

can then be used for higher-level musical analysis of the signal. This is one of the less explored areas of 
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this research field, although it holds the potential to provide more musically-meaningful observations 

than the low-level feature-based analysis of the signal. 

In our evaluation, metric 3 was intended to evaluate the ability of the proposed approaches to estimate 

note segments. Only two of the algorithms provided the specified output for the calculation of the edit 

distance. Results in Figure 9 show that Paiva’s approach scored better than Bello’s with an average of 

8.63 over 14.12. Comparing the results for metric 1 and metric 3, we can see that in several cases (e.g. 

daisy1, daisy2, pop4) approach 4 outperforms approach 1 in terms of predominant frequency estimation, 

while still yielding a worse edit distance score. One reason for this is that Bello’s algorithm tends to 

segment long notes into tremolo-like repetitions if parameters are not stable enough. In the edit distance 

metric these repetitions are treated (and punished) as wrong insertions, increasing the distance to the 

original. As mentioned in section 4.3 the interpretation of these distance values is difficult, since they are 

don’t correspond one-to-one to human perception of melodic similarity. The interested reader might visit 

the web page (ISMIR Contest Definition Page 2004) and listen to the generated MIDI files based on the 

extracted melodies. This might help to get a subjective impression of the quality. 

 

Figure 9: Metric 3 for the training set (top) and the test set (bottom) for Paiva’s and Bello’s approaches. 

Item numbers are listed in Table 2. 
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5.6. About computation time 

We also measured roughly the computation time for each of the algorithms. This gives an idea of the 

computational complexity and the degree of code optimization for each approach. These statistics have 

only informative character and are not relevant for identifying a best-performance approach. Algorithms 

were computed in two machines: windows PC Pentium 1.2 GHz, 1 Gb RAM and Linux PC Pentium 2 

GHz, 500 Mb RAM. Results, presented in table 5, indicate that the signal-driven algorithms, those of 

Tappert and Batke and Bello, were the fastest. Conversely, the approach by Poliner and Ellis is about 7 

times slower than those, and Paiva’s algorithm takes around 50 times as much time. This indicates the 

importance of an efficient front-end implementation, especially for auditory driven front-ends (a good 

example is (Klapuri and Astola 2002)). 

Participant ID Paiva (1)
Tappert and 

Batke (2)
Poliner and 

Ellis (3) Bello (4)
Operating system 
 

Windows 
(MATLAB) 

Linux 
(MATLAB) 

Linux 
 

Linux 
(MATLAB) 

Average Time Per Item t  3346,67 60,00 470,00 82,50
Table 5: Averaged computation time (in s) per item for the individual approaches. 

Since this field of research is still struggling to reach results reliable enough to compare to a trained 

human, computation time is not yet a major issue. However, the tremendous discrepancy between the 

auditory driven approach and the other ones raises the question, whether future optimization will be able 

to overcome this disadvantage, thus making it attractive to use also with large music collections. 

5.7. About the evaluation methodology 

Manual annotations are a very imprecise and time-consuming process. Although the provided material is 

already quite valuable for evaluation, there is the need of increasing its quantity and quality. For instance, 

annotations should be validated by different people, something that requires a concerted effort from 

researchers in this field. The semi-automatic approach here proposed could offer a solution to the 

problem of annotating large quantities of music; however standard tools and methodologies for semi-

automatic annotation need development, something that is proving difficult in the short term. Some 

relevant considerations on manual annotation are presented in (Lesaffre et al. 2004).  
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At the current level for the state-of-the-art in melody extraction (where there is still a lot of room for 

improvement), it seems beneficial to use different metrics in order to compare different aspects of the 

proposed approaches. The underlying concept of this comparison was a contest scenario where a winner 

was supposed to be identified. In order not to make it complex, the variety of explicitly tested properties 

was reduced to the most relevant ones. The three proposed metrics are biased towards a bottom-up 

perspective rather than a top-down way of thinking.  

A way to improve on that is to develop better benchmarks for evaluations. It is undoubtedly difficult to 

find a representative selection of manageable size, given the copyright-free requirements of the test 

collection and their availability in multi-track form (if our semi-automatic annotation is to be used). An 

additional strategy is to compile a selection of special problem cases presenting gradual levels of 

difficulty.  

6. Conclusions and further work 

In this paper we have proposed a methodology for the evaluation of automatic melody extraction 

methods that operate on polyphonic and multi-instrumental music signals. Results in this study are 

obtained by using this methodology on a broad and interesting cross-section of melody extraction 

algorithms. Proposed approaches pose different solutions to the issues of predominant pitch estimation in 

polyphonic mixtures and the discrimination of melodic segments from the mixture. 

Results indicate that, for the three used evaluation metrics, the approach proposed by Paiva outperformed 

the other proposed approaches. It shows better performance at estimating predominant pitches, less 

octave-related errors and better segmentation of the melody into notes. The system revealed a weakness 

in discriminating between melodic and non-melodic frames. The machine learning approach by Poliner 

and Ellis performed relatively well, despite not including sophisticated pre- or post-processing and the 

use of a quantized output (in time and frequency). However, it showed a marked difference in 

performance between the tuning and testing set, raising concerns about its generality.  
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Bello’s and Tappert/Batke’s approaches were the fastest, highlighting the advantages of using efficient 

signal analysis techniques for their operation, while Paiva’s approach demonstrated to be extremely slow 

in its current implementation, raising concerns about the feasibility of its operation on large music 

collections. Approach 2 (Tappert/Batke) showed the best capability in discriminating melodic and non-

melodic frames, although the results are still far from optimal. Its pitch estimation performance was less 

dependent on the music style than it was observed for approach 3 (Poliner/Ellis) and 4 (Bello), but it was 

also yielding slightly worse results and showed the highest tendency to octave-related errors. Bello’s 

approach was capable of a quite good discrimination between melodic and non-melodic frames as well. 

The limitations of its autocorrelation-based front-end make it also susceptibility to octave-related errors 

in pitch detection, but not to the same extend as in case of approach 2. In fact, when octave errors are 

disregarded, the performance of systems 2 (Tappert/Batke), 3 (Poliner/Ellis), and 4 (Bello) is almost 

equal.  

 A fair comparison of different approaches to the same problem is essential to sustained research 

progress. Although there might be a lot of headroom for improvement in the procedure, this first attempt 

gives already useful information and important feedback. The publication of the entire testing material 

also enables researchers who did not participate to estimate their level of achievement in melody 

extraction, and provides a valuable evaluation material for our community.  

Further steps towards adequate benchmarking have to be taken. One of them is the organization of 

another melody extraction evaluation exercise under the context of the ISMIR 2005 conference. Previous 

efforts have already secured a larger dataset for the evaluation, while interest has been gathered from a 

larger number of participants.  
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