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Abstract—Selecting the appropriate route in urban multimodal
transport networks may require information from several
sources, such as user preferences and contextual information.
Such information could be used to choose different transport
modes for a route, to avoid the use of hired private vehicles
(HPV), like taxis, in certain segments of the trip with poor
traffic conditions, for example. Therefore, this paper proposes
the use of hybrid Hired Private Vehicles and Transit (HPV-
transit) to enable a more personalized urban routing. User’s
impressions over trips’ cost and duration are taken into ac-
count to select better hybrid routes. A taxi dataset was used to
create graphs that map the main mobility flows in New York
City. To create these graphs we propose a novel flow-based
clustering technique which identifies trending mobility flows
based on spatio-temporal datasets containing departures and
arrivals. These flows are used to evaluate the performance
of the hybrid HPV-transit trips with metrics such as cost,
duration, and user experience. We compare the proposed
solution with traditional transit or HPV only trips. It is possible
to conclude that the adoption of HPV-transit trips can bring
benefits in terms of costs and durations for urban mobility.
The results obtained contribute with the quantification and
comparison of the gain using hybrid routes.

1. Introduction

Due to the fast development of urban areas, cities are
facing a series of issues, many of them related to ur-
ban mobility, such as traffic congestion, and public trans-
portation waiting times, and others. Therefore, cities are
making efforts to improve their services by, for example,
understanding people’s behavior. This is accomplished by
collecting data about city aspects [1], analyzing contextual
urban data [2], [3], and building a knowledge base to aid
governments [4]. The results found in these studies are
critical for research purposes because they allow researchers
to understand and simulate different situations, which can
lead to changes in the city and its services.

During the past years, Google improved their software
Google Maps1 to provide a variety of functionalities, such
as providing real-time traffic information or suggestion of
urban routes selected by different criteria (regarding time
or transporting mode). However, the route suggestion only
focuses on specific transportation modes selected by users
(e.g., car, foot or transit). Public transportation modes could
be used to avoid poor traffic conditions while riding Hired
Private Vehicles (HPV), such as Uber2. Such routes are
being called in this study “hybrid HPV-transit” routes.

1. https://www.google.pt/maps/
2. http://www.uber.com/

We propose a method to improve route selection, by con-
sidering traffic information and using different transportation
modes to produce a hybrid transit-HPV route. We identify
the most relevant flows of a city using a novel flow-based
clustering technique proposed in this paper. Then these flows
are used to analyze the impact of hybrid routes (i.e., HPV
and Transit) on avoiding traffic congestion and creating
personalized routes. The results are aligned with common
sense about using a combination of HPV and transit routes,
although we provide an enhanced understanding of this
knowledge by quantifying it and enabling a comparison
with traditional routes using only transit or only HPV. The
next sections are organized as follows: Section 2 describes
different techniques related to our work regarding multi-
modal routing, clustering, and modeling; Section 3 presents
our proposed method to select hybrid HPV-transit routes
and how to evaluate it; Section 4 shows the results for
the evaluation performed; Finally, Section 5 presents the
conclusions.

2. Background

The task of selecting best routes in urban multimodal
transport networks was explored for different fields of study,
and several techniques were built to compute, select and
evaluate multimodal routes. In this section, we briefly de-
scribe some of these techniques.

2.1. Multimodal Routing

Urban routing systems were developed to compute
routes based on different information (such as user’s input or
traffic conditions). P. Campigotto et. al. [5] developed an al-
gorithm that takes into account user’s preferences. FAVOUR
(FAVourite ROUte Recommendation) uses a Bayesian strat-
egy to understand and estimate the best routes that the user
prefers. The Bayesian strategy was used to understand the
user’s behavior and constant imprecision during decisions.
D. Bucher et. al. [6] proposed a preset rule-based heuristic
model defined as a set of rules for different transport modes,
such as walk, bus, car and train.

Song et.al. [2] proposed a hierarchical routing algorithm
to compute routes using real-time traffic data. The authors
evaluated their solution by generating randomly 150 trips to
be performed in Jinan, China. While the authors obtained
good results in these trips, it is not clear how their solution
would behave with real-world cases. Zhou et.al. [3] also
proposed an algorithm to compute safe urban routes. The



paper identified danger indexes for streets based on traffic
accident data in New York City. The focus of their paper is
to use safety contextual information to aid planning routes
to address certain safety requirements (e.g., planning school
bus routes). In our study, we identify and use the main
mobility flows in New York City to explore a different
contextual information about route selection and analyze
traffic data to investigate positive impacts on using hybrid
routes to avoid traffic congestions.

2.2. Clustering

Exploring different urban data allows the identification
of patterns and trends in human behavior that could be
explored to improve city services. To identify such patterns,
one commonly used technique is clustering, which allows
merging data samples according to similar characteristics.
One clustering technique used to analyze similarity of spatial
distribution is the Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) [7]. This method allows
discovering clusters with arbitrary shape and is suitable to
find high-density regions. To use DBSCAN, two parameters
need to be defined: (1) the spatial neighborhood in terms
of radius – called eps – and (2) a threshold density of
samples in the neighborhood to identify a cluster – called
min-samples. R. Campello et. al. [8] presented an improve-
ment to DBSCAN called Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN). The
authors added a hierarchical tree structure that will find a
suitable radius threshold for every cluster (removing the
necessity of informing it). DBSCAN and HDBSCAN are
well-adopted clustering algorithms to identify regions in
position datasets. HDBSCAN is used in the present study
to aid the identification of mobility flows in New York City.

H. Hamedmoghadam-Rafati et. al. [4] applied a coarse-
graining method to analyze New York City taxi trips. The
authors first filter the data to remove possible outliers and
trips with wrong coordinates. Then, they split the data in a
grid with 13161 zones, to analyze each zone and understand
the traffic flow within the city. M. Momtazpour and N.
Ramakrishnan [9] used a similar approach to divide taxi
pickups and drop-offs datasets in a grid. The authors also
used 6-hour time slots to divide the 24 hours day period
to study the taxi behavior in a highly populated city. In our
work, instead of using a grid system, we applied HDBSCAN
to identify the main regions. This algorithm was chosen due
to its efficacy clustering large spatial datasets with noise.

2.3. Modeling

People can be affected by certain attributes of a route
(e.g. time walking, waiting), and this can help improving
route selection for different user’s profiles. For instance, M.
Wardman [10] studied how users perceived time in different
transportation means. The author presented different values
for several time variables (such as walk, waiting). The idea
was to model and understand the perception of time accord-
ing to different time variables, by exploring several surveys
performed in England. P. Abrantes and M. Wardman [11]
went further and improved this research, by adding a better

division of different travel moments (such as congestion). P.
Ryus et. al. [12] and N. Schaap et. al. [13] analyzed how a
user decides to access a certain transportation mode (such
as bus, subway). The authors concluded that it was possible
to identify the different predisposition curves of the users,
according to the traveling distance to access the service.

T. Arentze and E. Molin [14] presented a model where
the users had to choose two options for a specific journey.
At the end, the authors traced socio-demographics char-
acteristics from the sample to understand the differences
between different classes, ages, education levels, among oth-
ers. Achieving precise values is a complex task, especially
considering human subjectivity when making decisions. The
results provided by these studies are used in our proposal
to obtain more realistic results.

3. Proposal

The present paper aims to evaluate the use of hybrid
multimodal routes producing more personalized routes and
the impacts created by these routes. These multimodal routes
may include transport modes such as walk, bus, subways,
ferries, among other modes, and also consider HPV, such as
taxis and similar services, as Uber. Hybrid routes may use
HPV for town trips, but may also apply transit routing to
prevent the higher costs of this mode due to congestion time.
We study the hypothesis of cost reduction with low impact
on user experience and trip time. To check our hypothesis,
we use data from real trips occurred in New York City.
This data is presented in Section 3.1. The identification of
trip trends to reduce the dimensionality of the dataset is
developed using clustering techniques described in Section
3.2 and the framework to obtain and evaluate the impacts
of the hybrid trips is described in Section 3.3.

3.1. Data Characterization

The New York City has a program to make the data
created by its agencies available to the public. This project
is called NYC Open Data3 and has published datasets related
to wealth, mobility, safety and other urban aspects. The
current work explores the Yellow Taxis dataset, containing
data about pickups and drop-offs of trips in the city yellow
cabs. This dataset describes variables, such as start and end
locations, duration, passenger count, and cost. To perform
the analysis proposed in this paper, we took data from
March/2016, which contains 11.618.824 valid taxi trips. The
trips from 2016 were chosen mainly because of two reasons:
(1) the datasets before June/2016 represent the start and
end location of the trip with GPS positions, rather than
zone IDs used nowadays – the GPS positions allow a better
analysis since the zones used to represent the data currently
are too large which causes imprecisions, and (2) the taxi
industry, and consequently the amount and representativity
of trips, are more significant in previous years due to a
reduced influence of the popularization of HPV smartphone
applications. We also remove invalid data from the dataset
by establishing a 3D bounding box (i.e., geo-coordinates and

3. https://opendata.cityofnewyork.us/



time boundaries) which encapsulates the city in the month of
March/2016. Also, some of the trips were wrongly recorded
(e.g., end timestamp before start timestamp). To deal with
such samples we adopted speed thresholds, where trips
using taxis, with an average speed faster than 100Km/h or
slower than 5Km/h, were also considered invalid. Even after
applying the filter for valid trips we still have a significant
amount of data, which needed to be reduced in order to
proceed with the analysis. This data reduction is described
in Section 3.2.

3.2. Data Reduction

To allow the analysis of the hybrid routes, we had to
reduce the amount of data, otherwise, it would take much
time and resources. Thus, the focus of this section is to
describe the effort made to reduce the dataset magnitude.
Our objective was to identify the main flows in the city, this
way allowing the analysis of the impact of hybrid routing
on these flows. The approach to identifying the main taxi
trip flows in New York consists of four steps:

i Hourly Split: divide the data by hours and also between
weekends and weekdays;

ii Functional Region Identification: cluster the start and
end point of the trips to identify the main regions where
they take place;

iii Flow Accounting: count the flows between the identi-
fied regions;

iv Flow Classification: classify the flows between main
flows and secondaries.
The first step is to split the dataset into several hour-

based smaller ones. We observed that an hourly division of
the data could capture the main changes on trip frequencies,
as shown in Figure 1. It is possible to visualize major
changes in the number of trips and passengers traveling in
different hours of the day and, also, the difference in the
behavior between weekdays and weekends. The observa-
tion of this trend guided us to divide the original dataset
according to the time when trips started and then perform
the identification of the regions in the smaller datasets. This
division also helps to match hour-specific traffic conditions
with flows. For instance, Figure 1 shows some peaks of taxi
usage, which were classified in: (1) Low Peak: weekdays
from 8h to 16h, (2) High Peak: weekdays from 18h to 23h,
and (3) weekends from 11h to 1h – passing through 0h.

After splitting the dataset, the next step is to cluster
the origins and destinations of the trips to identify inter-
est regions where the flow concentrates. The use of the
HDBSCAN algorithm [8] is desirable because this algorithm
analyses the density of a distribution of points and groups
them. HDBSCAN is an improved generalization of the well-
known DBSCAN clustering algorithm; these algorithms are
used to cluster large spatial databases with the presence of
noise, therefore HDBSCAN was selected to our experiment.
The clustering was performed individually for every tuple
<event, hour, day-type>; where the event can be either
origin or destination, the hour is the hour when that event
happened, and the day-type is the classification between
weekday or weekend. By clustering the data in this way
we obtained 96 sets of clusters (i.e., 2 events × 24 hours

Figure 1. Distribution of trips and passengers per hour in weekdays and
weekends.

× 2 day-types). Then, the clusters for the events of origin
and destination for the same hour and day-type were used
to count the flows – for every origin cluster, we computed
the number of trips going to each of the destination clusters.
After filtering non-trending areas, the number of flows was
still significant, therefore further downsampling is needed.

To perform this, we classified the flows between trending
and secondary by the number of trips in the flow. It is impor-
tant to notice that the importance of the flow is bound to the
hour it happened, i.e., a trending flow on weekend may not
be considered trending if it happened on a weekday. Hence,
the classification of the flows was made based on the hour
and day-type when it happened. To classify them, for every
pair <hour, day-type>, we sorted the flows according to the
number of trips forming a long-tail curve (i.e., exponential
decay like curve), in a descending order. After this, the
resulting curve is analyzed using the following equation:

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

(1)

The curve of sorted trips per flow must be parametrized
in two functions x and y – where x is a sequenced discrete
index for the flows and y is the number of trips in each
flow. Using the first and second order derivatives of the
parametric functions, it is possible to evaluate the curvature
equation shown in Equation 1. The point of transition, where
the short-head of the curve gives place to the long-tail, is
the global maximum of κ, which can be found using its
derivative (i.e., κ′ = 0). Finally, all flows to the left of the
transition point are considered to be trending, and all flows
to the right are taken as secondary flows. The developed
method was inspired on the approach suggested to evaluate
the best EPS value in the DBSCAN algorithm [15] – this
EPS works as a boundary for neighborhood searches in the
DBSCAN. Using this methodology it was possible to select
the main flows in the city. The results of data reduction are
shown and discussed in Section 4. Once the amount of data



is reduced, it is possible to start the viability analysis of
the hybrid routes; the description of the analysis process is
presented in Section 3.3.

3.3. Framework of Analysis

Mobility in urban centers is affected by several situa-
tional aspects, such as traffic conditions, weather, city events
and also some user-centric aspects, such as preferences and
perceptions. Hence, creating a framework that allows the
integration of these different aspects which may influence
the way people move within the city is necessary. In the
present paper, we integrate transit and HPV routing with
contextual information. Precisely, we use traffic conditions
data and urban transportation user’s models to evaluate the
use of transit transport modes to avoid traffic congestions in
the city. The framework presented in this section is used to
obtain and evaluate the impact of these hybrid routes with
different metrics.

In order to evaluate the actual impact of using hybrid
HPV-transit routes, we need to analyze the real trip behavior
of the city. Thus, the first step in the methodology is to
find a position dataset that can represent this behavior.
Once the data was obtained, the following step consists
in downsampling it and creating a flow graph containing
the main trip flows observed – as described in Section 3.2.
Every flow will then be used to create an initial route, which
is a way a vehicle can use to navigate from the origin
of the flow to its destination. This initial route is used to
match traffic conditions data and to identify segments with
poor traffic conditions. From these segments we extract the
exchange point candidates, i.e., points where the user may
change transportation mode in order to avoid congestion.
The knowledge of these points is used to produce the
hybrid routes by replacing congested segments that would
be traversed in a hired vehicle by a transit option. Once all
the hybrid and non-hybrid routes are known we use different
models to evaluate the impact of the routes in time, cost,
and user experience. All the routing steps in our work were
made using the Google Directions API4. The traffic data
was collected from the Here API5.

After matching traffic and routing data, it is possible to
extract the exchange points based on the congested segments
of the routes. These exchange points are used to identify
where users can change to other transportation modes, thus
we build hybrid options for every exchange point to be
evaluated. After obtaining the route options, the evaluation
takes place. We analyze the cost of the trip, the real time
spent and, using a mathematical model, the user-perceived
time. The model to measure users perception was built based
on different studies that performed surveys with passengers
and evaluate what were the impressions about the trips they
made. For instance, the work from Wardman [10] establishes
weights for the time spent in each phase (e.g., access, egress,
headway) of the trip; these weights are designed using as
a basis the in-vehicle time-lapse perspective of the users.
Also, the book Transit Capacity and Quality of Service [12]

4. https://developers.google.com/maps/documentation/directions/
5. https://developer.here.com/documentation/maps/topics/traffic.html

presents curves describing the willingness of users to walk
to access transit stations based on the distance to the station.
The pseudo-code representing the algorithm to compute the
hybrid HPV-transit routes is shown in Algorithm 1.

Algorithm 1 Compute available hybrid HPV-transit options
for a given origin and destination.

1: procedure get hybrid route(orig, dest)
2: drive way← get driving way(orig, dest)
3: trans start candidates ← newList()
4: trans end candidates← newList()
5: options← newList()
6: for each (index, step) in drive way.steps do
7: if step.lenght > 500 then
8: frags← split step(step, 500)
9: splice(drive way.steps, index, 1, frags)

10: continue
11: end if
12: traffic = get traffic(step.orig, step.dest)
13: if is congested(traffic) then
14: append(trans start candidates, step.orig)
15: append(trans end candidates, step.dest)
16: end if
17: end for
18: append(trans start candidates, orig)
19: append(trans end candidates, dest)
20: for each ts in trans start candidates do
21: for each te in trans end candidates do
22: opts← get options(orig, ts, te, dest)
23: concat(options, opts)
24: end for
25: end for
26: return options
27: end procedure

Algorithm 1 starts by initializing some variables. The
drive way is the driving route from the origin to the desti-
nation used as a base to match the traffic data with the path
that an HPV would take. This driving way is created using
the Google Directions API. After we have three lists, the
trans start candidates and trans end candidates shel-
ters the candidate’s positions to start and end, respectively,
the transit steps in the hybrid route. Finally, the options
list contains all the hybrid route options to be evaluated.
The first loop on Line 6 walks through all the steps in
the drive way. These steps are the commands given to
drivers to reach their destinations. Each of these steps has
an origin, an end, and length properties. We want to get
the traffic conditions for each step, thus, Lines 12-16 get
these data (from HERE Traffic API) and check if there is
a congestion in the segment. If congestion is found, the
origin of the step becomes a transit start candidate, and
its destination becomes a transit end candidate. Since some
of these steps may have a large length, we established a
boundary of 500m for step length; therefore, Lines 7-11
split steps with greater length in smaller fragments, up to
500m length. These fragments replace the split step in the
drive way.steps list.

After the identification of transit starts and ends can-
didates, the trip’s origin and destination are also added as
transit start and end candidates. Lines 20-25 then combine
the candidates for start and end transit mode creating hybrid
route options. The method get options access Google API



to consult possible transit routes between the candidates and
then uses Uber API to estimate the values of their services,
this way crating a set of combinations given the reference
transition points. All these options are concatenated (i.e.,
bulk appended) to the options list (on Line 23). Notice that
by start, or end with transit we also consider the option
of starting and ending with walking steps. Once the route
options are computed, it is possible to evaluate their impact
using the proposed metrics described in Section 3.3.

The evaluation of the route options was made by com-
paring the values of real trip duration, perceived trip du-
ration, trip cost and also effective cost relations derived
from these three variables. The time variable is evaluated
using the Google Directions API time estimations, while the
perceived time is computed using the time spent in each step
of the route (e.g., access to transit, wait for HPV, headway)
and the weighted perception of the users [10], [12]. The trip
cost for transit trips was estimated using the current prices
of buses and subways in New York City, while the HPV
prices were estimated using the Uber Estimate API. The
effective cost relations were obtained in two different ways:
(1) using the real duration and (2) the perceived duration
normalized values. This effective cost is the product of trip
duration and its cost. Also we defined a user profile σ as a
monetary value users are willing to gain by waiting more to
reach their destination, for example a profile σ = 2 means
that for every extra minute of duration of a trip the user
should save USD 2.00. These profiles are used to evaluate
the influence of users preferences in the personalized routes.
Section 4 shows the results obtained using the framework.

4. Results and Discussions

We studied the possibility of combining transit transport
with HPV to reduce the cost of the hired trips due to poor
traffic conditions. The results obtained in this study are
divided into two parts: firstly, we identify the main urban
mobility flows in New York City; secondly, these main flows
are analyzed to check the impact of hybrid HPV-transit trips;
Finally we study some specific cases to verify the impact of
user’s preferences in the route selection. The general impact
of the usage of hybrid routes is described in Section 4.1,
latter Section 4.2 discusses the influence of adding user’s
views to perform route selection.

4.1. Overall Usage of Hybrid Routing

As described in Section 3, the main flows were identified
using clustering techniques, which allowed us to create
a flow graph for every pair <hour, day-type>. Figure 2
presents some examples of mobility flow graphs created
from the yellow taxi trips. The red areas are the trip origins
and the blue areas are the destinations. The arrows connect-
ing the regions represent the flow between those regions, and
its opacity represents the weight (i.e., normalized amount
of trips) of that flow. According to the hour of the day,
different graphs were obtained. It is possible to identify
some trending shapes, like, for instance, Figure 2-A shows
a graph containing a ring-shaped hub, where most of the
flows are. Also, in Figure 2-B there are flows coming from

many regions and converging to one; the opposite situation,
where flows diverge to peripheral zones was also seen in
later hours, such as 8-9 P.M. on weekdays. Finally, Figure
2-C shows an example where the methodology applied did
not have a good performance in identifying zones, thus
leading to meaningless flows that were not considered in
the analysis.

The analysis of the mobility flow graphs allowed the
creation of insights on which are the main regions of the city
and how citizens move between them. Information as this
can help, for instance, in the planning of bus lines. We use
these mobility graphs to study the impact of hybrid HPV-
transit routes. Figure 3 shows the impact of the proposed
hybrid routes in different traffic scenarios.

The traffic scenarios in Figure 3 were extracted from the
data presented in Figure 1. These scenarios are the weekend
peak, from 11h to 23h and also 0h and 1h, and the low
peak, from 8h to 16h on weekdays; and high peak from
18h to 23h also on weekdays. We established this division
to analyze the impact due to different traffic conditions in
these scenarios, which may have a different influence on the
impact created by the usage of hybrid HPV-transit routes.
We studied five metrics of the trips: cost, duration, per-
ceived duration, effective cost and effective cost perceived,
variables described in Section 3. Figure 3 compares each
metric for every studied transport mode. All the variables
were normalized to be shown in the graph, the bars represent
a weighted average obtained for the metrics in each trip (i.e.,
flow) using as weight the number of trips in that flow.

Since the metrics presented in Figure 3 are cost-based,
the lower values mean the best options. For specific flows,
we observed situations where the HYBRID and TRANSIT
mode had smaller durations than the HPV mode. In some
cases, the HYBRID approach had higher costs than the
HPV mode. Overall, the HPV trips are the fastest ones, but
also the most expensive. However, traffic conditions and the
cost raising for trips in these scenarios leads the values of
effective cost of this mode to raise. In general, the variation
of the metrics for HYBRID routes are smaller than in HPV,
it just do not happen for the cost metric. Comparing traffic
scenarios leads towards a blind comparison of a variety of
trip lengths. Thus, we also compared the modes according
to trip lengths to observe what is the behavior of the hybrid
HPV-transit routes. The results for different trip lengths are
shown in Figure 4.

In Figure 4, the objective was to identify patterns on
the usage of hybrid HPV-transit routes in trips with similar
length. This lead to a more stable variation of costs and
durations than comparing trips in the same traffic scenarios.
Figure 4 shows that the impact of the cost for hybrid routes
reduces, in comparison to HPV only routes, as the trip
length increases. This is reflected in the reduction of the
average effective cost and effective cost perceived for hybrid
routes, while the HPV mode is increasing. This trend of
reduction is kept even for longer trips, that were not shown.
This behavior is observed because by adding transit modes
in small trips we also add waiting times that are more
significant for short duration trips.

As the data shows, using hybrid HPV-transit routes may
reduce the cost of trips and have low impact on duration



Figure 2. Graphs representing important flows between New York City regions.

Figure 3. Impact of using different routing options for different traffic conditions. HPV represents the trips using hired private vehicles, estimated using
Uber API, TRANSIT represents the traditional public urban transport modes (e.g., bus, subway), and HYBRID represents our proposal of routes using
both HPV and TRANSIT.

Figure 4. Impact of using different routing options for different trip lengths. HPV represents the trips using hired private vehicles, estimated using Uber
API, TRANSIT represents the traditional public urban transport modes (e.g., bus, subway), and HYBRID represents our proposal of routes using both
HPV and TRANSIT.

compared to HPV only trips. Also, the average hybrid
trip is faster than the transit only trip. Furthermore, when
comparing the user experience (i.e., perceived duration) in
the trip, the HPV-transit routes obtained values comparable
with the HPV only routes, while the transit only trips were
as high as twice the perceived duration of the hybrid routes.

4.2. Route Selection Using User’s Profile

To evaluate the impact of user’s preferences in the route
section we choose two trips from the identified flows. The
first trip (T1) is the route where the gains in cost by using
hybrid trips were the greatest when compared to HPV; the
second trip (T2) is the longest flow identified, which consists
in a trip from the center of Manhattan to the JFK airport.
Table 1 shows the cost, duration and congestion time of
these trips for each of the considered routing modes. To



evaluate the influence of the user preference we consider
user profiles containing a monetary value for minute of time.

TABLE 1. COMPARISON OF TWO TRIPS SELECTED FROM THE MAIN
FLOWS OF THE DATASET.

Category Cost Duration Congestion Time

T1
HYBRID-1 USD 17.50 53 min 5 min
HYBRID-2 USD 63.50 43 min 5 min
TRANSIT USD 2.50 53 min 0 min
HPV USD 85.00 33 min 13 min

T2
HYBRID USD 8.00 60 min 1 min
TRANSIT USD 5.00 72 min 0 min
HPV USD 66.00 45 min 2 min

Trip T1 is a 8Km distance from origin to destination
and happened at 15h on a weekend, T2 has about 25Km
and happened at 13h on a week-day. In T1 it was possible
to reduce the amount of time spent in congestions from 13
to 5 min using the hybrid routes. Even with the saving in
congestion, due to the usage of the public transport, the full
duration of the trip has increased from 33 to 53 minutes
in HYBRID-1 and for 43 in HYBRID-2 (the fastest transit
only trip has). Thus, a user profile where σ ≥ 3.40 would
be willing to have more 20 minutes in his trip to save USD
67.00. In this scenario it would be even better to take the
TRANSIT option, since the duration is the same as the
HYBRID-1. Another relevant option would be HYBRID-
2, even more restrict profiles where σ = 2.20 would take it
and it saves 10 minutes compared to the TRANSIT option
while still saving USD 22.00 regarding the HPV option.

In trip T2 it was possible to save USD 38.00 by adding
a 15 minutes delay, which indicates that a profile σ > 2.53
would take the HYBRID option instead of the HPV. In this
case we can observe also a reasonable economy of time
when comparing the HYBRID and the TRANSIT options.
We could also observe that in 5% of the main flows (i.e.,
50 out of 998) the cost and duration of the HPV-transit trips
were lower than HPV only. However, such situations cannot
be observed in the average’s graph in Section 4.1 due to
the low frequency. In these flows the average savings were
USD 9.83 (first quartile: 3.50, third quartile 14.50), and 4
minutes (first quartile: 1.5, third quartile 5.6). If the usage
of such routes was made easier, the trip experience of users
in public transit could be improved while also reducing cost
and duration for some trips.

5. Conclusion

The present study proposes the use of hybrid Hired
Private Vehicles and Transit (HPV-transit) urban routes to
produce personalized urban routes. We evaluate the impact
of our proposal in terms of reduction of cost and duration of
trips, and also congestion avoidance. Five metrics are used
to compare the traditional HPV or transit only routing with
the proposed hybrid HPV-transit routing. We identify some
situations where the HPV-transit routing outperforms HPV
only routes, either in trip duration and cost. However, these
situations have a low frequency which reduces their rele-
vance in the overall scenario. Even with the observed values
for trip durations lower in HPV only trips than the HPV-
transit, there is a reduction in the average trip costs with

small impact on their durations. Our main contributions are
the proposition of a clustering technique to identify trending
mobility flows and the measurement of the gain obtained by
using hybrid HPV-transit to avoid traffic congestions.
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