
Optimizing Residential Energy Resources with an Improved
Multi-Objective Genetic Algorithm based on Greedy Mutations

Ivo Gonçalves
INESC Coimbra, DEEC, University of

Coimbra
Coimbra, Portugal
icpg@dei.uc.pt

Álvaro Gomes
INESC Coimbra, DEEC, University of

Coimbra
Coimbra, Portugal
agomes@deec.uc.pt

Carlos Henggeler Antunes
INESC Coimbra, DEEC, University of

Coimbra
Coimbra, Portugal
ch@deec.uc.pt

ABSTRACT
Energy management is increasingly becoming an important issue
in face of the penetration of renewable generation and the evolution
to smart grids. Home energy management systems are aimed to
make the integrated optimization of residential energy resources,
taking into account energy prices and end-user’s requirements.
This paper addresses a residential scenario where energy resources
are automatically managed to reduce the overall energy cost while
considering a set of user-defined comfort preferences. These energy
resources include the grid, shiftable appliances, thermostatic loads,
static batteries, electric vehicles, and local energy production. The
comfort specifications consist of the time slots where the shiftable
appliances are preferred to operate and the temperature ranges
desired for the thermostatically controlled loads. The conflicting
objectives are addressed by a multi-objective genetic algorithm that
aims to minimize the overall energy cost and the user’s dissatis-
faction. This paper proposes a set of novel operators that result
in statistically significant improvements in terms of hypervolume
values when compared to a recently proposed genetic algorithm
customized to address this same scenario. These novel operators
include a different population initialization, a greedy mutation, and
two geometric crossovers. The effect of the proposed operators on
the resulting allocation of energy resources is analyzed.
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1 INTRODUCTION
Renewable energy generation and efficient use of energy are key
issues in the pursuit of sustainable development, both strongly ben-
efiting from an adequate integrated management of all energy re-
sources in power grids. In the context of smart digital grids, energy
management systems (EMS) endowed with appropriate manage-
ment algorithms will play an increasingly important role to make
the most from renewable sources and controllable energy resources
on the demand side [1, 9]. Automated EMS will enable the flexibility
in the usage of some end-use loads to have a role in minimizing
the electricity bill and also providing services required by the grid.
Automated EMS will control energy demand by responding to dif-
ferent possible input signals, such as time-differentiated energy
prices, requests from the grid or from an aggregator entity to in-
crease/decrease consumption, direct control actions or according
to available local generation (usually based on renewables) or stor-
age [3, 6, 11]. Demand response (DR) has the potential to improve
the efficiency of infrastructure capacity, decrease peak load demand,
reduce GHG emissions levels, provide ancillary services, and en-
hance overall grid sustainability. The potential of DR programs is
vast and new enabling framework policies are emerging.

From the perspective of a consumer, two objectives are usually
at stake: minimize energy costs (or maximize the profits with local
energy resources considering selling back to the grid), andminimize
the impacts on the quality of the energy services provided by the
end-use loads [1, 5, 8]. The quality of the energy services is often
measured as a comfort/discomfort indicator, quantifying how much
the energy service is far from the end-user’s preferences and re-
quirements. For example, the preferred time slots for the operation
of certain appliances or the admissible variation in temperature
for thermostatically controlled loads are usual preferences set by
consumers.

The optimization of this type of decisions involves the resolu-
tion of complex models of combinatorial nature, which in general
cannot be solved with a reasonable computational effort compati-
ble with (near) real-time application. Metaheuristics have shown
to provide good solutions for these optimization problems, being
able to deal with multiple objective functions and combinatorial
complexity [4, 6, 9]. Furthermore, metaheuristics are effective to
deal with technical constraints related with appliance operation,
end-user’s preferences (utilization of the energy service, thermal
comfort or other measures of the quality of the energy service
provided), and the capability to tackle unexpected events.

In a smart grid scenario with widespread use of automated EMS,
it is critical that solutions be able to comply asmuch as possible with
the diversity of requirements and preferences among end-users.
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Automated control will replace the control actions of end-users
over the loads whenever the consumer is not at home or is not
available/capable to react to different input signals. In the scope
of a multi-objective model balancing the economic and quality of
service dimensions, the trade-off region depends on the end-user
profile (e.g., privileging solutions with lower costs and possibly
worse values of comfort or willing to have a higher energy bill by
caring mainly about comfort levels). Given the need to deal with
different end-user’s preferences and requirements, it is important
that optimization algorithms are able to identify diverse solutions.
In addition, as the automated EMS is supposed to operate 24/7
and at the same time consumers can control some end-use loads,
resulting in a variable base load out of the control of the EMS, the
ability to re-schedule the utilization of energy resources due to
unpredicted usage of some loads is of utmost importance.

This paper addresses a residential scenario where energy re-
sources are automatically managed to reduce the overall energy
cost while considering a set of user-defined comfort preferences.
A set of novel operators are proposed which include a different
population initialization, a greedy mutation, and two geometric
crossovers. The resulting algorithmic variants are compared against
a recently proposed genetic algorithm customized to address this
same scenario. The paper is organized as follows: section 2 presents
the residential scenario under study; section 3 describes the base-
line variant and the newly proposed variants; section 4 presents
and analyzes the experimental results; and section 5 draws some
conclusions about the performance of the novel variants.

2 RESIDENTIAL SCENARIO
In the residential scenario addressed, a set of energy resources
must be automatically managed to reduce the overall energy cost
while considering user-defined comfort preferences. These energy
resources include the grid, shiftable appliances, thermostatically
controlled loads, static batteries, electric vehicles, and local energy
production. The scenario under study is the same used by Soares
et al. [9]. The aim in this scenario is to minimize energy costs
while also minimizing the discomfort caused to the users. This
discomfort is computed based on the time slots where the shiftable
appliances are preferred to operate and the temperature ranges
desired for the thermostatically controlled loads. For this scenario,
the EMS is endowed with a multi-objective genetic algorithm to
compute solutions trading-off the cost and discomfort objective
functions. This EMS must define the actions to implement over the
considered energy resources for a given planning period. In the
residential scenario studied, the planning period comprises 2160
minutes (36 hours). As this scenario is rather complex and with a
large amount of information required, and as the data used (the
same as used by Soares et al. [9]) is not yet openly available, it is
provided as supplementary material to this paper in order to permit
full reproduction of the results.

The fourmain types ofmanageable loads considered are: Shiftable
Loads (SLs), Thermostatically Controlled Loads (TCLs), Stationary
Storage System (SSS), and Electric Vehicle (EV). The EMS should be
able to deal with any number of manageable loads. The residential
scenario studied is composed of three SLs, three TCLs, one SSS,

and one EV. The three SLs considered are: a dishwasher, a laun-
dry machine, and a tumble dryer. Each SL has a given operation
cycle which defines how long the load takes to complete and the
power needed at each minute for the load to operate. The EMS
must allocate a region for each SL to operate in a given planning
period, while ensuring that each SL will be able to complete its
operation cycle by the end of the planning period. In the algorith-
mic implementations considered in this paper, this is ensured by
the design of the operators as described in the next section. The
three TCLs considered are: an Air Conditioner (AC), an Electric
Water Heater (EWH), and a fridge. The EMS must, for each TCL,
define the target temperature for all minutes of the planning pe-
riod. From these target temperatures, the effective temperatures are
then computed by a physically-based model (PBM) that considers
the physical characteristics of the equipment and its surroundings.
Each TCL has a different PBM associated. The PBMs used are the
same used by Soares et al. [9]. For the full PBM details the reader is
referred to Soares [10]. Regarding the SSS, the EMS must define in
which state it is going to operate in each minute of the planning
period. There are four possible SSS states encoded as follows: -2,
self-consumption and selling excess electricity to the grid; -1, sell-
ing electricity to the grid; 0, not in use; 1, charging from the grid.
The SSS also has a state of charge associated. The EMS must ensure
that the SSS does not go below a given minimum state of charge,
a value set by the user. The EMS ensures this by only effectively
executing states that extract energy stored (-2 and -1) if they do not
result in a violation of the minimum state of charge. In this case,
the state is interpreted as neutral (state 0). The minimum state of
charge considered here is 20%. Naturally, the state of charge also
cannot go above 100%. Similarly, this is ensured by the EMS by
only effectively executing the charging state (state 1) if the state
of charge is below 100%. With respect to the EV, the EMS must
ensure that it is charged by the end of the planning period. In the
scenario considered, charging the EV takes 480 minutes (8 hours).
Two points in the planning period define the region where the
EV is available for charging. In the scenario considered, the EV is
available between minutes 200 and 1998 of the planning period.
As described in the next section, the algorithmic implementations
considered in this paper ensure, by design of the operators, that
the EV availability is respected and that it is charged by the end
of the planning period. As in Soares et al. [9], the EV is only used
in grid-to-vehicle mode, i.e., the battery of the EV is not used for
self-consumption or selling electricity to the grid. Because of this,
the EMS represents the decisions regarding the EV as states of 0 or
1 for each minute of the planning period. Besides these manageable
loads, a non-manageable base load is also considered. As the name
entails, this load is not subject to actions of the EMS. However, the
power requested by the non-manageable base load must also be
taken into account when considering the total energy cost. The
only constraint that cannot be directly ensured by design of the
operators is the contracted power constraint. The contracted power
defines the overall power that can be requested to the grid in a
given minute of the planning period.

With respect to the calculation of the total energy cost objective,
the following definitions are considered:

T : Number of minutes of the planning period (t = 1, ... , T )
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n: Number of shiftable loads (j = 1, ..., n)
m: Number of thermostatically controlled loads (b = 1, ...,m)
pjt : Power requested by SL j at minute t (W )
pbt : Power requested by TCL b at minute t (W )
vt : Power requested by the SSS at minute t (W )
et : Power requested by the EV at minute t (W )
ut : Power requested by the non-manageable base load at minute

t (W )
at : Total power used for self-consumption at minute t (W )
st : Total power sold to the grid at minute t (W )
NGPt : Net grid power requested at minute t (W )
BPt : Buying price at minute t (e/kWh)
SPt : Selling price at minute t (e/kWh)

The net grid power requested is defined as:

NGPt =
n∑
j=1

pjt +
m∑
b=1

pbt +vt + et + ut − at

Then, the total energy cost (e) can be calculated as:

T∑
t=1

(
NGPt ·

BPt
1000 · 60

− st ·
SPt

1000 · 60

)
The dissatisfaction objective aggregates three different compo-

nents: a global interruption risk penalty, time slot penalties for
SLs, and temperature variation penalties for TCLs. Regarding the
calculation of the dissatisfaction objective, the following definitions
are considered:

дt : Global interruption risk penalty at minute t
Ct : Contracted power at minute t (kW )
hjt : Time slot penalty for SL j at minute t
yjt : Binary variable representing whether SL j is operating at

minute t
rbt : Temperature variation penalty for TCL b at minute t
Tbt : Temperature of TCL b at minute t determined by the PBM

(◦C)
HBTb : Maximum reference temperature for TCL b (◦C)
LBTb : Minimum reference temperature for TCL b (◦C)

The global interruption risk penalty is defined as:

дt =



1, if NGPt > 0.85 ·Ct
0, otherwise

The temperature variation penalty is defined as:

rbt =




e
Tbt −HBTb
HBTb −LBTb − 1, if Tbt > HBTb

e
LBTb −Tbt
HBTb −LBTb − 1, if Tbt < LBTb

0, otherwise

Then, the dissatisfaction objective can be calculated as:

T∑
t=1


дt +

n∑
j=1

hjt · yjt +
m∑
b=1

rbt




3 VARIANTS
3.1 Baseline Algorithm and an Alternative SSS

Initialization
The baseline algorithm considered for comparison is based on the
implementation of Soares et al. [9]. This implementation was de-
signed specifically to address the same residential scenario being
studied here. Given the multi-objective nature of the problem con-
sidered, the implementation is based on the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [2]. This baseline algorithm defines
a set of customized operators that avoid, by design, some issues
that could arise under non-customized operators. These customized
operators include initializations, crossovers, and mutations. Note
that given the nature of the problem, performing an operation on an
individual consists of performing the operation on the four types of
loads that the individual represents. In other words, an individual-
wise operator is essentially a set of four load-wise operators. As
an example, an (individual-wise) initialization operator consists
of load-wise operators that are able to correspondingly initialize
shiftable loads, thermostatically controlled loads, stationary stor-
age systems, and electric vehicles. In the following descriptions,
whenever a random selection is said to occur, this is meant to be
interpreted as a random selection with uniform probability.

The initialization of a shiftable load works by randomly select-
ing a starting minute for the operation while ensuring that the
operation cycle is fully completed by the end of the planning pe-
riod. This is an example of an operator that, by design, avoids a
possible issue (non-complete operation cycles) from appearing in
the solutions. The TCL initialization operator randomly selects a
temperature between the maximum and the minimum reference
temperatures. This selected temperature is assigned to all minutes
of the planning period, i.e., this initialization always results in a
constant temperature throughout the planning period. The SSS
initialization is performed while having as reference the average
energy price of the planning period. If the price of a given minute
is above or equal to the average price then a state of -2 or -1 is
randomly selected to be assigned to that minute. On the other
hand, if the price is below the average price then a state of 0 or 1
is randomly assigned to that given minute. The EV is initialized
by randomly selecting a continuous region where the charging
is going to occur. In the scenario considered, this region is neces-
sarily composed of 480 minutes (the time required to charge the
EV). The individual-wise baseline initialization can now be simply
defined as the combination of these four load-wise initialization
operators. Given that the baseline SSS initialization has a certain
degree of inflexibility (by limiting the state choices based on the
average price), an alternative SSS initialization is considered. This
initialization divides the planning period into continuous blocks
of 10 minutes, and for each block randomly selects any of the 4
states to be assigned. This is meant to confer a greater diversity
to the initial population. The alternative individual-wise initializa-
tion is composed of the alternative SSS initialization as well as the
remaining baseline load-wise initializations.

The crossovers in the baseline algorithm are all swap-based. The
shiftable load crossover creates offspring by swapping the start-
ing minute of the two parents. The TCL crossover swaps all the
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temperature values of both parents, while preserving each corre-
sponding location in the genotype. Similarly, the SSS and the EV
crossovers swap all the states of both parents, while preserving
each corresponding location in the genotype. The individual-wise
baseline crossover can now be simply defined as the combination
of these four load-wise crossovers. In terms of load-wise mutations,
the shiftable load mutation is essentially a reinitialization, as it
randomly selects a new starting minute for the operation while en-
suring that the operation cycle is fully completed by the end of the
planning period. The TCL mutation randomly selects a region, and
the temperature in this region is mutated by a randomly selected
amount. This amount is selected with uniform probability from the
range [-deviation bound, deviation bound]. The deviation bound
is a TCL specific parameter, as different TCLs can use different
deviation bounds. In the baseline algorithm the values used for
each deviation bound are the following: fridge and AC 2 ◦C, EWH
5 ◦C. Similarly to the TCL mutation, the SSS mutation randomly
selects a region, and all the states in this region are changed to a
randomly selected state of any of the 4 possible states. As in the
shiftable load mutation, the EV mutation is essentially a reinitial-
ization, as it randomly selects a new continuous region where the
charging is going to occur. The individual-wise baseline mutation
is now defined as the combination of the four load-wise mutations
described.

3.2 Greedy Mutations
The idea behind the Greedy Mutation (GM) operator is to select
particular characteristics of a solution based on the direct cost or
comfort improvement. Hence the name of this operator, as it greed-
ily targets some region of interest, as opposed to performing a
random non-directed change. A greediness parameter is also intro-
duced to provide greater flexibility. In this context, greediness refers
to the selective pressure placed towards the selection of a given
solution characteristic based on the direct improvement. Three load-
wise greedy operators are proposed: two are cost-greedy, and the
remaining is comfort-greedy. The first cost-greedy operator works
over shiftable loads. Here, the goal is to select the region where the
corresponding shiftable load is going to operate by greedily consid-
ering regions with lower total price. The greediness parameter is
defined as a percentage of the total number of admissible regions
on which a given shiftable load can operate. This total number of
admissible regions depends on the planning period size and the
operation cycle duration of the shiftable load considered. In the
residential scenario being studied, the total number of admissible
regions for each shiftable load is the following: dishwasher 2084,
laundry machine 2069, and tumble dryer 2121. A tournament se-
lection is performed to select the region on which the load will
be assigned. Regions that enter the tournament are selected ran-
domly while ensuring admissibility. When two regions compete in
a tournament round, the region with the lower total price wins. The
tournament size is defined by the greediness parameter. Naturally,
the bigger the tournament the bigger the probability that a better
region is selected. A similar functioning is defined for the remaining
load-wise greedy operators. The second cost-greedy operator works
in a similar fashion, but in this case for the selection of a single con-
tinuous charging region for the EV. The proposed comfort-greedy

load-wise operator is also defined to work over shiftable loads. The
reasoning is similar to the SL cost-greedy operator, with the excep-
tion that instead of looking at the total price of a given region, the
operator selects based on the total time slot penalties accumulated.
With these three load-wise greedy operators, the individual-wise
GM operator can be defined as being composed of the following
load-wise operators: SL cost and comfort greedy mutations, TCL
baseline mutation, SSS baseline mutation, and EV cost-greedy mu-
tation. Given that two operators exist for the shiftable loads, both
are selected with 50% probability of being used. This alternation of
operators over shiftable loads may also provide more diversity to
the evolutionary process.

3.3 Geometric Crossovers
Another set of operators studied is based on the notion of geometric
crossover. A geometric crossover [7] is a type of crossover where,
by construction, all offspring are created in the region (or segment)
between their parents. Assuming that the parents carry helpful
genetic material, then probably the region between themmight also
be interesting to explore. The operation of a geometric crossover
can be seen as an approximation from one parent to the other. The
value that defines the approximation is usually generated randomly.
Let this value be known as the perturbation (p) applied, and ranging
from 0 to 1. An abstract geometric crossover operating over a single
gene can be defined as producing an offspring,O , from the parents,
P1 and P2, as follows:

O = P1 · p + P2 · (1 − p) (1)

Following a similar reasoning, a shiftable load geometric crossover
can be defined. Let x j (I ) be the starting minute of shiftable load
j in a given individual I . The corresponding geometric crossover
follows as:

x j (O ) = x j (P1) · p + x j (P2) · (1 − p) (2)

Note that, by construction, the offspring produced by this geo-
metric crossover always operates in an admissible region, in the
sense that the SL is guaranteed to be able to finish its operation
cycle by the end of the planning period. This idea could also be
extended to implement geometric crossovers over TCLs and the
SSS. Here, the most important difference is that these loads are
represented by multiple genes, i.e., one value for each minute of
the planning period. This creates the possibility of defining two
different geometric crossovers. The first one selects a different per-
turbation for each minute, while the second one uses the same
perturbation for all minutes. The first one is simply named geo-
metric, and the second one is name Fixed Perturbation geometric
(FP geometric). Let St (I ) be the state of the SSS at minute t in a
given individual I . The corresponding SSS FP geometric crossover
follows as:

St (O ) = St (P1) · p + St (P2) · (1 − p) (3)

While the SSS geometric crossover is defined by extending p to
represent a different value per minute:

St (O ) = St (P1) · pt + St (P2) · (1 − pt ) (4)
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A similar reasoning is followed to create a geometric and a FP
geometric crossover for the TCLs. Naturally, in the case of the TCLs
the operations are performed over the target temperature vector.
With these five load-wise geometric operators, two individual-wise
geometric operators can be defined. The first one is simply named
Geometric and is composed of the following load-wise operators:
geometric SL crossover, geometric TCL crossover, geometric SSS
crossover, and EV baseline crossover. The second one is named FP
geometric and is composed of the following load-wise operators:
geometric SL crossover, FP geometric TCL crossover, FP geometric
SSS crossover, and EV baseline crossover.

4 EXPERIMENTAL STUDY
4.1 Parameters and Methodology
Four main variants are experimentally assessed: baseline, Fixed
Perturbation geometric (FP geometric), Geometric, and Greedy Mu-
tation (GM). The baseline variant is based on the implementation of
Soares et al. [9] as described in 3.1. The FP geometric variant uses
the FP geometric crossover defined in 3.3, as well as the baseline mu-
tation. The Geometric variant uses the Geometric crossover defined
in 3.3, and also uses the baseline mutation as its mutation operator.
The GM variant uses the greedy mutation defined in 3.2, and the
baseline crossover. Different levels of greediness are assessed in the
GM variant: 1%, 5%, 15%, 25%, 50%, and 75%. Themain parameter val-
ues are the same as used by Soares et al. [9]. Each variant performs
30 independent runs. All variants use the same initial population
for each equivalent run in order to exclude the possible effect that
different populations might have in the outcomes. Experiments are
conducted with populations of 50 individuals, being able to evolve
for 300 generations. Parent selection is performed with a binary
tournament. The individual-wise operators are always applied. The
control over the usage of the variation operators is performed at
the load-wise level. The load-wise crossover probabilities are the
following: SLs 0.5, TCLs 0.5, SSS 0.3, and EV 0.3. The load-wise
mutation probabilities are the following: SLs 0.2, TCLs 0.6, SSS 0.3,
and EV 0.2.

Claims of statistical significance are based on Mann-Whitney U
tests, using a Bonferroni correction, and considering a significance
level of α = 0.05. A non-parametric test is used because the data
are not guaranteed to follow a normal distribution. To compare the
different variants, the hypervolume indicator [12] is also considered.
The reference point used for the computation of the hypervolume
has the following coordinates: 10 for the cost, and 2000 for the
dissatisfaction. These values were empirically confirmed to ensure
that no solution with higher coordinates was found during the
evolution. Preliminary results confirmed that different variations
on the reference point coordinates do not influence the relative
comparison of the variants assessed.

4.2 Results
Figure 1 shows the median hypervolume evolution over the 30
runs of the considered variants under both initialization scenar-
ios. The first important difference to highlight is that the alter-
native SSS initialization proposed achieves, with statistical signif-
icance, higher hypervolumes than the baseline initialization (p-
value: 2.872 × 10−11). Considering the evolution of the baseline

variant under the different initializations, this statistically signifi-
cant improvement is maintained after conducting 20 generations
(p-value: 1.438 × 10−6). These quick improvements are crucial in a
real-world scenario, where a system using these optimizers should
ideally reach relatively good solutions as fast as possible when
some update is necessary, e.g., if the user updates his comfort pref-
erences. The proposed alternative SSS initialization contributes to
this faster convergence to better solutions. At around generation
100 the median values start to become similar. By the end of the
evolution, no statistically significant difference is found in terms of
the hypervolumes reached.

Focusing on the results under the baseline initialization, GM
variants are also able to provide better solutions than the baseline
variant in a few generations. Regardless of the greediness used, all
GM variants achieve, with statistical significance, higher hypervol-
umes at generation 20. The resulting p-values are: 1.100 × 10−4
for GM 1%, 2.921 × 10−4 for GM 5%, 9.273 × 10−4 for GM 15%,
1.286×10−4 for GM 25%, 1.800×10−3 for GM 50%, and 5.434×10−5
for GM 75%. Interestingly, this greedy mutation seems robust with
respect to the greediness parameter, at least in terms of the me-
dian hypervolume evolution. By the end of the evolution, the best
GM variant (GM 50%) is also able to achieve significantly higher
hypervolumes (p-value: 3.465 × 10−4). This means that under an
appropriate parametrization, the GM variant is also able to pro-
vide long-term improvements. Despite the other parametrizations
also achieving higher medians than the baseline variant, this is not
sufficient to result in statistical significance.

The baseline variant is able to outperform, with statistical signif-
icance, the Geometric variant by the end of the evolution (p-value:
3.660 × 10−7). On the other hand, despite the gap in the final hyper-
volumes medians, the differences are not statistically significant in
the comparison between the baseline variant and the FP geometric
variant.

Table 1 presents the best, worst, median, average, and standard
deviation (SD) values of each objective for all the variants under the
baseline initialization at the end of the evolution. All GM variants
are able to achieve lower best costs and dissatisfactions than the
baseline. These variants also achieve better median and average
costs than the baseline. The FP geometric and Geometric variants
also achieve lower best dissatisfactions than the baseline. What
might explain the lack of competitiveness of these variants is the
lower exploration of solutions that result in considerably higher dis-
satisfactions. This can be seen from the significantly lower median
and average dissatisfactions that these variants achieve in com-
parison with the remaining variants. In the scenario considered,
maximizing the hypervolume entails exploring solutions that result
in higher dissatisfactions but lower costs. This is something that the
nature of the geometric crossovers do not allow them to achieve,
as, by definition, the temperature values selected are always within
the range of the temperatures of the parents. Achieving high dis-
satisfactions can only be achieved by going beyond the defined
maximum and minimum reference temperatures.

Figure 2 shows the Pareto front with the overall highest hyper-
volume of all the runs of all the variants. This Pareto front was
evolved by variant GM 5%, and it achieves a hypervolume of ap-
proximately 14489. This front is similar to other fronts found in
other runs and other variants. The shape of the front is similar to
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Figure 1: Median hypervolume evolution under the baseline initialization (left), and the alternative SSS initialization (right)

Table 1: Summary of the values achieved in both objectives for each variant under the baseline initialization

Variant Cost (e) Dissatisfaction
Best Worst Median Average SD Best Worst Median Average SD

Baseline 2.93 5.76 3.57 3.68 0.51 0.457 1313.982 15.316 132.720 254.702
FP geometric 2.97 5.72 3.69 3.78 0.48 0.337 1178.151 10.584 81.472 178.927
Geometric 3.22 5.91 3.99 4.09 0.50 0.360 1127.872 8.231 47.118 125.711
GM 1% 2.89 5.90 3.46 3.59 0.49 0.237 1227.600 17.160 134.181 248.366
GM 5% 2.70 5.70 3.49 3.62 0.52 0.203 1368.942 16.025 138.100 265.160
GM 15% 2.76 5.92 3.41 3.58 0.54 0.268 1365.127 19.228 147.406 269.315
GM 25% 2.76 5.51 3.46 3.60 0.51 0.382 1370.464 15.990 138.106 259.581
GM 50% 2.79 5.80 3.38 3.54 0.51 0.305 1416.478 23.313 164.678 283.367
GM 75% 2.90 5.26 3.48 3.60 0.49 0.274 1288.593 16.908 150.005 269.505
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Figure 2: Pareto front with the overall highest hypervolume
achieved (approximately 14489) evolved by variant GM 5%

what is commonly found in similar problems. Perhaps the most
noticeable feature is the considerable dissatisfaction gap between
the two solutions with lower cost and higher dissatisfaction and
the remaining solutions. This gap can be explained by the exponen-
tially increasing temperature penalization described in section 2.
Solutions might reduce cost but at the expense of a considerable
increase in the resulting dissatisfaction.

4.3 Analysis
In the context of the scenario under study, an important analy-
sis aspect is the resulting physical characteristics found in the

solutions. One way of analyzing these characteristics is through
a power profile plot. A power profile plot visually identifies the
power used by each load in a given period. In the power profile plots
presented in this section, besides the eight manageable loads, the
following information is also presented: the non-manageable base
load, the contracted power, the amount of self-consumption, the
power sold to the grid, and the price for each minute. The amount
of self-consumption and the power sold to the grid are presented
in negative values.

Figure 3 shows the power profiles of the solutions with the over-
all best cost and the overall best dissatisfaction found across all runs
and all variants. The solution with the overall best cost is found by
variant GM 5%. This solution achieves a cost of approximately 2.70,
while resulting in a dissatisfaction of approximately 771.975. The
solution with the overall best dissatisfaction is found by variant GM
50% under the alternative SSS initialization. This solution achieves
a dissatisfaction of approximately 0.197, while resulting in a cost of
approximately 4.65. Figure 4 presents some of the crucial data to
complement this analysis: the time slot penalties of the shiftable
loads and the hot water consumption.

With respect to the best cost solution, it is clear that this solution
shifts consumption away from higher price regions. In particular
where it concerns the shiftable loads, most of these resource alloca-
tions are clearly done at the expense of the resulting dissatisfaction.
The only shiftable load that does not incur in a time slot penaliza-
tion is the dishwasher. On the other hand, the laundry machine and



An Improved Multi-Objective Genetic Algorithm based on Greedy Mutations GECCO ’18, July 15–19, 2018, Kyoto, Japan

tumble dryer do incur in considerable time slot penalizations. The
high dissatisfaction achieved (approximately 771.975) also allows
to infer that the temperatures of the TCLs are considerably above
the preferred range. This can also be assessed from the sporadic
power usage from these loads. The fact that the scenario considered
does not treat temperatures as hard constraints allows a greater
flexibility of the algorithm to substantially reduce the usage of the
TCLs. These hard temperature constraints should be considered in
a future scenario. With respect to the EV, this solution allocates the
charging to a lower price region (between minutes 1441 and 1921).
Note that since the charging operation is being considered as a
single continuous block and given that it takes 480 minutes to fully
charge the EV, it is not possibly to allocate the charging without
partially including a higher price region. In the case of this solution,
this partial higher price charging occurs between minutes 1862 and
1921. However, this is partially compensated by self-consumption
in the same region, which reduces the contribution of this region
to the overall cost. The other lower price region alternative for the
EV charging would be between minutes 200 and 680 (the EV is
only available starting from minute 200). However, this alternative
charging would partially include an even longer higher price region
(between minutes 422 and 680). Similarly to the EV, the SSS also
charges from the grid in the lower price regions. The energy stored
is then used to self-consume and sell to the grid, almost always, in
higher price regions. The only exception happens around minute
400 where the energy stored is sold to the grid in a lower buying and
selling price region. This means that this particular solution could
reduce the overall cost even more by, for instance, delaying this
selling operation a few minutes. This would result in an admissible
solution with the same dissatisfaction and an improved cost. Be-
sides the above-mentioned case where the energy stored was used
to compensate the power used by the EV charging, a similar case
occurs between minutes 1200 and 1400 where the energy stored is
used to counteract some peaks of the non-manageable base load.

Regarding the best dissatisfaction solution, perhaps the most no-
ticeable difference is the behavior of the TCLs. Their more regular
power usage is needed to unsure the desired temperature range. In
terms of shiftable loads, the laundry machine and the tumble dryer
are allocated to different regions than in the best cost solution. The
allocation of the tumble dryer results in no time slot penalization.
This particular allocation is only possible given the energy being
self-consumed from the battery. If this was not the case, the com-
bination of the power required by the EV, the AC, and the tumble
dryer between minutes 1700 and 1800 would result in a violation
of the contracted power. This long self-consumption in this region
is only possible given the long battery charging period that occurs
in the beginning of the planning period (up until minute 800). This
shows that although the SSS does not directly influence comfort, it
can still be indirectly crucial in allowing certain comfort scenarios
that would not be possible without the provided self-consumption
capability. As in the best cost solution, the EV is mostly in a lower
price region. This can be possibly related with the usage of the
greedy mutation operator in the variant that achieves this solution.

Figure 5 shows the temperatures of the TCLs along the planning
period of two solutions: an intermediate dissatisfaction solution,
and the overall best dissatisfaction solution analyzed above. The
intermediate dissatisfaction solution is selected from the GM 5%

200 400 600 800 1000 1200 1400 1600 1800 2000

Time (minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dishwasher

200 400 600 800 1000 1200 1400 1600 1800 2000

Time (minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Laundry machine

200 400 600 800 1000 1200 1400 1600 1800 2000

Time (minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tumble dryer

200 400 600 800 1000 1200 1400 1600 1800 2000

Time (minutes)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Hot water consumption

Figure 4: Time slot penalties of the shiftable loads: dish-
washer (top left), laundry machine (top right), and tumble
dryer (bottom left); and hot water consumption (bottom
right)

variant. This solution achieves a dissatisfaction of approximately
3.444, while resulting in a cost of approximately 3.85. Figure 5 also
includes, for each TCL, the maximum and minimum reference tem-
peratures from which the temperature penalties are computed. In
the fridge and the AC temperature variation, both solutions are
mostly able to maintain the temperatures on the preferred range.
Naturally, the intermediate dissatisfaction solution is not as precise.
With respect to the EWH, both solutions have periods where the
temperature falls below the minimum reference temperature, e.g.,
around minute 1900. The sudden temperature drops happen when
a considerable amount of hot water is consumed. In these cases,
in order to avoid falling below the minimum reference tempera-
ture, the water in the EWH must be set to a higher temperature to
counteract the subsequent hot water consumption. This strategy
may avoid a temperature penalization. However, the risk of going
above the maximum reference temperature also exists. This is pre-
cisely what happens in the intermediate dissatisfaction solution
before minute 1200. Around this time a considerable hot water con-
sumption occurs. This consumption significantly reduces the EWH
temperature. To counteract this, this solution decides to increase
the EWH temperature around minute 1000. This increase is able to
avoid the temperature from falling below the minimum reference
temperature after the hot water consumption, but in turn it entails
going above the maximum reference temperature before the same
hot water consumption event.

5 CONCLUSIONS
This paper studied a residential scenario where a set of energy
resources must be automatically managed to reduce the overall en-
ergy cost while considering user-defined comfort preferences. A set
of novel operators were proposed and experimentally assessed. The
resulting algorithmic variants were compared against a recently
proposed genetic algorithm customized to address this same sce-
nario. Results showed that the best-performing novel variants were
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Figure 3: Power profile of the solution with the overall best cost (2.70e, dissatisfaction of 771.975) in the left, and the solution
with the overall best dissatisfaction (0.197, cost of 4.65e) in the right
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Figure 5: Temperatures of the TCLs of a solution with an intermediate dissatisfaction (3.444, cost of 3.85e) in the left, and the
solution with the overall best dissatisfaction (0.197, cost of 4.65e) in the right

able to achieve both short-term and long-term improvements. The
short-term improvements are particularly important in real-time
scenarios where it is expected that an energy management system
should be able to quickly provide interesting solutions when some
update is issued.
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