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Abstract

Its distributed nature and ubiquitous service make the cloud subject to several
vulnerabilities. One of the main tools used for reporting suspicious activity in
the network’s traffic is the Intrusion Detection System. However, two signifi-
cant problems arise: the huge volume of control messages between the virtual
machines and the servers; and the associated transfer costs. In this work, we
propose a Triple-Similarity Mechanism (T-SyM) for grouping similar alarms
that may correspond to the same attack (or attempt) in order to reduce the
number of messages and, consequently, the total amount of information. In ad-
dition, we propose an algorithm for calculating the severity level of the alarms.
T-SyM works on the basis of 3 steps: individual similarity (Euclidian distance),
clustering relevant features (k-means algorithm) and generating the output (the
Tanimoto coefficient). An evaluation of the most common attacks is performed
using real traces from an IDS. Our mechanism was able to decrease the number
of alarms by up to 90% and reduce the total amount of data by more than 80%.

Key words: Alarm management; similarity analysis; security; network traffic;
cloud computing.

1. Introduction

An Intrusion Detection System (IDS) is designed to monitor a system or
a network in order to report any suspicious activity that may compromise its
operation. The report of the suspect activity represents an output of the IDS,
namely, an alarm. Usually, alarms carry information about the suspicious ac-
tivity such as: type of attack, the timestamp, the number of packets, the IP
address and the port number. Thus, alarms are considered valuable informa-
tion to support the administrator in decision-making about whether it is a true
attack or a false alarm which came from one or more collaborative IDSs [1] [2].
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An IDS may be based on two main approaches to recognize an attack (or
attempt) that differ in the way the data is analysed and processed. The signature
approach refers to the detection of attacks by looking for specific patterns based
on other similar attacks, while the anomaly approach consists in searching for
deviations from proper behaviour through periodic observations of the system.
Signature-based detection methods usually present a low number of false alarms
but do not have the ability to detect new or variants of known attacks, while
anomaly-based detection has the benefit that a new attack, for which a signature
does not exist, can be detected if it falls out of the regular traffic patterns.

Intrusion detection in a cloud environment involves other aspects that need
to be considered, for instance, the relationship between the server and the vir-
tual machine (VM). Usually, a server may host hundreds of virtual machines
that provide different services, for instance, storage, web server, e-mail, and oth-
ers [3]. Another important feature relates to where the information in question
will be collected and processed. In this case, the information may come from the
infrastructure, platforms of software development or applications. Furthermore,
the distributed architecture design of clouds is seen as the key point on which
IDSs rely for detecting threats.

The distributed nature and ubiquitous service make cloud computing vul-
nerable to several types of attacks. For example: a denial of service attack, data
privacy and integrity, identity management and access control, and others [4, 5].
Furthermore, the amount of alarms generated can be overwhelming [6], thus re-
quiring alarm management solutions for an effective management of resources.
Managing alarms triggered by traditional intrusion detection methods is even
more challenging in the cloud computing environment. In this case, the network
traffic is apt to undergo sudden changes and these may be easily confused with
traffic anomalies [7].

1.1. Open Issues and Requirements for Managing Alarms in the Cloud

In recent years, new approaches regarding alarm management have been pro-
posed in the literature such as alarm correlation [8], regular expression match-
ing [9] and clustering alarms [10]. However, these studies are concerned with
increasing the number of true alarms and they fail to respond appropriately
to a low number of false alarms or decrease the number of control messages in
general [11].

The number of alarms generated over time is even greater in cloud com-
puting. Besides the sudden changes that the traffic suffers due to the elastic
and scalable nature of cloud environments, the number of messages increases
proportionally with the number of virtual machines. Moreover, it is known that
around 99% of the alarms are false both in cloud computing [11] and in tra-
ditional environments [12] [13] [14]. The wide disparity between the true and
false alarms generated has certainly compromised the performance of IDS.

The problem is further aggravated in cloud computing due to the huge vol-
ume of control messages between the virtual machines and the server. This
situation makes the detection system inefficient because it provides an unman-
ageable amount of alarms for the administrators [12]. In addition, according to
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a technical report by the University of California, the cost of the data transfer
lies in the region of $100 to $150 per terabyte [15]. Therefore, besides reducing
the number of alarms and supporting the management of the cloud infrastruc-
ture, managing alarms also facilitates minimizing the network’s bandwidth and
the associated transfer costs.

From these observations a set of key requirements for managing alarms in
the cloud emerge, which are listed as follows:

1. Self-adaptive: this requirement refers to the model’s ability to learn or
train itself based on current information, which is different from static
approaches. Cloud computing ensures elasticity which provides scalability.
In this context, the cloud provider should be able to preserve its operation
under conditions of unexpected change by constantly evaluating its own
behaviour.

2. Low message overhead: as important as decreasing the false alarm rate,
a key point is to reduce the number of control messages between the server
and virtual machines. An alarm reduction technique is an absolute necessity
for solving this problem [13]. This requirement calls for a compatible model
for detecting attacks and classifying alarms dynamically, generating the
minimum possible workload.

3. Collaborative: this requirement is characterized by the sharing and con-
struction of knowledge among multiple information sources in order to ac-
complish a task. A large number of heterogeneous entities usually have dif-
ferent information, and combing them can potentially provide better alarm
management to the cloud networks and their applications. A collaborative
approach is particularly well suited to the cloud environment because these
entities have to communicate continuously in order to support decision-
making.

4. Distributed: an approach in which components are located in different vir-
tual machines and coordinate their actions by passing messages represents,
in this context, a distributed alarm management. This feature ensures that
the VMs interact with each other in order to join forces to recognize an
attack. Moreover, adverse events generated by an individual failure may
be minimized [16].

By following this set of key requirements, it is possible to devise an alarm
management system suitable for cloud computing.

1.2. Contributions and Outline

In order to address these issues and requirements, we have made several con-
tributions in this work: (i) grouping similar alarms that may correspond to the
same attack or attack attempt in order to reduce the number of messages sent
to the server/administrator and; (ii) using the number of occurrences of these
groups to adjust the severity of a single alarm based on a similarity analysis.
From these contributions, we intend to optimize the efficiency for generating
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alarms, decreasing the network data traffic to manage IDS and its associated
transfer costs.

The remainder of the paper is organized as follows. Section 2 covers some
of the most prominent related work. Section 3 provides theoretical basis for the
proposal and the rest of the paper. Section 4 describes the proposed solution and
the methodology used for this paper, whilst Section 5 presents the evaluation
and discusses the results. Section 6 concludes with some final remarks and
prospective directions for future research.

2. Related Work

Improving alarm management in the cloud is a useful means of supporting
the cloud provider to manage its assets. Besides decreasing the number of false
alarms, it may reduce the amount of alerts that need to be handled. In this
section, the latest research findings are organized into two parts. First, several
approaches for alarm correlation are presented, outlining the main benefits and
drawbacks of each technique. Finally, a discussion about the state-of-the-art
and the open issues is provided.

2.1. Managing Alarms

There are numerous approaches to improve the quality of alarms by in-
creasing the number of true positives, such as fuzzy logic [11], artificial neural
networks [17], decision tree classifier [18], among others. The aim of other
approaches to alarm management is to decrease the rate of false alarms by rec-
ognizing the relationships between them [13]. The main approaches found in
the literature are described below.

Zhichun Li et al. [9] applied signature detection techniques for enhancing
an IDS looking for vulnerabilities in a high speed network. An approach that
uses semantic information can potentially reduce the number of false alarms.
They decreased the false alarm rate based on a signature parsing and regular
expression matching engine by using the Single PDU Multiple Signature Match-
ing algorithm. However, there is no a real implementation of this proposal yet,
just a small prototype implementation which can handle a limited number of
protocols.

Parikh and Chen [19] used statistical pattern recognition techniques among
multiple sources of information to decrease the cost of operations associated
to intrusion detection activities. Different errors in classifying network traffic
generate different costs associated with them, for instance, the cost of a false
alarm and the useless traffic generated by it. Although the cost minimization
strategy has been successful based on a objective function minimization, the
capabilities of learning incrementally and adaptively are not assessed which is
important due to the dynamically changing characteristic of network traffic in
cloud environments.

Lo et al. [10] extended the Snort IDS. In this proposal, four modules are cre-
ated to work in cooperative mode: intrusion detection, alarms clustering, thresh-
old computation and comparison. The intrusion detection is based on analysis
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Table 1: Characteristics of the related works concerning requirements for alarm management

Proposal Self-adaptive
Low message

Collaborative Distributed
Cloud

overhead scenario

Zhichun Li et al. [9] × × × × ×
Parikh and Chen [19] × ×

√
× ×

Lo et al. [10] × ×
√ √ √

Salem Benferhat et al. [8]
√

×
√ √

×
Leau Beng et al. [20]

√ √ √
× ×

Elshoush and Osman [21] ×
√ √ √

×

of the number of packets over time. In comparison with pure Snort-based IDS,
they showed that the solution spends almost the same time to compute the
detection. The benefit of the proposed modules is preventing the system from
a single point of failure attack for cloud environment.

Salem Benferhat et al. [8] proposed an approach that can be applied for any
classifier (e.g. Hidden Naive Bayes, decision tree classifiers, etc) for alarm corre-
lation. The term “expert knowledge” refers to a person who has extensive skill
or knowledge in a particular field. Then, they leverage the expert knowledge for
increasing the accuracy of the classification model. However, approaches based
on Neural Networks have a serious limitation: they learn the training patterns
but lose the ability to make generalizations. For instance, a new adaptation of
a known attack may not be detected, thus limiting finding slight variations of
instances already classified by the model.

Leau Beng et al. [20] perform an extensive study about existing efforts to ad-
dress the identification of similarities and causality relationships between alerts.
They elect the main problem that researchers are trying to solve, namely, the
generation of large number of alerts and false positives. Furthermore, they
point out the most popular alert correlation approaches with their advantages
and drawbacks. This paper surveys existing works and does not propose a new
solution.

Elshoush and Osman [21] presented a multiple components approach to deal
with different features of alert correlation, each responsible for a different aspect
of the overall correlation aim. However the sequence order of acting components
affects the process performance. In this context, they introduce a method based
on the Alert Fusion Algorithm to merge unrelated alerts and thus reducing
the number of messages. Nevertheless, the total time needed for processing
this approach increases depending on the number of alerts triggered in each
component.

2.2. Discussion

This section compares several approaches by taking into account the require-
ments for managing alarms in a cloud computing environment. In particular,
it summarizes the related work regarding key requirements, application in the
cloud context and the remaining open issues as illustrated in Table 1.

IDSs are designed to report basic events that are malicious in nature but they
are powerless to recognise causal relationships between the consecutive instances
of an attack. Approaches focused on alarm management cannot deal with a low
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number of messages and a self-adaptive solution in a distributed architecture at
the same time. Moreover, the approaches found in related work are not designed
to adapt themselves to the elastic and scalable nature of cloud environments
because they fail to learn based on current information. Furthermore, the cloud
environment lacks an approach for alarm management able to cope with large
amounts of information and control messages. In addition, all types of alarms
are processed in the same way in the current approaches, without any level of
distinction between the severity of the alarms.

In order to tackle these limitations, we introduce a conceptual solution for
managing alarms in the cloud network context by means of a similarity analysis
between the features extracted from the IDS, in the following section. From this,
it is expected to improve the performance in terms of the usage of the network’s
bandwidth and the number of alarms. More specifically: the solution proposed
reduces the network data traffic to manage IDS and its associated transfer costs;
and raises the severity of an individual alarm based on the number of occurrences
of similar alarms.

3. Background

Our solution focuses on providing a systematic approach to aggregate similar
alarms in the context of the cloud network traffic. Generally, cloud computing
involves information collected from several sources, for instance, infrastructures,
platforms for software development or applications. In addition, in order to pro-
vide a theoretical basis for the solution and the rest of the paper, some concepts
must be formalized. Therefore, some important definitions are introduced here.

3.1. Anomaly

A network anomaly corresponds to a circumstance in which the network
behaviour deviates from its normal operational pattern. The identification of an
anomaly requires the network manager to learn beforehand about the nature of
normal traffic operation. Traditionally, this requires monitoring the network for
a long period of time to extract the characteristics of the normal behaviour of the
network. This type of methodology is known in the literature as building a traffic
baseline. This procedure is necessary to ensure an adequate degree of protection
and this is an important point to make the system more resilient and protect
the network’s traffic against threats. Once this step has been completed, any
type of misuse that is not seen as normal network operation, will be considered
an anomaly.

It is important to emphasize that an anomaly in network traffic does not
always correspond to the occurrence of an attempt to attack [22]. For instance,
an anomaly could be generated by a network failure event or temporary mis-
configuration that results in a problem or outage. Usually it occurs soon after
installing some new equipment in the infrastructure or updating the system.
Network traffic anomalies are also common whenever a new software release
becomes available over a relatively short period of time (flash crowd) [23]. Sum-
ming up, in the set of existing types of attacks, there is a subset of them that
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can generate anomalies in the network traffic, such as: Distributed Denial of
Service (DDoS), Sniffer Attack, Remote to Local (R2L), User to Root (U2R),
Probe, etc.

3.2. Features

In this work, we consider features as the means to delineate the main char-
acteristics of the attacks and anomalies in the cloud network traffic. Several
studies in the literature propose a set of features to describe the network traffic
and anomalies. Kind et al. [24] selected a subset of 8 relevant features for net-
work anomaly detection. For instance, histograms of source IP addresses and
features extracted from the packet header. Moustafa and Slay [25] present nine
categories of attacks including patterns of normal traffic. Moreover, they show
49 features that comprise the flow based between the hosts and the inspection
of network packets in order to discriminate between the normal or abnormal
observations.

In a past work, Bruno Dalmazo et al. [26] present an IDS that identifies a set
of features to characterise network anomalies for the purpose of their detection.
In this context, the set of features considered for the intrusion detection system
consists of: the type of the protocol, the port number, IP address, the packet
size, the time interval, the number of packets, the variance between real network
traffic and predicted network traffic (∆-variation) and the attack type.

3.3. Alarm

We consider an alarm as a signal for attention. In other words, a warning
notice resulting from the perception of an imminent danger. Usually, an alarm is
triggered based on anomalies or signatures present in the network. Moreover, it
is created taking into account features which characterize an attack (or attempt).
The purpose of an alarm annunciation is to alert the cloud operator about
deviations from the normal operating conditions, e.g. flooding the bandwidth
of a single machine or service. The goal of triggering alarms is to prevent, or
at least minimise, problems coming from misconfiguration, internal or external
threats to the system.

3.4. Similarity

Similarity analysis is a technique which allows us to assess whether cer-
tain alarms are considered similar or dissimilar according to the features that
describe them. Basically, there are two properties related to the similarity mea-
sures: the level and the commutativity. The similarity level relates to how much
an entity X is similar to the entity Y, it ranges from 0 to 1. When two entities
are identical the similarity level scores the minimum value, zero. Commutativity
determines that the similarity level between X and Y is equal to the similarity
level between Y and X.

Assessing similarity between features is a central issue in many research ar-
eas such as face recognition [27], linguistics [28] and management systems [29].
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The importance of finding suitable measures of similarity cannot be overem-
phasized [29]. The choice of such measures of similarity depends on the type
of measurement or representation of the features. The distance between two
entities can be used to indicate how similar they are and it can also be defined
by the number of operations to convert an entity X in an entity Y.

There are several approaches to measure similarity, for instance: the Man-
hattan distance, the Chebyshev and Euclidian distance [30]. The Manhattan
distance depends on the rotation of the coordinate system but does not depend
on its reflection about a coordinate axis or its translation. When Chebyshev is
applied in one dimension, the distance is just the absolute value of the differ-
ences. If Chebyshev is applied for two dimensions, the distance is equivalent to
the planar Manhattan distance. The Euclidean distance measures the similarity
between two points in a Euclidean space as illustrated in Equation 1.

SimED(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (1)

The Tanimoto coefficient is another metric used to measure the level of
similarity in finite sample sets based on the size of the intersection divided by
the size of the union of the sample sets, as illustrated in Equation 2. The
Tanimoto coefficient is a variation of the Jaccard index, the difference being
that Tanimoto can be applied to non-binary or quantitative data (groups) while
Jaccard can only be applied to binary values [31].

SimTM (x, y) =

n∑
i=1

xiyi

n∑
i=1

x2
i +

n∑
i=1

y2
i −

n∑
i=1

xiyi

(2)

These measures, as well as other concepts and definitions presented in this
subsection, are used as the basis for describing the similarity mechanism in the
next section.

4. Triple-Similarity Mechanism

The purpose of this proposal is to provide an efficient method to aggregate
similar alarms in cloud-based network traffic. Figure 1 depicts the basis of
our proposal, by highlighting the application scenario and the main conceptual
components.

Monitoring data from cloud infrastructures is the input of the system. From
this data, an Intrusion Detection System works by supervising any suspicious
network activity. Whenever necessary, it triggers alarms that hold vital in-
formation about the abnormal activities. At this point, the Triple-Similarity
Mechanism relies on data from the Alarms Database for aggregating alarms
and, consequently, reduces the network data traffic and decreases the associ-
ated transfer costs. Then, the Alarm Generator produces a single alarm at a
higher level of severity. We now describe each component in more detail.
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Figure 1: Conceptual components for managing alarms in the cloud

4.1. Intrusion Detection System

At this point, the Intrusion Detection System monitors the network traffic
generated by the service provided by the virtual machine and its applications
during a given period. In this process, raw data is gathered continuously from
the cloud network traffic in order to build a network baseline. As an output
of this process, the IDS prepares the data collected by measuring the number
of packets in the network traffic at regularly spaced intervals, and thus forms a
discrete time series ordered by time.

It is important to mention that the similarity mechanism is an open model
that could be applied individually or collaboratively for different IDSs. However,
for this work we use an IDS that generates alarms based on a distributed mech-
anism that combines a Support Vector Machine model with features extracted
from a Poisson Moving Average predictor [32]. The features are classified into
two types: frequency (f) features (e.g. the number of times a packet from a
protocol appears) and cumulative (c) features (e.g. the total number of packets
received in a time period), as presented in Table 2.

4.2. Proposed Mechanism

The Triple-Similarity Mechanism (T-SyM) acts upon two sets of features:
the dataset of alarms and the network traffic. The entire process for determining
the similarity level comprises 3 steps: individual similarity, clustering relevant
features and generating the output.

• Firstly, the T-SyM needs to measure the individual similarity of each
feature with the Alarms Database. Giving preference to simplicity, the
individual similarity is given by the Euclidean Distance between both fea-
tures from the alarm dataset and the IDS output. Figure 2 illustrates
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Table 2: Details of the features from the IDS

Feature Description

Protocol type (f) Dividing the network traffic by protocol type facilitates iden-
tifying anomalies not visible in the global network traffic

Destination Port number (f) Port number analysis is useful for revealing attacks that at-
tempt to scan ports

Source Port number (f)

Source IP address (f) This information is useful for recognizing Denial of Service
attacks

Destination IP address (f)

Packet size (f) The sudden increase of this feature can indicate a SYN flood
attack

Number of packets (c) Consists of control information and user data used in the
prediction

Time interval (c) A time set containing information between the beginning and
the end of the anomaly

∆-variation (c) The absolute difference between the real network traffic and
the predicted network traffic

Attack type (f) It describes which is the attack that is being executed

Alarm (f) Boolean variable that indicates the presence of an alarm

First Similarity which compares two vectors: the vector from the IDS
output and the vector from the Alarms Database which holds information
about previous attacks. These vectors hold all the features that describe
the alarm. In order to consider the different types of features generated by
the IDS, the similarity approach relies on the set of features responsible
for identifying the attack.

• It is then necessary to cluster relevant features based on the individual
similarity level, as illustrated at the Second Similarity in Figure 1. The
feature’s behaviour is correlated according to the type of attack. For
instance, in a Denial of Service, the attacker uses more than one unique
source IP address, often thousands of them, so a high value for this feature
is expected (source IP address) [33]. Otherwise, the destination IP address
is restricted to only one or a small set, in this case a low number of
occurrences for this feature is expected. Therefore, the set of features
representing this attack presents a strong individual similarity level for
some features and a weak individual similarity level for others. In order
to avoid discrepancies between features, a clustering approach is required,
namely, the k-means algorithm. This procedure divides the features into
two groups: relevant and not relevant.

• Finally, an approach for comparing the similarity of the two groups is
needed. The literature presents several techniques with this aim: the
Sorensen index, the Jaccard index and the Tanimoto coefficient. However,
the Sorensen index and the Jaccard index are metrics that only measure
the similarity between objects of purely binary attributes. The Tanimoto
coefficient, on the other hand, is not restricted to working with only bi-
nary attributes. In Third Similarity all similar alarms that correspond to
the same attack are aggregated based on the Tanimoto coefficient. At this
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Figure 2: The Triple-Similarity Mechanism

point, this procedure is useful for minimizing the number of control mes-
sages sent to the server/administrator of the cloud provider. In addition,
the severity of a single alarm increases according to the number of similar
occurrences. This procedure is expected to enhance the alarm manage-
ment in the cloud by reducing the network data traffic and its associated
transfer costs.

4.3. Alarms Database

The component called Alarms Database is a repository that stores a set of
information used to describe an alarm triggered by the IDS. Besides keeping
track of the IDS operating history, the Alarms Database also includes a finite
number of categories by which each alarm is classified. Then, before sending an
alarm to the server, the Triple-Similarity Mechanism looks for a similar alarm
category inside the Alarms Database. This is useful to decrease the number
of messages, as various alarms can be replaced by just one but with a greater
impact.

4.4. Alarm Generator

The IDS causes the system to generate a signal regarding the suspicious
activity as soon as it is recognized. Algorithm 1 describes the procedure to
calculate the severity level for alarms. The Alarm Generator calculates the level
of severity based on the Alarms Database. Optionally, an operator of the cloud
infrastructure may interact with the Alarm Generator to influence the process
for evaluating the level of severity for the alarms. He/she may determine, based
on his/her knowledge, how important an attack is, in comparison with others
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by increasing the initial severity level. For instance, an operator may configure
the algorithm to prioritize an occurrence of DoS attack instead of Portsweep
(see variable opK ).

Algorithm 1 starts by analysing the network traffic inside a sliding window
provided by the IDS. This procedure seeks alarms and classifies them according
to the Alarms Database and then assigns a level of severity. The ω function
calculates the severity based on the number of alarms and the operator’s knowl-
edge. The ω function is based on a regression model that is built from the
network traffic behaviour [34]. The Alarm Generator presents an interval tag
that specifies a period of time to wait before sending similar alarms. All infor-
mation about the attacks and the size of the interval to be monitored is given
by the IDS. This is an important aspect that ensures the generalization of the
Triple-Similarity Mechanism for working with other IDSs.

Algorithm 1 Severity level for alarms

Input: Network traffic, nTraffic
Operator knowledge, opK[ ]

Output: Severity for alarms, severity[ ]
1: Start
2: procedure GetSeverity(nTraffic, opK[ ])
3: var slidingWindow = idsWindow(nTraffic)
4: for each element e in slidingWindow do
5: if (hasAlarm(e)) then
6: var vType = classify(e)
7: var nAlarms[vType] + +
8: end if
9: end for

10: for each element e in nAlarms[ ] do
11: var severity[e] = ω(nAlarms[e], opK[e])
12: end for
13: return severity[ ]
14: end procedure
15: End

Without this control mechanism, events of this nature may occur often and
cause many alarms to be generated. Moreover, they may correspond recurrently
to the same anomaly or attack. To avoid this, alarms will only be sent for the
first event and after that, each occurrence with the same features represents an
increase in the severity according to the severity level defined by the operator for
different types of attacks. This prevents the network and the server from being
flooded with redundant alarms as we will now demonstrate in the evaluation.

5. Evaluation and Discussion

To evaluate the effectiveness of the solution, we conducted a case study in
which an Intrusion Detection System generates alarms based on a distributed
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mechanism that combines a Support Vector Machine model with features ex-
tracted from a Poisson Moving Average predictor, as described in [26]. We have
considered the DARPA dataset as the case study for evaluation.

5.1. Experimental Environment Setup

The experiments were conducted on a 64-bit standard personal computer
with Intel Quad Core i5 Processor with 8Gb of RAM running at 2.70GHz.
The operating system was Ubuntu 16.04 LTS. Furthermore, the programming
language used for implementing the Triple-Similarity Mechanism was C++ (gcc
4.8.4 c11 version) and several shell scripts to deal with the data.

5.2. DARPA Dataset

The Cyber Security and Information Sciences Group of MIT Lincoln Labo-
ratory, under Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory sponsorship, collected the first standard dataset for
evaluation of computer network intrusion detection systems [35]. This dataset
was the first formal, repeatable, and statistically significant evaluation of intru-
sion detection systems. We would like to point out that the DARPA data set is
a renowned data set for anomaly detection. Although the data set was created
in 1998/1999, it is still being used by many works, including recent works in the
context of the cloud [36, 37, 38].

The datasets contain data collected from February 1998 up to October 1999.
The data consists of three weeks of training data and two weeks of test data.
The first and third weeks of the training data do not contain any attack. The
second and the fourth week of the training data contains a select subset of
labelled attacks. The goal of this work is not evaluate the efficiency of the IDS
but decreasing the amount of alarms generated by it. In light of this, we use the
second week for the training phase because it contains details about the attacks
such as timestamp, duration and IP address. In order to make the dataset
more realistic, we organized many of the attacks so that the resulting data set
consisted of 10% attacks and 90% normal traffic.

The following list describes some attacks included in training data that have
been posted on the Lincoln Laboratory web site. All the selected attacks are
apt to generate anomalies in the network traffic.

• Guest: Try to guess a password via telnet for a guest account (brute force
attack)

• Portsweep: Surveillance sweep through many ports to determine which
services are supported on a single host

• Ipsweep: Surveillance sweep performing either a port sweep or ping on
multiple host addresses

• Land: Denial of Service where a remote host is sent a UDP packet with
the same source and destination
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• Back: Denial of Service attack against an apache webserver where a client
requests a URL containing many backslashes

• Syslog: Denial of Service for the syslog service connects to port 514 with
unresolvable source IP

• Teardrop: Denial of service where mis-fragmented UDP packets force a
server to reboot

Currently, many providers have been suffering from Distributed DoS attacks,
which, for instance, can cause many alarms to be generated [39]. The next
section presents the results from applying T-SyM in order to reduce the number
of alarms generated.

5.3. Results

Table 3 shows a real Denial of Service attack against a web server. It is possi-
ble to observe that the attacker (172.16.114.50) floods the server (135.13.216.191)
through port 80 trying to overthrow the services provided. According to the
IDS, each line (1, 2, 3, 4, 5 and 7) generates an alarm. However, all the alarms
constitute a single attack. This exemplifies a relevant problem for alarm man-
agement, the large number of alarms generated.

Table 3: Example of alarms in the data set

N Timestamp Src IP Src Port Dst IP Dst PortPacket sizeNumber packetsTime interval∆-variationAttack typeAlarm

1 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 124 back 1
2 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 103 back 1
3 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 61 back 1
4 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 59 back 1
5 920974021 172.16.114.50 80 135.13.216.191 29514 84 20 1 35 back 1
6 920974021135.13.216.191 29514 172.16.114.50 80 32 59 1 34 - 0
7 920974021 172.16.114.50 80 135.13.216.191 29514 84 21 1 27 back 1

The evaluation is based on a comparison between the alarms generated for
an IDS applied to the DARPA dataset. As general results, we observe that for
all attacks fewer alarms were generated after using the Triple-Similarity Mech-
anism, as illustrated by Table 4. The Portsweep attack has shown the highest
gain in comparison with other attacks (90%). In other words, the Portsweep
attack triggered 574 alarms when using just the IDS. The number of alarms
was about 10 times lower than expected when we combine the IDS and T-
SyM. The DoS and Ipsweep attacks present similar results, 78.47% and 79.35%
fewer alarms, respectively. Finally, our mechanism has decreased the number of
alarms from 169 to 44 for the brute force attack.

Along with the aggregation of true positive alarms reported above, our
scheme is also able to aggregate false positives, therefore reducing their im-
pact on the IDS performance. In particular, the IDS originally reported an
amount of 2632 false alarms. After using T-SyM, by aggregating false alarms,
their number decreased to 490, corresponding to an improvement of 81.4%.

The IDS is subject to failures. For example, a missing alarm could occur
in the interval between two (or more) attacks that are performed at the same
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Table 4: Comparison between alarms generated with and without the Similarity Mechanism

Type of attack
Number of alarms

Improvement (%)IDS IDS + T-SyM

Brute Force 169 44 73.96%

Portsweep 574 57 90.07%

Ipsweep 155 32 79.35%

DoS 641 138 78.47%

time. However, the problem of missing alarms is the exclusive responsibility of
the IDS in question. Once the IDS generates alarms, they can be aggregated
by the Triple-Similarity Mechanism. Therefore, the process of aggregation will
never generate a missing alarm.

This case study applies Algorithm 1 to calculate the severity level for alarms.
This algorithm resorts to a function ω for assessing the severity level of alarms
based on a regression model fed with the history of attacks in the Alarms
Database. We approximate the ω function to a logarithm base 4, meaning that
an alarm at level 3 (the greatest risk for the system in this example) should
aggregate, at least, 64 alarms from the IDS. Each level corresponds to a dif-
ferent class of alarm priority in increasing order of risk. In this case, actions
can be generated and automatically executed in response to a specific alarm
level. Figure 3 illustrates the severity level for the alarms. In general, most of
the alarms are regarded as level 1 (about 66% of the alarms), 26% are level 2,
whilst level 3 alarms represent 8% of the total.

Moreover, the resulting dataset regarding the second week for the training
phase has more than 400MB of data. After using our mechanism, the total
amount of data was 78.3MB. In particular, our mechanism was able to decrease
the number of alarms generated by aggregating similar alarms from the IDS. In
addition, it is efficient when recognizing the attacks from less information.

It is worth noting that the T-SyM is not evaluating the effectiveness of the
IDS to detect attacks nor the diversity of the labelled attacks contained within
the DARPA dataset. Although the DARPA dataset was not designed for the
cloud, it has a wide range of attacks that make it possible to detect threats from
multiple hosts. In this context, using this dataset does not limit the proposal
presented here. In fact, the DARPA dataset provides all the conditions necessary
to validate our mechanism regarding distributed attacks, commonly present in
the cloud. Therefore, this scenario expresses a case study for a mechanism
designed to aggregate alarms in a cloud environment.

Lastly, the T-SyM has proved to be efficient at aggregating alarms that carry
similar features. In comparison with the alarms generated only by the IDS, our
similarity approach produces fewer alarms but with higher levels of severity.
This makes the network traffic monitoring of the cloud providers faster and
more effective.
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Figure 3: Evaluation of the severity for alarms

6. Final Considerations and Future Work

In this paper, we present the main issues generated by Intrusion Detection
Systems for cloud computing. For instance, the huge number of alarms gener-
ated over time and how this impacts on the number of control messages between
virtual machines and servers. To address these problems, we propose a Triple-
Similarity Mechanism, a systematic approach to aggregate similar alarms in the
context of the cloud network traffic and an algorithm to assign severity level for
alarms.

From the observation of the results, we can see that our mechanism was able
to (i) reduce the generation of alarms by from 73% to 90% and; (ii) decrease
the network data traffic to manage IDS and its associated transfer costs by
more than 80%. Moreover, aggregating similar alarms produces fewer alarms
but with higher levels of severity, supporting the network traffic monitoring
of the cloud providers. Prospects for future research include extending the
evaluation in another two directions: (i) testing other IDSs and datasets to
ensure the generalised application of our mechanism; and (ii) adapting the T-
SyM to operate online.
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