

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 1

COMPARING	NOSQL	DATABASES	WITH	A	RELATIONAL
DATABASE:	PERFORMANCE	AND	SPACE	

João	Ricardo	Lourenço,	Bruno	Cabral,	Jorge	Bernardino,	Marco	Vieira	
CISUC,	ISEC	

joaoml@student.dei.uc.pt,	bcabral@dei.uc.pt,	jorge@isec.pt,	mvieira@dei.uc.pt	

Abstract	
The	 continuous	 information	 growth	 in	 current	 organizations	 has	 created	 a	 need	 for	 adaptation	 and	
innovation	 in	 the	 field	 of	 data	 storage.	 Alternative	 technologies	 such	 as	NoSQL	 have	 been	 heralded	 as	 the	
solution	 to	 the	 ever-growing	 data	 requirements	 of	 the	 corporate	 world,	 but	 these	 claims	 have	 not	 been	
backed	by	many	real	world	studies.	Current	benchmarks	evaluate	database	performance	by	executing	specific	
queries	 over	 mostly	 synthetic	 data.	 These	 artificial	 scenarios,	 then,	 prevent	 us	 from	 easily	 drawing	
conclusions	for	the	real	world	and	appropriately	characterize	the	performance	of	databases	in	a	real	system.	
To	counter	this,	we	used	a	real	world	enterprise	system	with	real	corporate	data	to	evaluate	the	performance	
and	space	characteristics	of	popular	NoSQL	databases	and	compare	 them	 to	SQL	counterparts.	We	present	
one	 of	 the	 first	 write-heavy	 evaluations	 using	 enterprise	 software	 and	 big	 data.	 We	 tested	 Cassandra,	
MongoDB,	 Couchbase	 Server	 and	MS	 SQL	 Server,	 comparing	 their	 performance	 and	 total	 used	 space	while	
handling	demanding	and	large	write	requests	from	a	real	company	with	an	electrical	measurement	enterprise	
system.	

Keywords:		NoSQL,	Big	Data,	Enterprise,	Write-Heavy,	MongoDB,	Couchbase,	Cassandra,	SQL	Server	

__	

1. INTRODUCTION

Big Data topic has recently taken more
prominence in the industry, with very high amounts
of data in need of constant, quick, and always-
available processing (Chen et al., 2014). Traditional
relational systems are known for their ACID
(Atomicity, Consistency, Isolation, Durability)
properties and consistency guarantees, but this design
choice may often limit their availability and
scalability (Leavitt, 2014). To counter this scenario,
NoSQL systems have been developed. They sacrifice
some of the ACID properties, namely consistency,
favoring availability (Moniruzzaman et al., 2013),
resulting in BASE (Basically Available Soft-state
services with Eventual-consistency) systems. Indeed,
these systems are Basically Available, have a Soft
state during which consistency is not yet assured, but
then are Eventually consistent (Brewer, 2000).
Trading off consistency for availability has resulted
in many different NoSQL systems which have
different architectures and different use-case

scenarios (Hecht et al., 2011). They have been
evaluated multiple times in recent years, but there
seems to be a lack of real-world studies with
enterprise data or systems (Lourenço et al., 2015,
August). Rather, the NoSQL literature is mostly
based on artificial benchmarks such as the Yahoo!
Cloud Serving Benchmark (YCSB) (Cooper et al.,
2010).

We were given a real enterprise system with a
write-heavy workload and big datasets, and asked to
evaluate the feasibility of replacing part of its storage
backend with a NoSQL based one. This allowed us to
test the performance of NoSQL systems in the real
world, as opposed to the aforementioned artificial
benchmarks, with respect to throughput and storage
requirements. To further our analysis, we also tested
space usage for each of these databases, comparing
them and drawing conclusions regarding the more
space-effective solution. As we will show in the rest
of this paper, although the workloads of the
enterprise system are not representative of big data
itself, the limits of the system were being reached,
with bottlenecks in the database operation becoming

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 2

clear. To solve this problem, techniques for handling
big data were experimented, in particular NoSQL
technology. It is the data model associated with the
system that justifies our experiments and research
into big data technologies.

In this paper we present the problem, our findings
and the conclusions we have drawn from our
experiments. Several popular NoSQL systems were
tested (MongoDB, Cassandra, Couchbase Server) and
compared with the relational model (MS SQL Server)
to assert if they presented any performance gains in a
real enterprise scenario. MS SQL Server is
representative of the relational world, and our results
intend to be broader, comparing NoSQL database
performance and space usage with relational
equivalents. To the best of our knowledge, our work
is one the first to shed light on a real world write-
heavy enterprise scenario, not relying on an artificial
system and data. Our results may serve as a bridge to
fill in the literature gap between theory and practice,
artificial and real, by depicting the impact of NoSQL
on a real world enterprise application that handles
large amounts of data. Henceforth, our main
contribution consists of showing how NoSQL
systems – a typical big data solution – behave in a
write-heavy enterprise scenario, which made use of
relational technology, with regards to performance
and space. We once again note that this research was
aimed at asserting how big data related technologies
behaved in a real-world scenario, and to which
degree they could help overcome bottlenecks in
relational technology in such scenarios.

The remaining of this paper is structured as
follows. Section 2 presents a state of the art on
NoSQL systems which supports our choice of tested
databases, together with related work. Section 3
presents Cassandra, MongoDB and Couchbase
Server, highlighting their features and characteristics.
Section 4 introduces the enterprise system we worked
with, the problems at hand, the current architecture
and our proposed architecture. Section 5 explains the
experiments we ran and their setup. Section 6
presents our results and their discussion. Finally, in
Section 7 we draw the conclusions of our work and
future work opportunities, also focusing on the
lessons learned from our experiments and suggesting
a set of defining characteristics that NoSQL systems
need to better support our enterprise scenario.

2. STATE	OF	THE	ART

With a large amount of available NoSQL
solutions, it is important to be able to distinguish the
fittest database solution for a particular system with
respect to its distinctive characteristics. All the
continuous development and evolution of non-
relational technology, over the past years, has
contributed to the constant interest in evaluating
NoSQL databases. Moreover, until now, all the
available studies were highly focused on the
performance testing using standard benchmarks
(Zhong et al., 2014), (Lourenço et al., 2015a).
Although those evaluations provide a basic
knowledge of the database behavior, there is no
performance guarantee while working in a real
enterprise environment, where data and interaction
are much more random, unpredictable and hard to
model (Zhong et al., 2014), (Abramova et al., 2013).

In recent NoSQL evaluations, the authors focus
on different possibilities of adapting NoSQL
solutions and using those databases along with other
domain-specific technologies, such as clinical
decision support systems (Chen et al., 2015),
(Mazurek, 2014). In these studies, the authors
evaluated different possibilities of integrating NoSQL
databases in existing systems where flexibility or big
data handling capabilities were needed. They
concluded that, according to each system
characteristic, NoSQL, in fact, could be a good
possibility for data management. In particular, its
flexibility and scalability were seen as fitting for the
needs of each of these works. One of the drawbacks
of NoSQL databases is the learning curve (Lourenço
et al., 2015, February). Another recent trend has been
the development of different approaches in terms of
data queries. While most developers and DBAs are
comfortable and accustomed with SQL, the querying
and management of non-relational databases requires
more time to learn (Stonebraker, 2010). More than
that, NoSQL technology is known for the non-
existence of a querying standard, with different
databases having different querying languages
(Stonebraker, 2010), (Stonebraker, 2011).
ThereforeBach et al., 2014) and (Sellami et al., 2014)
describe querying in NoSQL databases and a
possibility of a modeling system that is capable of
executing queries regardless of the database. Finally,
other authors propose efficient data mining and Big
Data processing (Lomotey et al., 2014). Their
frameworks are capable of providing better data
querying and analysis. In this paper we evaluate the
writing performance of NoSQL databases in a real
working system. This evaluation will generate new
insights on how NoSQL databases perform on
systems with such a specific set of requirements.

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 3

Further reviewing the literature, one can gather
that although there have been many evaluations, with
a specific focus on synthetic data, there are few
evaluations focused on write-heavy datasets (we note,
however, that there are some read-heavy evaluations,
such as (Dory et al., 2011) and (Silva et al., 2014)).
Regarding write-heavy workloads, the authors of
(Datastax, online) focus on many scenarios, one of
them being “mostly writes”, but use the artificial
YCSB benchmark. In much the same way, in
(Tudorica et al., 2011), a write intensive analysis is
performed for various NoSQL Databases, but, again,
the YCSB framework is used. InFloratou et al., 2012),
an in-depth analysis of various factors with varying
datasets, one of them write-heavy, is made. However,
the authors also use artificial frameworks for their
tests. When YCSB was first introduced, the authors
published results with the benchmark (Cooper et al.,
2010), analysing read, write and other characteristics.
The results among these papers, for the same
databases, tend to vary – a typical example of how
NoSQL is constantly evolving. Thus, while there is
indeed data on the write-heavy performance of
NoSQL, it is mostly artificial, disregarding the
enterprise applicability and its context. In that sense,
similarly to our work, Zhong et al. (Zhong et al.,
2014) present three enterprise scenarios where
NoSQL is used. However, unlike our work, their
scenarios do not represent mature enterprise systems,
and are very much far apart from a write-heavy
scenario. Their work, and future developments, might
provide valuable contributions to the enterprise
evaluation of NoSQL, but it neglects write-heavy
scenarios.

3. OVERVIEW	OF	EVALUATED
DATABASES

After evaluating several databases, a final group
of three different databases was selected for testing.
These were the only that met all our criteria, running
in the Windows operating system, allowing for
transparent sharding and having .NET bindings and
drivers. In this section, we present an overview of
Cassandra, MongoDB and Couchbase Server,
highlighting their features and characteristics.

3.1 CASSANDRA	

Cassandra is an open-source shared-nothing
NoSQL column-store database developed and used in
Facebook (Gudivada et al., 2014), (Haughian, 2014),
(Kuznetsov et al., 2014). It is based on the ideas
behind Google BigTable (Chang et al., 2008) and
Amazon Dynamo (Decandia et al., 2007).

Cassandra is similar to BigTable in what concerns
the data model. The minimal unit of storage is a
column, with rows consisting of columns or super
columns (nested columns). Columns themselves
consist of the name, value and timestamp, all of
which are provided by the client. Since it is column-
based, rows need not have the same number of
columns (Kuznetsov et al., 2014).

Cassandra supports a SQL-like language called
CQL, together with other protocols (Kuznetsov et al.,
2014). Indexes and secondary indexes are supported,
and atomicity is guaranteed at the level of one table
row. Persistence is ensured by logging. Consistency
is highly tunable according to the desired operation –
the application developer can specify the desired
level of consistency, trading off latency and
consistency. Conflicts are resolved based on
timestamps (the newest record is kept). The database
operates in master-master mode (Gudivada et al.,
2014), where no node is different from another, and
combines disk-persistence with in-memory caching
of results, resulting in high write throughput
operations (Haughian, 2014), (Gudivada et al., 2014).
The master-master architecture makes it easy for
horizontal scalability to happen (Haughian, 2014).
There are several different partitioning techniques
and replication can be automatically managed by the
database (Haughian, 2014).

3.2 MONGODB	

MongoDB is an open-source document-oriented
database written in C++ and developed by the 10gen
company. It uses JSON (data is stored and transferred
in a binary, more compact form named BSON),
allowing for a schemaless data model where the only
requirement is that an id is always present
(Kuznetsov et al., 2014), (Haughian, 2014).

MongoDB's horizontal scalability is mainly
provided through the use of automatic sharding
(Haughian, 2014). Replication is also supported using
locks and the asynchronous master-slave model,
meaning that writes are only processed by the master
node and reads can be made from both the master

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 4

node and from one of the slave nodes. Writes are
propagated to the slave nodes by reading from the
master's oplog (operation log) (Haughian, 2014).
Database clients can choose the kind of consistency
models they wish, by defining whether reads from
secondary nodes are allowed and from how many
nodes the confirmation must be obtained.

Document manipulation is a strong focus of
MongoDB, as the database provides different
frameworks (e.g. MapReduce and Aggregation
Framework) and ways of interacting with documents
(Kuznetsov et al., 2014). These can be queried, sorted,
projected, iterated with cursors, aggregated, among
other operations. The changes to a document are
guaranteed to be atomic. Indexing can be used on one
or several fields (implemented using B-trees), with
the possibility of using two-dimensional spatial
indexes for geometry-based data (Kuznetsov et al.,
2014). There are many different programming
interfaces supported by MongoDB, with most
popular programming languages having native
bindings. A REST interface is also supported
(Kuznetsov et al., 2014).

3.3 COUCHBASE	

Couchbase is a combination of Membase (a key-
value system with memcached compatibility) and
CouchDB. It can be used in key-value fashion, but is
considered a document store working with JSON
documents (similarly to CouchDB) (Kuznetsov et al.,
2014).

Documents, in Couchbase, have an intrinsic
unique id and are stored in what are called data
buckets. Like CouchDB, queries are built using
MapReduce views in Javascript. The optimistic
locking associated with an append-only B-tree is also
implemented like in CouchDB. The default
consistency level is eventual consistency (due to
MapReduce views being constructed
asynchronously). There is also the option of
specifying that data should be indexed immediately
(Kuznetsov et al., 2014).

A major difference when comparing Couchbase
with CouchDB regards sharding (Kuznetsov et al.,
2014). Whereas CouchDB does not natively support
sharding (there are projects, such as CouchDB
Lounge (Kuznetsov et al., 2014) which enable this),
Couchbase comes with transparent sharding off-the-
shelf, with application transparency. Replication is
also a major point of difference between the two
databases, as couchbase supports intercluster and

intracluster replication. The latter is performed within
a cluster, guaranteeing immediate consistency. The
former kind of replication ensures eventual
consistency and is made asynchronously between
geographically distributed clusters (conflict
resolution is performed in the same way CouchDB
does it). This database is mostly intended to run in-
memory, so as to hold the whole dataset in RAM
(Cudré-Mauroux et al., 2013), (Kuznetsov et al.,
2014).

4. A	REAL	ENTERPRISE	DISTRIBUTED
SYSTEM

The enterprise system we worked with deals with
storing several measurements coming from electrical
components, obtained at high sample rates. Data is
made up of tuples containing mostly simple floating
point values, a timestamp and some additional
metadata. This system, as it is currently deployed, is
hindered by a performance bottleneck during large
batches of write-only operations, which are issued to
a central database.

By itself, the system uses a distributed
architecture. The data are generated by specific
equipment and stored in an accessible way – be it
XML or a private database. Another set of
independent processes eventually gather the data, do
some very simple processing and then write said data
to the central server. Since there are so many records
being generated per minute in some of these systems
(as many as 3 million values in every sampling
timeslice), very high loads of data can be gathered at
the same time and quickly sent to be written to the
SQL server, resulting in large batches of write
operations. These are the operations which cause the
bottleneck and performance hit in the system.

The experiments consisted, then, of modifying the
database backend of the system to reduce the
bottleneck, as well as to reduce disk space usage,
making use of NoSQL systems. A more detailed view
of the currently implemented solution and our
proposed changes is presented in the next sections.

4.1 ORIGINAL	SYSTEM	–	RELATIONAL	

The original system uses a centralized MS SQL
Server database where all the gathered data is stored.

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 5

Furthermore, additional data and metadata needed for
other application functionality is stored in other
tables in the same database. Data is gathered from all
the necessary sources and is written, in parallel, using
batch operations, resulting in hundreds of thousand
write operations per second. The data itself is very
lightly preprocessed from the original source and,
indeed, is merely dumped into a table in this database.
While considering a relational system for a large
number of inserts it is important to disable indexing
and some integrity constraints, something which we
took into account when we were performing the
experiment.

This approach favours the use of well established
relational technology with all ACID properties.
However, as we have shown, it is prone to
bottlenecks and performance problems, suggesting
that an alternative might provide an appropriate
trade-off between ACID compliance and
performance. In this sense, we proposed a system
using NoSQL that is now detailed.

4.2 PROPOSED	SYSTEM	–	NOSQL	

We sought to minimize the changes to the current
system, and only touch areas that really had to be
changed. Furthermore, since the system's bottleneck
was in a specific table with many write operations,
and not in the rest of the system itself, we decided
that the original SQL database should be kept in
order to store metadata and other application control
data. However, we would take the tables where most
of the data was being written to and place them in a
NoSQL system. Thus, the data causing the
bottlenecks, and the code that handled it, had to be
moved and adapted to NoSQL. Given that we were
looking for ideal picks for a write-heavy scenario,
and that NoSQL's strength lies in large part in its high
horizontal scalability (Pokorny, 2009), it was also
decided that we would run a cluster with
sharded/partitioned NoSQL databases in order to
maximize write throughput. One of the basic NoSQL
considerations is the possibility to achieve both
performance and throughput by parallelizing the
execution of requests. Therefore, we exploited this in
the setup and, ensuring the network could handle all
the data, and that there were no limitations from the
source, the system should be able to handle the
demand and overall performance would increase.

The original system was already finished and in
deployment, which meant that our database choice

was conditioned by the system architecture. In this
sense, we were limited to databases which would run
in a Windows environment and that had .NET
bindings. We would also not consider any non-
qualified and non-robust code since it could
compromise the entire evaluation. Therefore, we
chose some of the most popular databases with high
support and documentation. To this end, we tested
Cassandra, MongoDB and Couchbase Server. One of
the drawbacks in satisfying this database criterion
was that we were not able to choose any Key-Value
Store database – the final chosen solutions were two
document stores (MongoDB, Couchbase) and one
wide column store (Cassandra). These three choices
are among the most popular NoSQL solutions
(Datastax, online), (Strauch et al., 2011) and make up
for what we believe is a reasonable sample of the best
NoSQL technology.

5. EXPERIMENTAL	PROCEDURE

The goal of the experiment was that of measuring
the performance of the databases under a real write-
heavy scenario. This was the most important quality
attribute of the system, so throughput was measured
to assess it.

5.1 EXPERIMENTAL	SETUP	

A homogeneous cluster using four machines with
similar hardware was chosen to host the databases.
This choice was cost-effective, adequate to the
budget that we were allowed, and also mimicked the
real-world scenarios that the system is used in. Two
additional machines were used to perform the write-
heavy queries, simulating real data sources. Figure 1
depicts the experimental setup, and Table 1
summarizes the machine characteristics.

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 6

Figure 1. Experimental Setup

CPU + OS RAM HDD #
Nodes

Intel Core i3
3.10GHz
Windows
Server
2012
64 bit

4GB WD5000AAKX
7200 RPM 16MB

4

Intel Core i7
2.9GHz
Windows
Server 2008
64

8GB N/A 1

Intel core
2Duo
2.53GHz
Windows
Server 2008
32 bit

4GB ST9320325AS
5400 RPM 8MB

1

Table 1. Summary of the Machine Specifications

In order to ensure that there was no bottleneck in
the experimental setup, several tests were made. In
particular, we tested network throughput and stability
by utilizing all the available bandwidth with traffic
generated by an application between the machines,
analyzing the throughput and ensuring it did not have
spikes. The data sources were also tested for potential

bottlenecks by running read-intensive workloads in
the source machines and comparing the read
throughput to the write throughput of the cluster.
Upon comparison, read throughput was higher than
write throughput, eliminating the possibility of a
bottleneck. When measuring the write throughput
with local batch inserts on the clusters and comparing
it to network bandwidth, we confirmed that the latter
was higher than the former, eliminating possible
network bottlenecks. Finally, to make sure that any
bottleneck would only be in the database itself, we
ran increasingly write-intensive workloads on the
database until performance peaked, showing that an
increase in workload had a corresponding increase in
throughput, without exceeding network bandwidth or
disk write throughput.

Since the last two machines (responsible for
providing the load to the first four machines) had
different characteristics, the number of load
generating processes they could run in parallel was
also different. We ran initial tests in “ad-hoc” fashion
to find the best number for each of these machines,
culminating with the total of 8 sources, 5 in one and 3
in another one. These tests involved varying the
number of data sources in each machine and
evaluating throughput performance. The total of 8
sources, divided in groups of 5 and 3, made the
system usable and didn't hinder its performance
(using lower or higher values than eight would lead
to system performance decrease for our initial tests).
Lastly, it is of relevance noting that the machines in
the cluster did not have a Solid State Drive (SSD)
storage medium.	

5.2 EXPERIMENTAL	METHODOLOGY	

The experiments were performed by running the
enterprise system in controlled fashion. This
enterprise system, described in the previous section
was setup to mimic real enterprise distributed
systems. In each run of the experiment, the source
machines had a number of source processes
executing write operations on the cluster, as in the
real-world scenario (in essence, this simulated the
large batches of data being generated on the fly by
electrical equipment). All of these sources inserted
the same number of records concurrently, putting
stress on the databases. Henceforth, the total amount
of records being inserted per workload was the sum
of all records inserted by these sources. When the
insertions were finished, the total insertion time was
then measured so that throughput could be calculated.
In addition, the space used by the database was

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 7

measured, taking into account data and metadata. A
record structure is presented in Figure 2.

Figure 2. Record structure of the enterprise system
we tested

Upon measuring the total insertion time and
space-related data, the system was stopped and the
databases reset to their initial state, allowing for
repetitions of the test or for another test with a
different workload to be performed.

During the adaptation of the code for the several
NoSQL solutions, we tried to use database best
practices, for instance using batch inserts wherever
possible. However, we noticed that current NoSQL
databases don't seem to have a wide support for large
batch insert operations, something which needs to be
improved if they are to ever be used with this kind of
dataset. While the operations themselves are
supported, performance gains are lower than
expected, documentation was scarce and code
maturity seemed low overall. Nevertheless, they did
provide speedup to the operations.

5.3 WORKLOADS	AND	DATABASE
CONFIGURATIONS

The testing procedure described in the previous
section was used for a single run. In the experiment,
multiple runs were executed to attain statistical
significance. In particular, 10 tests were used and the
final result is the average. This value was chosen as
the best trade-off between the time to run all tests and
the significance of the results – with 10 tests, the
confidence interval for the throughput had an
amplitude of roughly 5% of the total throughput, with
some exceptions for higher throughput values, where
the confidence interval amplitude peaked at
approximately 17% (see Figure 3 where these results
can be seen in the form of error bars). If a higher
number of tests had been used, there would be little
to gain in statistical significance, as the confidence
interval amplitude was already quite low. In contrast,
a lower number of tests would increase the amplitude
and hinder the test significance.

In spite of using 10 tests for averaging the final
result, the effective number of tests run for each
experiment was 13. The first three tests were
discarded to simulate a real world environment and,
thus, remove cache side-effects (resulting from a
cold-boot), meaning that the warm-up time was given
by the first three executions.

Regarding the workloads, each of the thirteen
tests was executed for 10.000 records per source (i.e.,
in total, 80.000 records). After that, this procedure
was repeated for 20.000 records, 30.000, etc, until
330.000 per source. This way the impact of varying
database load on throughput was measured, as
intended. We chose 10.000 records based on real-
world data and scenarios, as recommended by the
system developers. The increment was also 10.000
because it was concluded, from initial testing, that a
lower value did not produce significant throughput
change and was, thus, not of much importance to
analyse. Furthermore, throughout our tests there
seemed to be no need to adjust this uniform
increment or focus on any particular domain of
records per source, as the throughput showed no
irregular behavior and, instead, seemed to be
modeled by a linear relationship with the number of
records. The 330.000 limit was a consequence of our
setup limitations – it was the highest load we could
cope with for most tested databases.

NoSQL databases are known for their
configurability and tuning (Gajendran, 2012). To
maximize their performance and adapt them to this
scenario, we adjusted their configuration settings.

We used Cassandra version 2.0.9, adjusting all
timeouts to 90 seconds, with the exception of the
range timeout, whose value was unchanged. This
value allowed all tests to finish successfully. Row
caching was disabled to maximize write throughput.
The concurrent reads and writes settings were
adjusted as suggested by the documentation, using
the 8 x number_of_cores rule of thumb. The
memtable flush writer threads setting was set to 1,
given that we had no SSDs and only had one data
directory. The remaining settings were left at their
default values for the results presented in this paper.
However, additional tests were made by varying
other parameters such as the RPC server type and
other memtable settings. Since these changes
produced no measurable difference in performance,
their default values were used.

MongoDB version 2.6 Standard was tested with
the default options and the highest write concern
settings. A setup with two config servers and one

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 8

query router was chosen because it provided the
minimum amount of MongoDB instances that had to
be executed, allowing focus to shift to the sharding
itself. For sharding to take place, the hashing of the id
was used, as suggested by the MongoDB guidelines.

Couchbase Server was tested with version 3.0.1-
1444 and configured to minimize the use of
compaction, in order to delay performance
degradation when performing IO. The number of
writer threads was also increased in comparison to
the number of reader threads. However, these
configuration settings had little effect in performance.
Instead, to achieve a 3-fold performance increase,
when compared to our initial testing, the batch
insertion method was adapted by using multi-
threaded REST requests. The number of threads and
records per thread was chosen to maximize
performance, after testing several values to see which
had the best performance. The resulting settings were
25 threads of 1000 records each (per source).

Regarding the relational engine, SQL Server 2014
Standard edition was used. The server was used with
full ACID guarantees, as is the case in real
deployments, but with all indexing facilities turned
off to maximize write throughput. This server was
only executed on one node, as we shall discuss in the
next section (Section 6).

All databases were assigned 2GB of the available
memory. This was the most memory that could be
assigned without damaging normal system operation.
Furthermore, since write-performance was the focus
of the experiment, all indexing capabilities were
disabled wherever possible. Finally, SQL Server's in-
memory functionality was not used, as it was not a
part of the original system and wasn't seen a
particularly useful, since both full ACID-compliance
and high write performance were goals of the
experiment. On the other hand, NoSQL systems
which have such in-memory functionality as the basis
of their operation (e.g. Cassandra) could not have this
feature turned off (or turning it off would deeply
impact performance).

6. EXPERIMENTAL	RESULTS

We now present the results of the experiment, as
well as our analysis. The limitations of the
experiment are also presented and discussed.

6.1 PERFORMANCE	ANALYSIS	

The results (see Figures 3 and 4) show that the
relational/original solution provided a much higher
throughput than the NoSQL solution with sharding.
The throughput of MS SQL Server, whilst running on
a single node, is up to five times that of the best
NoSQL solution. Indeed, Cassandra performs the
best out of the three tested NoSQL systems by a
fairly large margin (see Figure 4). These results were
predictable, since the other two tested databases are
document stores, fine-tuned for read operations
(Gajendran, 2012). Cassandra, on the other hand, is
write-optimized (Cooper et al., 2010), (Gajendran,
2012). Nevertheless, in spite of outperforming its
NoSQL counterparts by a factor 4, it is itself
outperformed by the original system running MS
SQL server on a single node. Although one might be
tempted to think that the tested workloads were not
adequate for the NoSQL systems being tested, we
note that MongoDB, for instance, was unable to
handle the larger workloads, indicating that the
choice of workload, for our experimental setup, was
indeed adequate.

100#

1000#

10000#

100000#

0# 500000# 1000000# 1500000# 2000000# 2500000#

Th
ro
ug
hp

ut
)(o

ps
/s
))

Number)of)Records)

Throughput)(ops/s))

MongoDB# Couchbase# Cassandra## MS#SQL#Server##(1#node)#

Figure 3. Throughput results for all tested databases.
Error bars show standard deviation. There are

missing values for MongoDB because it could not
finish the test and handle higher workloads

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 9

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

0" 500000" 1000000" 1500000" 2000000" 2500000"

Th
ro
ug
hp

ut
)(o

ps
/s
))

Number)of)Records)

Throughput)(ops/s))

MongoDB" Couchbase" Cassandra""

Figure 4. Throughput only for NoSQL databases.
Error bars show standard deviation. There are

missing values for MongoDB because it could not
finish the test and handle higher workloads.

Cassandra's throughput is more irregular than that
of the other NoSQL solutions, showing a decreasing
trend with increasing workloads. While the other
NoSQL databases also show this trend (although to a
lesser extent than Cassandra), MS SQL Server does
not seem to suffer as much from performance
degradation with increasing workloads, although
such degradation can still be seen.

MongoDB, as mentioned, was unable to cope
with the highest workloads, which can be seen in
Figures 3 and 4. When a certain high workload was
reached, it began displaying errors due to internal
problems because of the large overload of data. This
result, although somewhat surprising (in the sense
that a database crash is not expected behavior), can
be attributed to the exhaustion of all machine
resources – MongoDB ran out of resources, whereas
other databases did not. Of the three NoSQL
databases, it showed the lowest performance, with a
very low throughput when compared to SQL Server.
Even taking into account that this database is
document-based and, thus, read-oriented, this result
was somewhat surprising.

Couchbase has the most stable throughput among
all the databases tested, although it is much lower
than Cassandra and SQL Servers'. As we have
already seen, this is expected due to the fact that it is
a document-based database. However, contrary to
MongoDB, it can cope with the high workloads.

The “flat-line” results shown in Figures 3 and 4
could be interpreted as some bottleneck in the
experiment other than a database bottleneck. We
dismiss this idea for two reasons: Firstly, because, as
explained in Section 5, extensive tests were executed
to assure there was no other possible bottleneck;
secondly, because the results make sense if we take
into account that our initial workload is already
stressing the system – this was intended, because it
reflects the real-world enterprise system, where lower
workloads do not exist and would thus be
meaningless to test.

We conclude that a cluster with sharding enabled,
made up of a small number of machines (in our case,
4) running any of these popular NoSQL solutions
cannot outperform the existing SQL Server based
solution with ACID guarantees. It might be the case
that there is a high overhead due to internal protocol
communications and that disabling sharding would
actually improve performance, instead of doing the
reverse, but this is matter for future work.

6.2 SPACE	USED	ANALYSIS	

Regarding space usage (see Figures 5 and 6), the
relational solution, again, proved better. Throughout
our workloads, SQL Server required less space for
the same amount of data. Nevertheless, Cassandra’s
results were not too different from SQL Server’s.
This NoSQL database occupies 1.5 times the space of
SQL Server for storing the data.	

The document-based solutions have far higher
disk requirements, as much as five times more than
the relational solution. This can be explained by the
document structure, where attribute names are
repeated for each existent value, as well as by the
internal architecture of the database which is not
geared towards saving space. The sudden increases in
MongoDB’s disk usage can be explained by its
internal chunk-based architecture that pre-allocates
space in large chunks. The space necessary per
record was estimated.

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 10

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 500000 1000000 1500000 2000000 2500000 3000000

Sp
ac
e&
(M

B)

Number&of&Records

Database&used&space&per&workload&(MB)

MongoDB Cassandra MS5SQL5Server5(15Node) Couchbase

Figure 5. Database used space per workload for
all databases. There are missing values for
MongoDB because it could not finish the test and
handle higher workloads.

Figure 6 shows the space needed per record.
Those values represent the amount of disk (in KB)
that each record requires (including the attribute
values and all indexes and metadata). Therefore, the
presented values contain metadata, primary (key)
indexes that are generated automatically, etc. The
initial variation in this value reflects both the fact that
some data structures are created only once per each
database and, secondly, that we may have included
some additional information in our measured data. If
the latter is the reason for this variation, then the fact
that for increasing workloads there is a convergence
to a fixed value shows that additional information
remained constant (or sufficiently small when
compared to the increase in data coming from the
different workloads).

0

0,5

1

1,5

2

2,5

0 500000 1000000 1500000 2000000 2500000 3000000

Sp
ac
e&
ne
ed
ed
&p
er
&re

co
rd
&(K

B)

Number&of&Records

Space&needed&per&record&(KB)

MongoDB Cassandra MS3SQL3Server3(13Node) Couchbase

Figure 6. Space per record for each workload for all
databases. There are missing values for MongoDB

because it could not finish the test and handle higher
workloads.

6.3 RESULT	LIMITATIONS	

While our results intend to forward the study of
NoSQL in the real-world, they are not without their
limitations. Most NoSQL databases are optimized for
Solid State Drives (SSDs) and might perform poorly
on systems which do not have them (Menon et al.,
2014), (Baron et al., 2013). In this particular scenario,
our cluster did not have SSDs, meaning it wasn't one
for which these NoSQL systems were fine-tuned. The
real-world application we are studying is not
deployed over SSDs, so to keep our experiments as
close to reality as possible, we decided to apply the
same restriction on our experimental setup.

Similarly, it is a well-known fact that NoSQL
systems tend to be more optimized for UNIX-like
operating systems, in particular Linux (Menon et al.,
2014), (Baron et al., 2013). Due to our application
requirements, we had to use a Windows system. We
believe that this might impact the generality of our
results but provides important information regarding
performance of NoSQL systems on this platform. It
would no doubt be interesting to rerun our
experiment on other operating systems and perform a
comparative performance analysis.

Another key factor in this study regards the
relatively small size of our cluster. As we have
discussed previously, for such a small number of
nodes, the protocol overhead might have hindered the
performance of the NoSQL databases. Further tests
which we do not present in this paper hinted that
running these NoSQL systems on a single-node
system increased their throughput, strengthening this
idea that there was a protocol overhead, or some
other kind of overhead related to sharding. There
seems to be a trade-off inherent to the architecture of
the NoSQL database, in the nature of its internal
protocol and storage, between the performance gain
in adding nodes to a cluster, and the protocol
overhead resulting from that. These claims are in line
with the findings and reasoning of (Kaviani et al.,
2013) and (Martin et al., 1997), but need further
research. A larger cluster size could have rendered
better results if the performance gains of more nodes
outweighed the protocol overhead, but this
experiment alone is not sufficient to study this,
leaving room for future work.

Still on the topic of the cluster size, one should
also question what the outcome of running MS SQL
Server in a clustered environment would be, and how
our experiment does not inspect this scenario. It may
be the case that the whole reason that NoSQL showed

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 11

poor results when compared with relational
technologies is simply due to the aforementioned
protocol overhead. By testing SQL Server in cluster
mode, it would at least be able to achieve a “fair
ground comparison”, although we highlight that we
did not test this due to the nature of the problem we
had at hands – the experiment only compared these
NoSQL databases with MS SQL Server to assert the
performance benefits of using NoSQL solutions in
the enterprise system. In that sense, then, the single-
node SQL Server was the baseline test, which would
ideally improve by using NoSQL technology.

In spite of the testing setup being based in a real
world scenario, contrasting with artificial
benchmarks such as YCSB, the specific nature of our
records might have an influence in the tests. The
records at hand were very simple with no particular
schema associated other than a set of integers,
doubles and dates. In other scenarios, NoSQL might
provide more performance, for instance by exploiting
the nature of web-based data (Hecht et al., 2011),
which is the basis for MongoDB and Couchbase's
document oriented model (Hecht et al., 2011). The
lack of a fixed schema, common to most NoSQL
databases, could give performance benefits, and this
characteristic is not taken into account into this work.
Additionally, due to the limitations in the resources
we had for our experiments, the number of
concurrent applications sending records was fixed at
8. Lastly, these results apply only to the tested
NoSQL database versions, which are no longer the
most up-to-date ones. In particular, MongoDB 3.0
has introduced a new compression mechanism which
might influence our results. We leave this issue for
future work.

7. CONCLUSIONS	AND	FUTURE	WORK

NoSQL is constantly evolving, rendering past
evaluations obsolete in short time spans. This work
not only fills in a gap in what concerns the link
between theory and practice, but it also serves as a
new up-to-date evaluation of NoSQL systems which,
due to their constant evolution, quickly render past
evaluations obsolete. In particular, it is, to our
knowledge, the first real world test of a write-heavy
enterprise application, especially one involving big
data.

Our results show that a relational database engine,
running on a single node, can outperform popular
NoSQL solutions running in a cluster of 4 nodes with
sharding by a factor of five when dealing with a

write-heavy scenario. Whether this result stems from
protocol overhead in the cluster or due to the more
developed nature and age-tested technology of
relational databases is a question for future work. If,
indeed, protocol overhead is at the root of these
results, then increasing the cluster size might also
increase performance without adding so much
overhead, whereas reducing the cluster size might
reduce protocol overhead and also provide better
results. When faced with a scenario such as the one in
our enterprise application, however, these results
would recommend to keep the SQL Server and not
opt by a NoSQL cluster.

The second part of our experiments allows us to
draw conclusions regarding space usage in the
relational and non-relational world. It becomes clear
that relational solutions are still the best option in
what concerns space. This difference might not be
significant when comparing SQL Server and a
column-based database such as Cassandra, but it is
noticeable when we compare the relational database
with document-based database. The latter can use up
to five times more space. These results are not
surprising due to the different nature and design goals
of NoSQL databases: they are meant for a world
where data replication is used to increase
performance and availability, hence, also inherently
increasing the space required for storing data.
Nevertheless, these databases are continuously
improving to lower their space requirements.

From our work, we might extract some valuable
lessons regarding NoSQL and write-heavy datasets.
Indeed, if one is looking for a good NoSQL solution
for their write-heavy dataset, it becomes clear that a
column-family database such as Cassandra will
provide the best results, in spite of sacrificing some
ACID properties. The protocol overhead involved in
the communication inside the cluster, which we
believe is one of defining factors of our results,
should also be minimized and fine-tuned for large
batches of write requests, but we note that this must
be the subject of future work. Furthermore, NoSQL
databases should have a wider support for large batch
insert operations if they are to ever be used with this
kind of dataset.

As future work, we propose to complement the
original experiment by using Solid State Drives and
machines with more resources, as well test SQL
Server itself in a clustered environment. Further
testing regarding cluster size might also advance the
state of the art on NoSQL's practical applications.
The impact of the record size is a factor not yet
thoroughly reviewed in literature, and has high

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 12

practical applications, thus being a good candidate
for future work. The number of sources is an
interesting parameter that should be studied with
other experimental setups. It is our belief that
increasing the number of concurrent applications will
only decrease the throughput by saturating the
network connection and the databases' request
handling mechanisms. In much the same way,
decreasing the number of concurrent applications
should increase the throughput, a direct consequence
of decreasing the number of concurrent records
inserted per second. We leave this experiment for
future work. The issue of protocol overhead has been
mentioned before and should be subject of future
work – is there some cluster setup where protocol
overhead outweighs the performance speedup? New
versions of the tested databases are already available
and it we would like to rerun our tests with them.
Lastly, it would be interesting to compare the results
of our real-world benchmark with those of YCSB
under the same configuration.

8. ACKNOWLEDGMENTS

This research would not have been made possible
without support and funding of the FEED – Free
Energy Data and iCIS – Intelligent Computing in the
Internet Services (CENTRO-07 - ST24 – FEDER –
002003) projects, to which we are extremely grateful.

9. REFERENCES

Abramova, V., & Bernardino, J. (2013, July).
NoSQL databases: MongoDB vs cassandra. In
Proceedings of the International C* Conference on
Computer Science and Engineering (pp. 14-22).
ACM.

Bach, M., & Werner, A. (2014). Standardization
of NoSQL database languages. In Beyond databases,
architectures, and structures (pp. 50-60). Springer
International

Baron, J., & Kotecha, S. (2013). Storage options
in the aws cloud. Amazon Web Services, Washington
DC, Tech. Rep.

Bastiao Silva, L., Beroud, L., Costa, C., &
Oliveira, J. L. (2014, June). Medical imaging
archiving: A comparison between several NoSQL

solutions. In IEEE-EMBS International Conference
on and Health Informatics (BHI) (pp. 65-68). IEEE.

Brewer, Eric A. "Towards robust distributed
systems." PODC. Vol. 7. 2000.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., ... & Gruber, R. E.
(2008). Bigtable: A distributed storage system for
data. ACM Transactions on Computer Systems
(TOCS), 26 (2), 4.

Chen, C. P., & Zhang, C. Y. (2014). Data-
intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information
Sciences, 275, 314-347.

Chen, Z., Yang, S., Tan, S., He, L., Yin, H., &
Zhang, G. (2015). A new fragment re-allocation
strategy for NoSQL database systems. Frontiers of
Computer Science, 9 (1), 127.

Cooper, B. F., Silberstein, A., Tam, E.,
Ramakrishnan, R., & Sears, R. (2010, June).
Benchmarking cloud serving systems with YCSB. In
Proceedings of the ACM symposium on Cloud
computing (pp. 143-154). ACM.

Cudré-Mauroux, P., Enchev, I., Fundatureanu, S.,
Groth, P., Haque, A., Harth, A., ... & Wylot, M.
(2013). NoSQL databases for RDF: an empirical
evaluation. In Semantic Web–ISWC 2013 (pp. 310-
325). Springer Berlin Heidelberg.

Datastax. Benchmarking Top NoSQL Databases:
A Performance Comparison for Architects and IT
Managers. White paper.

DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A., ... &
Vogels, W. (2007, October). Dynamo: amazon's
highly available key-store. In ACM SIGOPS
Operating Systems Review (Vol. 41, No. 6, pp. 205-
220). ACM.

Dory, T., Mejías, B., Van Roy, P., & Tran, N. L.
(2011). Comparative elasticity and scalability
measurements of cloud databases. In Proc of the 2nd
ACM on cloud computing (SoCC) (Vol. 11).

Featherston, D. (2010, August). Cassandra:
Principles and application. In International
Conference on Computing, Engineering and
Information, of Illinois at Urbana-Champaign.

Floratou, A., Teletia, N., DeWitt, D. J., Patel, J.
M., & Zhang, D. (2012). Can the elephants handle

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 13

the NoSQL onslaught?. Proceedings of the VLDB
Endowment, 12), 1712-1723.

Gajendran, S. K. (2012). A survey on nosql
databases. Technical report.

Gudivada, V. N., Rao, D., & Raghavan, V. V.
(2014, June). Nosql systems for big data management.
In IEEE World Congress on Services (SERVICES)
(pp. 197). IEEE.

Hammes, D., Medero, H., & Mitchell, H. (2014).
Comparison of NoSQL and SQL Databases in the
Cloud. Southern Association for Information Systems
(SAIS) Paper, 12.

Haughian, G. (2014). Benchmarking Replication
in NoSQL Data Stores.

Hecht, R., & Jablonski, S. (2011). NoSQL
evaluation: A use case oriented survey.

Kaviani, N., Wohlstadter, E., & Lea, R. (2013).
Cross-tier application and data partitioning of web
applications for hybrid cloud deployment. In
Middleware (pp. 226-246). Springer Berlin
Heidelberg.

Kuznetsov, S. D., & Poskonin, A. V. (2014).
NoSQL data management systems. Programming and
Computer Software, 40 (6), 323-332.

Leavitt, N. (2010). Will NoSQL databases live up
to their promise?. Computer, 43 (2), 12-14.

Lomotey, R. K., & Deters, R. (2014, June). Terms
Mining in Document-Based NoSQL: Response to
Unstructured Data. In IEEE BigData Congress (pp.
661-668). IEEE.

Lourenço, J. R., Abramova, V., Vieira, M., Cabral,
B., & Bernardino, J. (2015a). NoSQL Databases: A
Software Engineering Perspective. In New in
Information Systems and Technologies (pp. 741-750).
Springer International Publishing.

Lourenço, J. R., Abramova, V., Cabral, B.,
Bernardino, J., Carreiro, P., & Vieira, M. (2015b). No
SQL in Practice: A Write-Heavy Enterprise
Application. In IEEE International Congress on Big
Data (BigData Congress) (pp. 584-591). IEEE.

Lourenço, J. R., Cabral, B., Carreiro, P., Vieira,
M., & Bernardino, J. (2015c). Choosing the right
NoSQL database for the job: a quality attribute
Journal of Big Data, 2 (1), 1-26.

Martin, R. P., Vahdat, A. M., Culler, D. E., &
Anderson, T. E. (1997). Effects of communication
latency, overhead, and bandwidth in a cluster
architecture (25, No. 2, pp. 85-97). ACM.

Mazurek, M. (2014). Applying NoSQL Databases
for Operationalizing Clinical Data Mining Models. In
Beyond Databases, Architectures, and Structures (pp.
527-536). Springer Publishing.

Menon, P., Rabl, T., Sadoghi, M., & Jacobsen, H.
A. (2014, March). CaSSanDra: An SSD boosted key-
value store. In IEEE 30th Conference on Data
Engineering (ICDE) (pp. 1162-1167). IEEE.

Moniruzzaman, A. B. M., & Hossain, S. A.
(2013). Nosql database: New era of databases for big
data analytics-classification, characteristics and
arXiv preprint arXiv:1307.0191.

Ordonez, C., & Cereghini, P. (2000, May).
SQLEM: Fast clustering in SQL using the EM
algorithm. In ACM SIGMOD Record (Vol. 29, No. 2,
pp. 559-570). ACM.

Pokorny, J. (2013). NoSQL databases: a step to
database scalability in web environment.
International Journal of Web Information Systems, 9
(1), 69-82.

Sellami, R., Bhiri, S., & Defude, B. (2014, June).
ODBAPI: a unified REST API for relational and
NoSQL data stores. In IEEE International Congress
on Big Data (BigData Congress) (pp. 653-660). IEEE.

Stonebraker, M. (2010). SQL databases v.
NoSQL databases. Communications of the ACM, 53
(4), 10-11.

Stonebraker, M. (2011). Stonebraker on NoSQL
and enterprises. Commun. ACM, 54 (8), 10-11.

Strauch, C., Sites, U. L. S., & Kriha, W. (2011).
NoSQL databases. Lecture Notes, Stuttgart Media
University.

Tudorica, B. G., & Bucur, C. (2011, June). A
comparison between several NoSQL databases with
comments and notes. In 10th Roedunet International
Conference (pp. 1-5). IEEE.

Van der Veen, J. S., Van der Waaij, B., & Meijer,
R. J. (2012, June). Sensor data storage performance:
Sql or nosql, physical or virtual. In IEEE 5th
International Conference on Cloud Computing (pp.
431-438). IEEE.

International Journal of Big Data (ISSN 2326-442X) Vol. 2, No. 1, 2015 14

Zhong, T., Doshi, K., Tang, X., Lou, T., Lu, Z., &
Li, H. (2014). Big Data Workloads Drawn from Real-
Time Analytics Scenarios Across Three Deployed
Solutions. In Advancing Big Data Benchmarks (pp.
97-104). Springer International.

Authors	
João Ricardo Lourenço is
currently a researcher at
CISUC – Centre for
Informatics and Systems of
the University of Coimbra.
He received his bachelor
degree in Informatics
Engineering from the
University of Coimbra in

2014. He is finishing his Master's in the same
university. He has published works related to big data
and NoSQL, and is currently working on exception
handling models. His main research interests are
distributed systems, operating systems, big data,
NoSQL, and programming languages.

Bruno Cabral is an Assistant
Professor at the University
of Coimbra (UC), Portugal.
He has more than 15 years
of experience in teaching of
Software Engineering,
Operating Systems, and
Databases, among other
subjects. Bruno is currently

the coordinator of the joint Masters Program in
Software Engineering, offered by the UC in
partnership with Carnegie Mellon University (CMU),
USA. Bruno was Adjunct Associate Teaching
Professor at CMU in 2011/2012. His main research
interests are Concurrent Programming and
Programming Languages, Exception Handling
Models and Code instrumentation. He is the author of
several publications in top-tier peer reviewed
conferences and journals in topics related with
concurrency and programming languages, such as
language support for software transactional memory,
automatic exception handling models, and run-time
instrumentation and optimization of code. He has
participated and acted as PI in many research and
software projects in cooperation with institutions
such as the European Space Agency, Carnegie
Mellon University, and the Portuguese Government.
Bruno is also the founder and CTO of Sentilant, a
spinoff company of the UC.

Jorge Bernardino received the
degree in computer
engineering in 1987, the
masters degree in systems and
information technologies in
1994, and the PhD degree in
computer science from the
University of Coimbra in 2002.
He is a Coordinator Professor

at ISEC (Instituto Superior de Engenharia de
Coimbra) of the Polytechnic Institute of Coimbra,
Portugal. His main research fields are big data, data
warehousing, business intelligence, and open source
tools, subjects in which he has authored or co-
authored dozens of papers in refereed conferences
and journals. He has served on program committees
of many conferences and acted as a referee for many
international conferences and journals in data
warehousing and databases. He was President of
ISEC from 2005 to 2010. During 2014 he was
Visiting Professor at CMU – Carnegie Mellon
University.

Marco Vieira is an Associate
Professor at the University of
Coimbra, Portugal. He is an
expert on experimental
dependability and security
assessment and benchmarking
and his research interests also
include fault injection,
intrusion detection, software

development processes, and software quality
assurance, subjects in which he has authored or co-
authored more than 150 papers in refereed
conferences and journals. He has participated in
many research projects, both at national and
European level. Marco Vieira has served on program
committees of the major conferences of the
dependability area and acted as referee for many
international conferences and journals in the
dependability and databases areas.

