


International Journal of Big Data (ISSN 2326-442X)  Vol. 2, No. 1, 2015  1 

COMPARING	NOSQL	DATABASES	WITH	A	RELATIONAL
DATABASE:	PERFORMANCE	AND	SPACE	

João	Ricardo	Lourenço,	Bruno	Cabral,	Jorge	Bernardino,	Marco	Vieira	
CISUC,	ISEC	

joaoml@student.dei.uc.pt,	bcabral@dei.uc.pt,	jorge@isec.pt,	mvieira@dei.uc.pt	

Abstract	
The	 continuous	 information	 growth	 in	 current	 organizations	 has	 created	 a	 need	 for	 adaptation	 and	
innovation	 in	 the	 field	 of	 data	 storage.	 Alternative	 technologies	 such	 as	NoSQL	 have	 been	 heralded	 as	 the	
solution	 to	 the	 ever-growing	 data	 requirements	 of	 the	 corporate	 world,	 but	 these	 claims	 have	 not	 been	
backed	by	many	real	world	studies.	Current	benchmarks	evaluate	database	performance	by	executing	specific	
queries	 over	 mostly	 synthetic	 data.	 These	 artificial	 scenarios,	 then,	 prevent	 us	 from	 easily	 drawing	
conclusions	for	the	real	world	and	appropriately	characterize	the	performance	of	databases	in	a	real	system.	
To	counter	this,	we	used	a	real	world	enterprise	system	with	real	corporate	data	to	evaluate	the	performance	
and	space	characteristics	of	popular	NoSQL	databases	and	compare	 them	 to	SQL	counterparts.	We	present	
one	 of	 the	 first	 write-heavy	 evaluations	 using	 enterprise	 software	 and	 big	 data.	 We	 tested	 Cassandra,	
MongoDB,	 Couchbase	 Server	 and	MS	 SQL	 Server,	 comparing	 their	 performance	 and	 total	 used	 space	while	
handling	demanding	and	large	write	requests	from	a	real	company	with	an	electrical	measurement	enterprise	
system.	
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1. INTRODUCTION

Big Data topic has recently taken more 
prominence in the industry, with very high amounts 
of data in need of constant, quick, and always-
available processing (Chen et al., 2014). Traditional 
relational systems are known for their ACID 
(Atomicity, Consistency, Isolation, Durability) 
properties and consistency guarantees, but this design 
choice may often limit their availability and 
scalability (Leavitt, 2014). To counter this scenario, 
NoSQL systems have been developed. They sacrifice 
some of the ACID properties, namely consistency, 
favoring availability (Moniruzzaman et al., 2013), 
resulting in BASE (Basically Available Soft-state 
services with Eventual-consistency) systems. Indeed, 
these systems are Basically Available, have a Soft 
state during which consistency is not yet assured, but 
then are Eventually consistent (Brewer, 2000). 
Trading off consistency for availability has resulted 
in many different NoSQL systems which have 
different architectures and different use-case 

scenarios (Hecht et al., 2011). They have been 
evaluated multiple times in recent years, but there 
seems to be a lack of real-world studies with 
enterprise data or systems (Lourenço et al., 2015, 
August). Rather, the NoSQL literature is mostly 
based on artificial benchmarks such as the Yahoo! 
Cloud Serving Benchmark (YCSB) (Cooper et al., 
2010). 

We were given a real enterprise system with a 
write-heavy workload and big datasets, and asked to 
evaluate the feasibility of replacing part of its storage 
backend with a NoSQL based one. This allowed us to 
test the performance of NoSQL systems in the real 
world, as opposed to the aforementioned artificial 
benchmarks, with respect to throughput and storage 
requirements. To further our analysis, we also tested 
space usage for each of these databases, comparing 
them and drawing conclusions regarding the more 
space-effective solution. As we will show in the rest 
of this paper, although the workloads of the 
enterprise system are not representative of big data 
itself, the limits of the system were being reached, 
with bottlenecks in the database operation becoming 
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clear. To solve this problem, techniques for handling 
big data were experimented, in particular NoSQL 
technology. It is the data model associated with the 
system that justifies our experiments and research 
into big data technologies.  

In this paper we present the problem, our findings 
and the conclusions we have drawn from our 
experiments. Several popular NoSQL systems were 
tested (MongoDB, Cassandra, Couchbase Server) and 
compared with the relational model (MS SQL Server) 
to assert if they presented any performance gains in a 
real enterprise scenario. MS SQL Server is 
representative of the relational world, and our results 
intend to be broader, comparing NoSQL database 
performance and space usage with relational 
equivalents. To the best of our knowledge, our work 
is one the first to shed light on a real world write-
heavy enterprise scenario, not relying on an artificial 
system and data. Our results may serve as a bridge to 
fill in the literature gap between theory and practice, 
artificial and real, by depicting the impact of NoSQL 
on a real world enterprise application that handles 
large amounts of data. Henceforth, our main 
contribution consists of showing how NoSQL 
systems – a typical big data solution – behave in a 
write-heavy enterprise scenario, which made use of 
relational technology, with regards to performance 
and space. We once again note that this research was 
aimed at asserting how big data related technologies 
behaved in a real-world scenario, and to which 
degree they could help overcome bottlenecks in 
relational technology in such scenarios. 

The remaining of this paper is structured as 
follows. Section 2 presents a state of the art on 
NoSQL systems which supports our choice of tested 
databases, together with related work. Section 3 
presents Cassandra, MongoDB and Couchbase 
Server, highlighting their features and characteristics. 
Section 4 introduces the enterprise system we worked 
with, the problems at hand, the current architecture 
and our proposed architecture. Section 5 explains the 
experiments we ran and their setup. Section 6 
presents our results and their discussion. Finally, in 
Section 7 we draw the conclusions of our work and 
future work opportunities, also focusing on the 
lessons learned from our experiments and suggesting 
a set of defining characteristics that NoSQL systems 
need to better support our enterprise scenario. 

2. STATE	OF	THE	ART

With a large amount of available NoSQL 
solutions, it is important to be able to distinguish the 
fittest database solution for a particular system with 
respect to its distinctive characteristics. All the 
continuous development and evolution of non-
relational technology, over the past years, has 
contributed to the constant interest in evaluating 
NoSQL databases. Moreover, until now, all the 
available studies were highly focused on the 
performance testing using standard benchmarks 
(Zhong et al., 2014), (Lourenço et al., 2015a). 
Although those evaluations provide a basic 
knowledge of the database behavior, there is no 
performance guarantee while working in a real 
enterprise environment, where data and interaction 
are much more random, unpredictable and hard to 
model (Zhong et al., 2014), (Abramova et al., 2013). 

In recent NoSQL evaluations, the authors focus 
on different possibilities of adapting NoSQL 
solutions and using those databases along with other 
domain-specific technologies, such as clinical 
decision support systems (Chen et al., 2015), 
(Mazurek, 2014). In these studies, the authors 
evaluated different possibilities of integrating NoSQL 
databases in existing systems where flexibility or big 
data handling capabilities were needed. They 
concluded that, according to each system 
characteristic, NoSQL, in fact, could be a good 
possibility for data management. In particular, its 
flexibility and scalability were seen as fitting for the 
needs of each of these works. One of the drawbacks 
of NoSQL databases is the learning curve (Lourenço 
et al., 2015, February). Another recent trend has been 
the development of different approaches in terms of 
data queries. While most developers and DBAs are 
comfortable and accustomed with SQL, the querying 
and management of non-relational databases requires 
more time to learn (Stonebraker, 2010). More than 
that, NoSQL technology is known for the non-
existence of a querying standard, with different 
databases having different querying languages 
(Stonebraker, 2010), (Stonebraker, 2011). 
ThereforeBach et al., 2014) and (Sellami et al., 2014) 
describe querying in NoSQL databases and a 
possibility of a modeling system that is capable of 
executing queries regardless of the database. Finally, 
other authors propose efficient data mining and Big 
Data processing (Lomotey et al., 2014). Their 
frameworks are capable of providing better data 
querying and analysis. In this paper we evaluate the 
writing performance of NoSQL databases in a real 
working system. This evaluation will generate new 
insights on how NoSQL databases perform on 
systems with such a specific set of requirements. 
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Further reviewing the literature, one can gather 
that although there have been many evaluations, with 
a specific focus on synthetic data, there are few 
evaluations focused on write-heavy datasets (we note, 
however, that there are some read-heavy evaluations, 
such as (Dory et al., 2011) and (Silva et al., 2014)). 
Regarding write-heavy workloads, the authors of 
(Datastax, online) focus on many scenarios, one of 
them being “mostly writes”, but use the artificial 
YCSB benchmark. In much the same way, in 
(Tudorica et al., 2011), a write intensive analysis is 
performed for various NoSQL Databases, but, again, 
the YCSB framework is used. InFloratou et al., 2012), 
an in-depth analysis of various factors with varying 
datasets, one of them write-heavy, is made. However, 
the authors also use artificial frameworks for their 
tests. When YCSB was first introduced, the authors 
published results with the benchmark (Cooper et al., 
2010), analysing read, write and other characteristics. 
The results among these papers, for the same 
databases, tend to vary – a typical example of how 
NoSQL is constantly evolving. Thus, while there is 
indeed data on the write-heavy performance of 
NoSQL, it is mostly artificial, disregarding the 
enterprise applicability and its context. In that sense, 
similarly to our work, Zhong et al. (Zhong et al., 
2014) present three enterprise scenarios where 
NoSQL is used. However, unlike our work, their 
scenarios do not represent mature enterprise systems, 
and are very much far apart from a write-heavy 
scenario. Their work, and future developments, might 
provide valuable contributions to the enterprise 
evaluation of NoSQL, but it neglects write-heavy 
scenarios. 

3. OVERVIEW	OF	EVALUATED
DATABASES

After evaluating several databases, a final group 
of three different databases was selected for testing. 
These were the only that met all our criteria, running 
in the Windows operating system, allowing for 
transparent sharding and having .NET bindings and 
drivers. In this section, we present an overview of 
Cassandra, MongoDB and Couchbase Server, 
highlighting their features and characteristics. 

3.1 CASSANDRA	

Cassandra is an open-source shared-nothing 
NoSQL column-store database developed and used in 
Facebook (Gudivada et al., 2014), (Haughian, 2014), 
(Kuznetsov et al., 2014). It is based on the ideas 
behind Google BigTable (Chang et al., 2008) and 
Amazon Dynamo (Decandia et al., 2007). 

Cassandra is similar to BigTable in what concerns 
the data model. The minimal unit of storage is a 
column, with rows consisting of columns or super 
columns (nested columns). Columns themselves 
consist of the name, value and timestamp, all of 
which are provided by the client. Since it is column-
based, rows need not have the same number of 
columns (Kuznetsov et al., 2014). 

Cassandra supports a SQL-like language called 
CQL, together with other protocols (Kuznetsov et al., 
2014). Indexes and secondary indexes are supported, 
and atomicity is guaranteed at the level of one table 
row. Persistence is ensured by logging. Consistency 
is highly tunable according to the desired operation – 
the application developer can specify the desired 
level of consistency, trading off latency and 
consistency. Conflicts are resolved based on 
timestamps (the newest record is kept). The database 
operates in master-master mode (Gudivada et al., 
2014), where no node is different from another, and 
combines disk-persistence with in-memory caching 
of results, resulting in high write throughput 
operations (Haughian, 2014), (Gudivada et al., 2014). 
The master-master architecture makes it easy for 
horizontal scalability to happen (Haughian, 2014). 
There are several different partitioning techniques 
and replication can be automatically managed by the 
database (Haughian, 2014).  

3.2 MONGODB	

MongoDB is an open-source document-oriented 
database written in C++ and developed by the 10gen 
company. It uses JSON (data is stored and transferred 
in a binary, more compact form named BSON), 
allowing for a schemaless data model where the only 
requirement is that an id is always present 
(Kuznetsov et al., 2014), (Haughian, 2014). 

MongoDB's horizontal scalability is mainly 
provided through the use of automatic sharding 
(Haughian, 2014). Replication is also supported using 
locks and the asynchronous master-slave model, 
meaning that writes are only processed by the master 
node and reads can be made from both the master 
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node and from one of the slave nodes. Writes are 
propagated to the slave nodes by reading from the 
master's oplog (operation log) (Haughian, 2014). 
Database clients can choose the kind of consistency 
models they wish, by defining whether reads from 
secondary nodes are allowed and from how many 
nodes the confirmation must be obtained. 

Document manipulation is a strong focus of 
MongoDB, as the database provides different 
frameworks (e.g. MapReduce and Aggregation 
Framework) and ways of interacting with documents 
(Kuznetsov et al., 2014). These can be queried, sorted, 
projected, iterated with cursors, aggregated, among 
other operations. The changes to a document are 
guaranteed to be atomic. Indexing can be used on one 
or several fields (implemented using B-trees), with 
the possibility of using two-dimensional spatial 
indexes for geometry-based data (Kuznetsov et al., 
2014). There are many different programming 
interfaces supported by MongoDB, with most 
popular programming languages having native 
bindings. A REST interface is also supported 
(Kuznetsov et al., 2014). 

3.3 COUCHBASE	

Couchbase is a combination of Membase (a key-
value system with memcached compatibility) and 
CouchDB. It can be used in key-value fashion, but is 
considered a document store working with JSON 
documents (similarly to CouchDB) (Kuznetsov et al., 
2014). 

Documents, in Couchbase, have an intrinsic 
unique id and are stored in what are called data 
buckets. Like CouchDB, queries are built using 
MapReduce views in Javascript. The optimistic 
locking associated with an append-only B-tree is also 
implemented like in CouchDB. The default 
consistency level is eventual consistency (due to 
MapReduce views being constructed 
asynchronously). There is also the option of 
specifying that data should be indexed immediately 
(Kuznetsov et al., 2014). 

A major difference when comparing Couchbase 
with CouchDB regards sharding (Kuznetsov et al., 
2014). Whereas CouchDB does not natively support 
sharding (there are projects, such as CouchDB 
Lounge (Kuznetsov et al., 2014) which enable this), 
Couchbase comes with transparent sharding off-the-
shelf, with application transparency. Replication is 
also a major point of difference between the two 
databases, as couchbase supports intercluster and 

intracluster replication. The latter is performed within 
a cluster, guaranteeing immediate consistency. The 
former kind of replication ensures eventual 
consistency and is made asynchronously between 
geographically distributed clusters (conflict 
resolution is performed in the same way CouchDB 
does it). This database is mostly intended to run in-
memory, so as to hold the whole dataset in RAM 
(Cudré-Mauroux et al., 2013), (Kuznetsov et al., 
2014). 

4. A	REAL	ENTERPRISE	DISTRIBUTED
SYSTEM

The enterprise system we worked with deals with 
storing several measurements coming from electrical 
components, obtained at high sample rates. Data is 
made up of tuples containing mostly simple floating 
point values, a timestamp and some additional 
metadata. This system, as it is currently deployed, is 
hindered by a performance bottleneck during large 
batches of write-only operations, which are issued to 
a central database. 

By itself, the system uses a distributed 
architecture. The data are generated by specific 
equipment and stored in an accessible way – be it 
XML or a private database. Another set of 
independent processes eventually gather the data, do 
some very simple processing and then write said data 
to the central server. Since there are so many records 
being generated per minute in some of these systems 
(as many as 3 million values in every sampling 
timeslice), very high loads of data can be gathered at 
the same time and quickly sent to be written to the 
SQL server, resulting in large batches of write 
operations. These are the operations which cause the 
bottleneck and performance hit in the system. 

The experiments consisted, then, of modifying the 
database backend of the system to reduce the 
bottleneck, as well as to reduce disk space usage, 
making use of NoSQL systems. A more detailed view 
of the currently implemented solution and our 
proposed changes is presented in the next sections. 

4.1 ORIGINAL	SYSTEM	–	RELATIONAL	

The original system uses a centralized MS SQL 
Server database where all the gathered data is stored. 
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Furthermore, additional data and metadata needed for 
other application functionality is stored in other 
tables in the same database. Data is gathered from all 
the necessary sources and is written, in parallel, using 
batch operations, resulting in hundreds of thousand 
write operations per second. The data itself is very 
lightly preprocessed from the original source and, 
indeed, is merely dumped into a table in this database. 
While considering a relational system for a large 
number of inserts it is important to disable indexing 
and some integrity constraints, something which we 
took into account when we were performing the 
experiment. 

This approach favours the use of well established 
relational technology with all ACID properties. 
However, as we have shown, it is prone to 
bottlenecks and performance problems, suggesting 
that an alternative might provide an appropriate 
trade-off between ACID compliance and 
performance. In this sense, we proposed a system 
using NoSQL that is now detailed. 

4.2 PROPOSED	SYSTEM	–	NOSQL	

We sought to minimize the changes to the current 
system, and only touch areas that really had to be 
changed. Furthermore, since the system's bottleneck 
was in a specific table with many write operations, 
and not in the rest of the system itself, we decided 
that the original SQL database should be kept in 
order to store metadata and other application control 
data. However, we would take the tables where most 
of the data was being written to and place them in a 
NoSQL system. Thus, the data causing the 
bottlenecks, and the code that handled it, had to be 
moved and adapted to NoSQL. Given that we were 
looking for ideal picks for a write-heavy scenario, 
and that NoSQL's strength lies in large part in its high 
horizontal scalability (Pokorny, 2009), it was also 
decided that we would run a cluster with 
sharded/partitioned NoSQL databases in order to 
maximize write throughput. One of the basic NoSQL 
considerations is the possibility to achieve both 
performance and throughput by parallelizing the 
execution of requests. Therefore, we exploited this in 
the setup and, ensuring the network could handle all 
the data, and that there were no limitations from the 
source, the system should be able to handle the 
demand and overall performance would increase. 

The original system was already finished and in 
deployment, which meant that our database choice 

was conditioned by the system architecture. In this 
sense, we were limited to databases which would run 
in a Windows environment and that had .NET 
bindings. We would also not consider any non-
qualified and non-robust code since it could 
compromise the entire evaluation. Therefore, we 
chose some of the most popular databases with high 
support and documentation. To this end, we tested 
Cassandra, MongoDB and Couchbase Server. One of 
the drawbacks in satisfying this database criterion 
was that we were not able to choose any Key-Value 
Store database – the final chosen solutions were two 
document stores (MongoDB, Couchbase) and one 
wide column store (Cassandra). These three choices 
are among the most popular NoSQL solutions 
(Datastax, online), (Strauch et al., 2011) and make up 
for what we believe is a reasonable sample of the best 
NoSQL technology. 

5. EXPERIMENTAL	PROCEDURE

The goal of the experiment was that of measuring 
the performance of the databases under a real write-
heavy scenario. This was the most important quality 
attribute of the system, so throughput was measured 
to assess it. 

5.1 EXPERIMENTAL	SETUP	

A homogeneous cluster using four machines with 
similar hardware was chosen to host the databases. 
This choice was cost-effective, adequate to the 
budget that we were allowed, and also mimicked the 
real-world scenarios that the system is used in. Two 
additional machines were used to perform the write-
heavy queries, simulating real data sources. Figure 1 
depicts the experimental setup, and Table 1 
summarizes the machine characteristics. 
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Figure 1. Experimental Setup 

CPU + OS RAM HDD # 
Nodes 

Intel Core i3 
3.10GHz 
Windows 
Server 
2012 
64 bit 

4GB WD5000AAKX 
7200 RPM 16MB 

4 

Intel Core i7 
2.9GHz 
Windows 
Server 2008 
64 

8GB N/A 1 

Intel core 
2Duo 
2.53GHz 
Windows 
Server 2008 
32 bit 

4GB ST9320325AS 
5400 RPM 8MB 

1 

Table 1. Summary of the Machine Specifications 

In order to ensure that there was no bottleneck in 
the experimental setup, several tests were made. In 
particular, we tested network throughput and stability 
by utilizing all the available bandwidth with traffic 
generated by an application between the machines, 
analyzing the throughput and ensuring it did not have 
spikes. The data sources were also tested for potential 

bottlenecks by running read-intensive workloads in 
the source machines and comparing the read 
throughput to the write throughput of the cluster. 
Upon comparison, read throughput was higher than 
write throughput, eliminating the possibility of a 
bottleneck. When measuring the write throughput 
with local batch inserts on the clusters and comparing 
it to network bandwidth, we confirmed that the latter 
was higher than the former, eliminating possible 
network bottlenecks. Finally, to make sure that any 
bottleneck would only be in the database itself, we 
ran increasingly write-intensive workloads on the 
database until performance peaked, showing that an 
increase in workload had a corresponding increase in 
throughput, without exceeding network bandwidth or 
disk write throughput. 

Since the last two machines (responsible for 
providing the load to the first four machines) had 
different characteristics, the number of load 
generating processes they could run in parallel was 
also different. We ran initial tests in “ad-hoc” fashion 
to find the best number for each of these machines, 
culminating with the total of 8 sources, 5 in one and 3 
in another one. These tests involved varying the 
number of data sources in each machine and 
evaluating throughput performance. The total of 8 
sources, divided in groups of 5 and 3, made the 
system usable and didn't hinder its performance 
(using lower or higher values than eight would lead 
to system performance decrease for our initial tests). 
Lastly, it is of relevance noting that the machines in 
the cluster did not have a Solid State Drive (SSD) 
storage medium.	

5.2 EXPERIMENTAL	METHODOLOGY	

The experiments were performed by running the 
enterprise system in controlled fashion. This 
enterprise system, described in the previous section 
was setup to mimic real enterprise distributed 
systems. In each run of the experiment, the source 
machines had a number of source processes 
executing write operations on the cluster, as in the 
real-world scenario (in essence, this simulated the 
large batches of data being generated on the fly by 
electrical equipment). All of these sources inserted 
the same number of records concurrently, putting 
stress on the databases. Henceforth, the total amount 
of records being inserted per workload was the sum 
of all records inserted by these sources. When the 
insertions were finished, the total insertion time was 
then measured so that throughput could be calculated. 
In addition, the space used by the database was 
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measured, taking into account data and metadata. A 
record structure is presented in Figure 2. 

Figure 2. Record structure of the enterprise system 
we tested 

Upon measuring the total insertion time and 
space-related data, the system was stopped and the 
databases reset to their initial state, allowing for 
repetitions of the test or for another test with a 
different workload to be performed. 

During the adaptation of the code for the several 
NoSQL solutions, we tried to use database best 
practices, for instance using batch inserts wherever 
possible. However, we noticed that current NoSQL 
databases don't seem to have a wide support for large 
batch insert operations, something which needs to be 
improved if they are to ever be used with this kind of 
dataset. While the operations themselves are 
supported, performance gains are lower than 
expected, documentation was scarce and code 
maturity seemed low overall. Nevertheless, they did 
provide speedup to the operations. 

5.3 WORKLOADS	AND	DATABASE
CONFIGURATIONS

The testing procedure described in the previous 
section was used for a single run. In the experiment, 
multiple runs were executed to attain statistical 
significance. In particular, 10 tests were used and the 
final result is the average. This value was chosen as 
the best trade-off between the time to run all tests and 
the significance of the results – with 10 tests, the 
confidence interval for the throughput had an 
amplitude of roughly 5% of the total throughput, with 
some exceptions for higher throughput values, where 
the confidence interval amplitude peaked at 
approximately 17% (see Figure 3 where these results 
can be seen in the form of error bars). If a higher 
number of tests had been used, there would be little 
to gain in statistical significance, as the confidence 
interval amplitude was already quite low. In contrast, 
a lower number of tests would increase the amplitude 
and hinder the test significance. 

In spite of using 10 tests for averaging the final 
result, the effective number of tests run for each 
experiment was 13. The first three tests were 
discarded to simulate a real world environment and, 
thus, remove cache side-effects (resulting from a 
cold-boot), meaning that the warm-up time was given 
by the first three executions. 

Regarding the workloads, each of the thirteen 
tests was executed for 10.000 records per source (i.e., 
in total, 80.000 records). After that, this procedure 
was repeated for 20.000 records, 30.000, etc, until 
330.000 per source. This way the impact of varying 
database load on throughput was measured, as 
intended. We chose 10.000 records based on real-
world data and scenarios, as recommended by the 
system developers. The increment was also 10.000 
because it was concluded, from initial testing, that a 
lower value did not produce significant throughput 
change and was, thus, not of much importance to 
analyse. Furthermore, throughout our tests there 
seemed to be no need to adjust this uniform 
increment or focus on any particular domain of 
records per source, as the throughput showed no 
irregular behavior and, instead, seemed to be 
modeled by a linear relationship with the number of 
records. The 330.000 limit was a consequence of our 
setup limitations – it was the highest load we could 
cope with for most tested databases. 

NoSQL databases are known for their 
configurability and tuning (Gajendran, 2012). To 
maximize their performance and adapt them to this 
scenario, we adjusted their configuration settings. 

We used Cassandra version 2.0.9, adjusting all 
timeouts to 90 seconds, with the exception of the 
range timeout, whose value was unchanged. This 
value allowed all tests to finish successfully. Row 
caching was disabled to maximize write throughput. 
The concurrent reads and writes settings were 
adjusted as suggested by the documentation, using 
the 8 x number_of_cores rule of thumb. The 
memtable flush writer threads setting was set to 1, 
given that we had no SSDs and only had one data 
directory. The remaining settings were left at their 
default values for the results presented in this paper. 
However, additional tests were made by varying 
other parameters such as the RPC server type and 
other memtable settings. Since these changes 
produced no measurable difference in performance, 
their default values were used. 

MongoDB version 2.6 Standard was tested with 
the default options and the highest write concern 
settings. A setup with two config servers and one 
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query router was chosen because it provided the 
minimum amount of MongoDB instances that had to 
be executed, allowing focus to shift to the sharding 
itself. For sharding to take place, the hashing of the id 
was used, as suggested by the MongoDB guidelines. 

Couchbase Server was tested with version 3.0.1-
1444 and configured to minimize the use of 
compaction, in order to delay performance 
degradation when performing IO. The number of 
writer threads was also increased in comparison to 
the number of reader threads. However, these 
configuration settings had little effect in performance. 
Instead, to achieve a 3-fold performance increase, 
when compared to our initial testing, the batch 
insertion method was adapted by using multi-
threaded REST requests. The number of threads and 
records per thread was chosen to maximize 
performance, after testing several values to see which 
had the best performance. The resulting settings were 
25 threads of 1000 records each (per source). 

Regarding the relational engine, SQL Server 2014 
Standard edition was used. The server was used with 
full ACID guarantees, as is the case in real 
deployments, but with all indexing facilities turned 
off to maximize write throughput. This server was 
only executed on one node, as we shall discuss in the 
next section (Section 6). 

All databases were assigned 2GB of the available 
memory. This was the most memory that could be 
assigned without damaging normal system operation. 
Furthermore, since write-performance was the focus 
of the experiment, all indexing capabilities were 
disabled wherever possible. Finally, SQL Server's in-
memory functionality was not used, as it was not a 
part of the original system and wasn't seen a 
particularly useful, since both full ACID-compliance 
and high write performance were goals of the 
experiment. On the other hand, NoSQL systems 
which have such in-memory functionality as the basis 
of their operation (e.g. Cassandra) could not have this 
feature turned off (or turning it off would deeply 
impact performance). 

6. EXPERIMENTAL	RESULTS

We now present the results of the experiment, as 
well as our analysis. The limitations of the 
experiment are also presented and discussed. 

6.1 PERFORMANCE	ANALYSIS	

The results (see Figures 3 and 4) show that the 
relational/original solution provided a much higher 
throughput than the NoSQL solution with sharding. 
The throughput of MS SQL Server, whilst running on 
a single node, is up to five times that of the best 
NoSQL solution. Indeed, Cassandra performs the 
best out of the three tested NoSQL systems by a 
fairly large margin (see Figure 4). These results were 
predictable, since the other two tested databases are 
document stores, fine-tuned for read operations 
(Gajendran, 2012). Cassandra, on the other hand, is 
write-optimized (Cooper et al., 2010), (Gajendran, 
2012). Nevertheless, in spite of outperforming its 
NoSQL counterparts by a factor 4, it is itself 
outperformed by the original system running MS 
SQL server on a single node. Although one might be 
tempted to think that the tested workloads were not 
adequate for the NoSQL systems being tested, we 
note that MongoDB, for instance, was unable to 
handle the larger workloads, indicating that the 
choice of workload, for our experimental setup, was 
indeed adequate. 
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Figure 3. Throughput results for all tested databases. 
Error bars show standard deviation. There are 

missing values for MongoDB because it could not 
finish the test and handle higher workloads 
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Figure 4. Throughput only for NoSQL databases. 
Error bars show standard deviation. There are 

missing values for MongoDB because it could not 
finish the test and handle higher workloads. 

Cassandra's throughput is more irregular than that 
of the other NoSQL solutions, showing a decreasing 
trend with increasing workloads. While the other 
NoSQL databases also show this trend (although to a 
lesser extent than Cassandra), MS SQL Server does 
not seem to suffer as much from performance 
degradation with increasing workloads, although 
such degradation can still be seen. 

MongoDB, as mentioned, was unable to cope 
with the highest workloads, which can be seen in 
Figures 3 and 4. When a certain high workload was 
reached, it began displaying errors due to internal 
problems because of the large overload of data. This 
result, although somewhat surprising (in the sense 
that a database crash is not expected behavior), can 
be attributed to the exhaustion of all machine 
resources – MongoDB ran out of resources, whereas 
other databases did not. Of the three NoSQL 
databases, it showed the lowest performance, with a 
very low throughput when compared to SQL Server. 
Even taking into account that this database is 
document-based and, thus, read-oriented, this result 
was somewhat surprising. 

Couchbase has the most stable throughput among 
all the databases tested, although it is much lower 
than Cassandra and SQL Servers'. As we have 
already seen, this is expected due to the fact that it is 
a document-based database. However, contrary to 
MongoDB, it can cope with the high workloads. 

The “flat-line” results shown in Figures 3 and 4 
could be interpreted as some bottleneck in the 
experiment other than a database bottleneck. We 
dismiss this idea for two reasons: Firstly, because, as 
explained in Section 5, extensive tests were executed 
to assure there was no other possible bottleneck; 
secondly, because the results make sense if we take 
into account that our initial workload is already 
stressing the system – this was intended, because it 
reflects the real-world enterprise system, where lower 
workloads do not exist and would thus be 
meaningless to test. 

We conclude that a cluster with sharding enabled, 
made up of a small number of machines (in our case, 
4) running any of these popular NoSQL solutions
cannot outperform the existing SQL Server based
solution with ACID guarantees. It might be the case
that there is a high overhead due to internal protocol
communications and that disabling sharding would
actually improve performance, instead of doing the
reverse, but this is matter for future work.

6.2 SPACE	USED	ANALYSIS	

Regarding space usage (see Figures 5 and 6), the 
relational solution, again, proved better. Throughout 
our workloads, SQL Server required less space for 
the same amount of data. Nevertheless, Cassandra’s 
results were not too different from SQL Server’s. 
This NoSQL database occupies 1.5 times the space of 
SQL Server for storing the data.	

The document-based solutions have far higher 
disk requirements, as much as five times more than 
the relational solution. This can be explained by the 
document structure, where attribute names are 
repeated for each existent value, as well as by the 
internal architecture of the database which is not 
geared towards saving space. The sudden increases in 
MongoDB’s disk usage can be explained by its 
internal chunk-based architecture that pre-allocates 
space in large chunks. The space necessary per 
record was estimated.  
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Figure 5. Database used space per workload for 
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Figure 6 shows the space needed per record. 
Those values represent the amount of disk (in KB) 
that each record requires (including the attribute 
values and all indexes and metadata). Therefore, the 
presented values contain metadata, primary (key) 
indexes that are generated automatically, etc. The 
initial variation in this value reflects both the fact that 
some data structures are created only once per each 
database and, secondly, that we may have included 
some additional information in our measured data. If 
the latter is the reason for this variation, then the fact 
that for increasing workloads there is a convergence 
to a fixed value shows that additional information 
remained constant (or sufficiently small when 
compared to the increase in data coming from the 
different workloads). 
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Figure 6. Space per record for each workload for all 
databases. There are missing values for MongoDB 

because it could not finish the test and handle higher 
workloads. 

6.3 RESULT	LIMITATIONS	

While our results intend to forward the study of 
NoSQL in the real-world, they are not without their 
limitations. Most NoSQL databases are optimized for 
Solid State Drives (SSDs) and might perform poorly 
on systems which do not have them (Menon et al., 
2014), (Baron et al., 2013). In this particular scenario, 
our cluster did not have SSDs, meaning it wasn't one 
for which these NoSQL systems were fine-tuned. The 
real-world application we are studying is not 
deployed over SSDs, so to keep our experiments as 
close to reality as possible, we decided to apply the 
same restriction on our experimental setup. 

Similarly, it is a well-known fact that NoSQL 
systems tend to be more optimized for UNIX-like 
operating systems, in particular Linux (Menon et al., 
2014), (Baron et al., 2013). Due to our application 
requirements, we had to use a Windows system. We 
believe that this might impact the generality of our 
results but provides important information regarding 
performance of NoSQL systems on this platform. It 
would no doubt be interesting to rerun our 
experiment on other operating systems and perform a 
comparative performance analysis. 

Another key factor in this study regards the 
relatively small size of our cluster. As we have 
discussed previously, for such a small number of 
nodes, the protocol overhead might have hindered the 
performance of the NoSQL databases. Further tests 
which we do not present in this paper hinted that 
running these NoSQL systems on a single-node 
system increased their throughput, strengthening this 
idea that there was a protocol overhead, or some 
other kind of overhead related to sharding. There 
seems to be a trade-off inherent to the architecture of 
the NoSQL database, in the nature of its internal 
protocol and storage, between the performance gain 
in adding nodes to a cluster, and the protocol 
overhead resulting from that. These claims are in line 
with the findings and reasoning of (Kaviani et al., 
2013) and (Martin et al., 1997), but need further 
research. A larger cluster size could have rendered 
better results if the performance gains of more nodes 
outweighed the protocol overhead, but this 
experiment alone is not sufficient to study this, 
leaving room for future work. 

Still on the topic of the cluster size, one should 
also question what the outcome of running MS SQL 
Server in a clustered environment would be, and how 
our experiment does not inspect this scenario. It may 
be the case that the whole reason that NoSQL showed 
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poor results when compared with relational 
technologies is simply due to the aforementioned 
protocol overhead. By testing SQL Server in cluster 
mode, it would at least be able to achieve a “fair 
ground comparison”, although we highlight that we 
did not test this due to the nature of the problem we 
had at hands – the experiment only compared these 
NoSQL databases with MS SQL Server to assert the 
performance benefits of using NoSQL solutions in 
the enterprise system. In that sense, then, the single-
node SQL Server was the baseline test, which would 
ideally improve by using NoSQL technology. 

In spite of the testing setup being based in a real 
world scenario, contrasting with artificial 
benchmarks such as YCSB, the specific nature of our 
records might have an influence in the tests. The 
records at hand were very simple with no particular 
schema associated other than a set of integers, 
doubles and dates. In other scenarios, NoSQL might 
provide more performance, for instance by exploiting 
the nature of web-based data (Hecht et al., 2011), 
which is the basis for MongoDB and Couchbase's 
document oriented model (Hecht et al., 2011). The 
lack of a fixed schema, common to most NoSQL 
databases, could give performance benefits, and this 
characteristic is not taken into account into this work. 
Additionally, due to the limitations in the resources 
we had for our experiments, the number of 
concurrent applications sending records was fixed at 
8. Lastly, these results apply only to the tested
NoSQL database versions, which are no longer the
most up-to-date ones. In particular, MongoDB 3.0
has introduced a new compression mechanism which
might influence our results. We leave this issue for
future work.

7. CONCLUSIONS	AND	FUTURE	WORK

NoSQL is constantly evolving, rendering past 
evaluations obsolete in short time spans. This work 
not only fills in a gap in what concerns the link 
between theory and practice, but it also serves as a 
new up-to-date evaluation of NoSQL systems which, 
due to their constant evolution, quickly render past 
evaluations obsolete. In particular, it is, to our 
knowledge, the first real world test of a write-heavy 
enterprise application, especially one involving big 
data. 

Our results show that a relational database engine, 
running on a single node, can outperform popular 
NoSQL solutions running in a cluster of 4 nodes with 
sharding by a factor of five when dealing with a 

write-heavy scenario. Whether this result stems from 
protocol overhead in the cluster or due to the more 
developed nature and age-tested technology of 
relational databases is a question for future work. If, 
indeed, protocol overhead is at the root of these 
results, then increasing the cluster size might also 
increase performance without adding so much 
overhead, whereas reducing the cluster size might 
reduce protocol overhead and also provide better 
results. When faced with a scenario such as the one in 
our enterprise application, however, these results 
would recommend to keep the SQL Server and not 
opt by a NoSQL cluster. 

The second part of our experiments allows us to 
draw conclusions regarding space usage in the 
relational and non-relational world. It becomes clear 
that relational solutions are still the best option in 
what concerns space. This difference might not be 
significant when comparing SQL Server and a 
column-based database such as Cassandra, but it is 
noticeable when we compare the relational database 
with document-based database. The latter can use up 
to five times more space. These results are not 
surprising due to the different nature and design goals 
of NoSQL databases: they are meant for a world 
where data replication is used to increase 
performance and availability, hence, also inherently 
increasing the space required for storing data. 
Nevertheless, these databases are continuously 
improving to lower their space requirements. 

From our work, we might extract some valuable 
lessons regarding NoSQL and write-heavy datasets. 
Indeed, if one is looking for a good NoSQL solution 
for their write-heavy dataset, it becomes clear that a 
column-family database such as Cassandra will 
provide the best results, in spite of sacrificing some 
ACID properties. The protocol overhead involved in 
the communication inside the cluster, which we 
believe is one of defining factors of our results, 
should also be minimized and fine-tuned for large 
batches of write requests, but we note that this must 
be the subject of future work. Furthermore, NoSQL 
databases should have a wider support for large batch 
insert operations if they are to ever be used with this 
kind of dataset. 

As future work, we propose to complement the 
original experiment by using Solid State Drives and 
machines with more resources, as well test SQL 
Server itself in a clustered environment. Further 
testing regarding cluster size might also advance the 
state of the art on NoSQL's practical applications. 
The impact of the record size is a factor not yet 
thoroughly reviewed in literature, and has high 
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practical applications, thus being a good candidate 
for future work. The number of sources is an 
interesting parameter that should be studied with 
other experimental setups. It is our belief that 
increasing the number of concurrent applications will 
only decrease the throughput by saturating the 
network connection and the databases' request 
handling mechanisms. In much the same way, 
decreasing the number of concurrent applications 
should increase the throughput, a direct consequence 
of decreasing the number of concurrent records 
inserted per second. We leave this experiment for 
future work. The issue of protocol overhead has been 
mentioned before and should be subject of future 
work – is there some cluster setup where protocol 
overhead outweighs the performance speedup? New 
versions of the tested databases are already available 
and it we would like to rerun our tests with them. 
Lastly, it would be interesting to compare the results 
of our real-world benchmark with those of YCSB 
under the same configuration. 
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