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Abstract. Algorithms for �nding analogies as mappings between pairs
of concepts are fundamental to some implementations of Conceptual
Blending (CB), a theory which has been suggested as explaining some
cognitive processes behind the creativity phenomenon. When analogies
are de�ned as sub-isomorphisms of semantic graphs, we �nd ourselves
with a NP-complete problem. In this paper we propose and compare
a new high performance stochastic mapper that e�ciently handles se-
mantic graphs containing millions of relations between concepts, while
outputting in real-time analogy mappings ready for use by another algo-
rithm, such as a computational system based on CB theory.

1 Introduction

In a paper titled Analogy as the Core of Cognition Hofstadter [14] stated that
psychologists and cognitive scientists consider analogy as a sophisticated and
cryptic mental tool used in problem-solving, especially artistic people [11]. Mul-
tiple authors [2,11,22] declare that analogy is a essential task in many creative
processes. In our current main focus - Computational Creativity (CC) - resear-
chers are typically concerned building algorithms for the creation of new ideas
or the display of behaviours exhibiting creativity. From these we refer to a few
which have in�uenced our work in [19,3,24,1,13]. Similar to other researchers
in Computer Science we try to bring fruitful �ndings in cognitive science into
implementing CC systems.

Simply stated, analogy is a method which relates ideas or pieces of thought.
Analogy as a process can be easily observed when asking someone �if a is to
b then what is c to?� Or the question �the composer is to the general as the
drum is to?� [24] This question should develop in most people answers such
as cannon, bomb, tank, etc. giving us a sense that analogy seems to be at the
core of cognition [26]. Analogy emerges as a fundamental tool to associate the
above two domains of knowledge - the composer and the general. It is not hard to
think that this process can be taken further by combining (or blending) partially
selected parts of information from the two domains into a new mental idea, for
instance, that the composed is directing an orchestra of cannons and bombs
emerging in a scenery of musical warfare... We are of the opinion that this text
seems to possess some form of creativity [11]. In a nutshell, this is the idea behind



CB, a cognitive theory which has been successfully applied in CC systems [19,3]
including international projects such as CoInvent [20] and ConCreTe [27]. CB
requires a mapping of concepts - an analogy - to be e�ective and is elaborated
in the next section.

The contribution described in this paper �ows from the current work of our
research group in developing a computational system which in the future is
expected to exhibit creativity. We previously reported [9] a CB module (named
the Blender) based on a evolutionary algorithm which requires as an input a
semantic graph and one or more analogies in the form of sets of concept pairs.
These mappings are typically either produced manually (to validate a system) or
produced by an existing computational analogy system such as the ones outlined
in [6]. However, as far as we know we have not found an algorithm fast enough to
extract in real-time mappings from giant non trivial semantic graphs available in
the web, such as the Never-Ending Language Learning (NELL) project [17] and
ConceptNet [21]. Our vision is that in a fully automated process the analogies
should follow the frames pertinent to the blend (an instance of the blending
space) being elaborated in the Blender module. In turn this requires a sort
of feedback loop between the blender and the mapper (which creates suitable
mappings) and therefore, a mapping module (the focus of this paper) capable of
executing in real-time and concurrently with the blending module.

This paper is laid out as follows: we start with a short overview of CB and
why it requires an analogy in the form of a mapping to work; it is followed
by the description of a few computational analogy systems which were relevant
for our work and CB in general; then we reveal our EEmapper and its inner
workings; afterwards we compare it against an optimum mapper and jMapper
and examine the results; �nally, we outline further work to improve our mapper
and conclude on our �ndings. Semantic graphs are given as relations in the
form (source,relation,target), an analogy is represented as a functional mapping
between two sets of concepts and the size of a mapping corresponds to the
number of one-to-one associations between concepts in the mapping set.

2 Conceptual Blending and the importance of analogies

Fauconnier and Turner [5] suggested CB as cognitive theory to explain proces-
ses of conceptual integration occurring in the human thought. Its potential to
model mechanisms of concept invention has increasingly inspired research in CC
in recent years [27,20] and also in our research group [19,9,3]. Initially, CB was
proposed as a framework for conceptual metaphor theory, i.e., a cognitive ex-
planation of the reasoning behind metaphors as a linguistic phenomenon. Later
[8] it was adapted to include the projection of one information domain to anot-
her as a result of an analogy process with a partial recombination of concepts
and relations characteristic of the blending process. The projection of concepts
or analogy corresponds to a one to one mapping between concepts of di�erent
domains being one the source and the other the target. In graph theory, the ana-
logy (or mapping) is de�ned as a structural alignment of concepts from di�erent



domains of knowledge and can be seen as a graph isomorphism between two
semantic graphs or regions of a larger semantic graph. This way, CB includes
the usage of analogy to blend elements from di�erent thoughts and is equipped
to explain the synthesis of new ideas and the everyday language [8].

An essential ingredient in the CB theory is the mental space, a partial
and temporary structure of knowledge assembled for purposes of thought and
action [5]. The CB process takes two input spaces and looks for a partial mapping
between elements of both spaces that may be perceived as similar or analogous in
some respect. A third mental space, called generic, encapsulates the conceptual
structure shared by the input spaces, providing guidance to the next step of the
process, where elements from each of the input spaces are selectively projected
into a new mental space, called the Blend Space. Further stages of the process
elaborate and complete the blend.

In the CC and Analogy �elds the input spaces have been typically given in
the form of semantic graphs, that is, graphs with directed edges representing
relations between concepts. Mappings represent analogies and are de�ned as
sets of ordered pairs of concepts, each concept usually coming from a di�erent
input space than the other concept in the pair. Mappings represent a one-to-one
correspondence between concepts of di�erent regions of the semantic space [18].
In this paper we term the computational systems which generate mappings as
mappers and describe the ones we �nd crucial for our work below.

2.1 Structural Mapping Theory

In [7] Gentner conceived her Structure Mapping Theory (SMT) stating that in
order to establish an analogy, two domains of knowledge de�ned by intercon-
nected relations between concepts, are matched from one domain to the other.
This matching is on its essence a structural alignment, or mapping, of one to
one correspondences between concepts from both domains. First and foremost,
particular crucial associations between the concepts from both domains are what
will identify the analogy. However, more interesting results could materialize if
the associations are fabricated using higher order relations, that is, relations be-
tween relations or some sort of abstract matching [8]. SMT gave rise to a robust
algorithm - Structural Mapping Engine (SME) [4] - which probably is the most
signi�cant and earlier work in Computational Analogy [6].

2.2 Sapper

Sapper[25] is one of the �rst mappers o�ered as an alternative to Gentner's SME.
Sapper was initially described as a model of memory for metaphor comprehen-
sion. Since then it has also been used as a dedicated mapping engine by itself
[24] or as a foundation for developing further mappers [19,12]. Given two inputs
in the form of semantic graphs representing the Tenor domain and the Vehicle
domain (the components of a metaphor), Sapper lays out what the authors label
as dormant bridges - one-to-one associations between concepts.



Sapper works as a spreading activation mechanism in the given input se-
mantic graphs and thus, it is in a sense a hybrid algorithm integrating principles
from symbolic computation with connectionist philosophies. Sapper works in ba-
tches of two phases exchanging information between a structural inference phase
(mostly the Triangle and Square rules) and the opportunistic activation phase.
Is in the second phase where the limits of the mapping are de�ned by checking
how important the nearby pairs of concepts are.

The Triangle rule lays out a dormant bridge (equivalent to a association of
two concepts) whenever those two concepts share a common concept with the
same relation. For instance, if dog,isa,animal and cat,isa,animal the shared con-
cept is animal through the isa relation. In this example Sapper associates both
dog and cat concepts in the �rst phase. The Square rule builds on previously laid
associations of concepts and if these also share the same relation with a third
and a forth concepts, Sapper associates the latter two. Again, as an example if
dog and cat are associated and the semantic network contains the two relations
cat,atlocation,crib and dog,atlocation,doghouse, Sapper lays down a new asso-
ciation, in this case between the concepts crib and doghouse. When Sapper is
complete it returns the largest mapping (in number of associations) containing
the dormant bridges activated during its execution.

2.3 jMapper

In [19] Pereira developed in Prolog a mapper which found analogy mappings
between concepts from two input spaces, using a structural alignment algorithm
based on Sapper [24]. In [12] Pereira's mapper was re-implemented in Java with
gains in e�ciency and scalability, although maintaining the original idea. The
authors state that jMapper reduces the search space and ranks the pairs of
concept candidates in terms of potential similarity. This similarity is based on the
number nearby relations shared between each concept and their nearby concepts.
The mapper allows a similarity threshold to be set that avoids the exploration of
portions of the search space. For instance, if a low threshold is set a region of the
mapping which associates animals with plants could stop if their only relation
in common is that they are a form of life. As such, jMapper prefers to explore
concepts from the semantic graph that have more in common.

As stated above, jMapper has its roots on Sapper and looks for pairs of
concepts that share the same relation to a third concept (the Triangle rule).
From then on, it applies the Square rule to look for 1-to-1 correspondences. In
the end, jMapper returns the largest mappings.

2.4 Optimum Mapper

This mapper was previously developed in our research group to investigate the
complexity and feasibility of �nding mappings in various semantic networks of
diverse sizes [3]. As the name indicates, the algorithm is exhaustive and optimal,
as it will create all sets of possible mappings in order to �nd the largest achievable
analogy, that is, the mapping set with the greatest number of concept pairs. As



the algorithm serves as a theoretical basis for the EEmapper we give a short
summary next.

The algorithm begins in a root pair composed of two distinct concepts taken
from the input spaces. Both concepts are not required to be related and thus con-
trasting the Triangle Rule in Sapper/jMapper. Then, the execution is performed
in two stages. In the �rst stage, the algorithm �nds a structural isomorphism
in the global input space (combination of both input spaces), extracting two
isomorphic sub-graphs. This isomorphism is edge based and re�ects the same
sequence of relations in the sub-graphs. We term the two input spaces left and
right. Starting at the root pair, the isomorphic sub-graphs are extracted from
the input spaces by executing two synchronized expansions of nearby concepts
at increasingly depths, one from the left and the other from the right concepts
de�ning the root pair. The expansion is done recursively in the form of a hybrid
between a depth �rst expansion and a breadth �rst expansion, one expansion
dedicated for the left sub-graph and the other to the right sub-graph. The left
and right isomorphic sub-graphs de�ne a mapping composed of a unique set
of ordered pairs of concepts. Each concept of a pair comes from its respective
left or right isomorphism and thus, from one of the input spaces. Any concept
belonging to a pair is excluded from further expansions and future pairs.

While expanding, the algorithm stores additional associations between each
matched relations and the corresponding concept which was reached through
that relation. In reality, what is likely to happen is to occur a multitude of
isomorphisms. In that case the algorithm will store various concept pairs relating
any given concept to multiple matching concepts, as long as the same concepts
where reached from a previous concept with the same relation. This is the basis to
�nd an edge/relation based sub-graph isomorphism. The last stage corresponds
to iterating all the isomorphisms found in the �rst stage and extracting the
largest mapping in terms of concept pairs. It may happen that there are multiple
mappings with the same size and in either case, all the equally largest mappings
are outputted as analogies.

3 EEMapper

Our proposed algorithm for extracting mappings from semantic graphs is titled
EEmapper and is based on evolutionary principles. Although there is quite a
number of mappers in the literature, including the ones explained before, none
is fully capable of handling semantic graphs in the order of millions of relations.
Either the mappers do not halt at all or consume a vast amount of resources
(memory included) and trigger software exceptions due to the combinatory ex-
plosion of possibilities they have to explore to output a mapping. There are also
other problems such as the wait for a usable mapping. When a CB system de-
pends on a mapping to do its elaboration and the mapping is not available, or
if the mapping should change in a small part to allow the CB task to improve
its results it is clear that the mapping engine must be fast enough to nourish
the dependent tasks. In this case we have an optimisation issue inside of another



Fig. 1: Example of a mapping (analogy) between two domains of knowledge
(green and red) of a larger semantic graph. Associations are shown with ver-
tical dashed lines between concepts. Best viewed in colour.

optimisation problem and therefore the combined complexity must be lowered if
we expect results in a useful time. Hence the purpose of this paper, a somewhat
embryonic but highly fast mapper to �nd the largest mapping (in number of
concept pairs - one to one associations of concepts). Although currently missing,
in the future we expect this search to include a form of semantic quality or even
of usefulness for a CB framework.

It is well known in Computer Science that �nding the perfect answer to a
problem (in our case the ideal mapping) may be impossible to reach. The only
alternative then is to �nd an answer �good enough� to our problem and that
is when we turn ourselves to stochastic algorithms. Both our CB framework [9]
and our Domain Spotter [10] are based on a High Performance Genetic Algo-
rithm (GA) and because of this, we have a good foundation for building the
EEmapper. Our GA is prepared to handle multiple threads in parallel while
minimising memory usage. The GA runs in multiple batches of three phases in
parallel corresponding each batch to an epoch in the evolution of the population.
The three phases are the population mutation and crossover (genetic operations
phase), population selection for the next generation (k tournament selection)
and �tness evaluation. Our EEmapper currently does not implement crossover
and has a simple but fast mutation. Hence we consider it a system with evo-
lutionary principles and not a fully GA, but this is expected to change in the
future. Given the scope of this paper we do not describe the inner workings of a
typical GA but only the required operations to implement the EEmapper. The
mapper is founded on a partial but faster version of the isomorphism described
in the optimum mapper.

Each chromosome is de�ned by what we name a root pair of two di�erent
concepts (vertices 6 and 23 in Fig. 1 representing a one to one association and
the building blocks of the emerging mapping. Any association of concepts is
possible, given the stochastic nature of the algorithm. In each epoch, EEmapper
evolves hundreds or thousands of chromosomes, each representing a mapping.
Hence the system not only outputs the best result but multiple mappings similar



or resulting from a �uctuating population of chromosomes. Excluding speed op-
timizations in the algorithm (such as only running the �tness function whenever
a chromosome changes) the �tness function re�ects the execution of the stochas-
tic sub-isomorphism �nding algorithm, naturally applied to every chromosome
of each generation. As in the Optimum Mapper, the score for each chromosome
(and related mapping) is the number of concept pairs in the mapping. For in-
stance, if a chromosome has stored in its genetic material the mapping shown in
Fig. 1 its �tness score would be 6.

When the GA �rst starts, the root pairs are randomly generated, i.e., the
mapper starts from an association such as (dog,cat) or from (rock,light). This
decision was taken so that the system could �nd mappings between disconnected
domains even if at �rst sight they appear completely unrelated, as this may dis-
cover extraordinary �ndings [15]. The partial isomorphism matching algorithm
executes whenever a chromosome changes (because of a genetic operation) or is
reset (build from scratch or in the GA's �rst population). The algorithm rand-
omly chooses the same path of relations (labels such as isa, partof, atlocation)
in the left and right input spaces shown in the same Fig. This is equivalent to
executing the full left and right expansion in the optimum mapper for later only
choosing a single random mapping from that expansion, that is, one path from
the root to a leaf in the deep �rst expansion of the semantic tree. Therefore, a
mapping depends on the initial root pair and the (random) sequence of branches
(associations of relations and thus concepts) generated by the Random Number
Generator. In a sense, the de�ning of a root pair is equivalent to Sapper's Triangle
rule and the mutation's random walk to Sapper's Square rule. However, contrary
to Sapper, the EEmapper works without problems in disconnected input spaces.
With the above described stochastic process executing in the mutation operator
the search space is cut in a tiny fraction of the other mappers with the expected
outcome of lowering the probability of �nding the largest mapping.

The mutation mechanism does two types of operations. First, it randomly
changes one or both of the concepts in its root pair to nearby connected concepts.
This mechanism has a progressively smaller chance of randomly mutating a
concept to a more distant neighbour. As an example, if a root pair is dog,cat
a possible mutation is canine,cat or in Fig. 1 changing the root pair 6,23 to
6,24. Second, the mutation re-executes a new partial isomorphism match from
the existing or mutated root pair in the hope of shu�ing the resulting mapping.

4 Comparative evaluation

As an initial validation of our new mapper, we compared it against an optimal
mapper we developed previously in our research group [3] and against an e�cient
implementation of Sapper - jMapper [12]. This comparison is as of this document
done ingenuously in the form of the number of concept pairs present in the re-
sulting mappings and naturally, the time required to obtain those mappings. We
admit we are neglecting the semantic features of the mappings but as expressed



in the Section 6, further study is expected in this aspect. The experiments were
done with the following criteria in mind:

� for what size of the input spaces do the optimum mapper and jMapper fail
to converge?

� for the time optimum mapper and jMapper took to execute what are the
largest mappings obtained by EEmapper?

� if possible, how long does EEmapper require to reach similar results to the
other mappers?

jMapper requires two input spaces with one requirement - the existence of
common concepts in both input spaces to be used in the Triangle rule [24]. On
the other hand, both our EEmapper and optimum mapper do not have this
requirement. To use jMapper we decided to use our semantic graph splitter,
titled Domain Spotter [10] to partition ConceptNet in various pairs of input
spaces to be used in the experiments. The Spotter is based on the theory of
Bisociation and extracts from a given semantic graph two apparently unrelated
domains - the input spaces - ideally connected only through a single term [15] -
the bridge node which is always present in both extracted input spaces.

The Domain Spotter runs as a Genetic Algorithm and aims to maximise the
number of concepts present in both generated input spaces while minimising
their intersection. It includes a penalisation parameter τ to control how hard is
the separation (in concepts) of both input spaces. The higher the τ is, the higher
the amount of concepts in the intersection between both extracted input spaces.
In this case, jMapper will have a high amount of concepts available to apply
its Triangle rule. The Spotter contains various parameters for �ne-tuning the
movement of the bridge vertex in the search space, with γ de�ning the nearby
range where the bridge concept can move to.

To evaluate our EEmapper against the optimum mapper and jMapper we
turned to ConceptNet v5, a known semantic network built from information
collected by the Open Mind Common Sense project at the MIT. ConceptNet
includes information extracted from data sources such as the Wikipedia and
Wiktionary projects, a subset of DBPedia from the Leipzig University which
contains information extracted from the infoboxes on Wikipedia articles and
English facts from the word game Verbosity, formerly run by the GWAP project,
an academic project at Carnegie Mellon University.

We agree with Baydin et. al [1] regarding noise in ConceptNet. We found
biased relations against political subjects, gender issues, sexual or sexist re-
marks, incomplete or erroneous concepts, funny statements and incorrect relati-
ons such as the following: cell_phone,isa,cat ; montain_ion,isa,cat ; food,isa,cat ;
prion,isa,prokaryote; woman,purposeof,cook ; etc.

We decided to clean ConceptNet from many of the above issues although
many do yet remain. We did this not only for these experiments but expecting
the future use of an optimized ConceptNet in further experiments on our re-
search projects. Also removed where ambiguous concepts such as this, that,
pronouns which do not de�ne a clear subject, de�nite and inde�nite articles,
lengthy concepts as thin_material_that_be_fold_entirely_around_object and
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large_bird_whimsically_think_of_as_wear_tuxedoes, etc. Additionally, many
incorrect relations were reversed, e.g., person,isa,athlete → athlete,isa,person.

From the pre-processed ConceptNet graph we chose the largest graph com-
ponent which contains 1229508 concepts and 1791604 edges. To give an idea of
the information present in the processed ConceptNet the number of relations of
various types are displayed in Fig. 2 and the concepts T which are targets of isa
relations are shown in Fig. 3.

The input space extracting algorithm, Domain Spotter, was run with a popu-
lation of 256 chromosomes, a limit of 1024 epochs, binary tournament selection
with the strongest chromosome having a winning probability of 85%. The bridge
jumping parameter γ was set to 2. We varied the τ parameter and run the
Spotter multiple times in order to obtain pairs of input spaces with di�ering
characteristics such as the shown in Table 1. This table is described as follows:

� The �rst column contains the τ parameter used in the Domain Spotter,
� the bridge column contains the required bridging concept which intercon-
nects the two input spaces,



� the degree column shows the degree of the bridge node (number of inco-
ming/outgoing relations),

� the deep column represents how many relations/edges is the farthest concept
of each of the input spaces away from the bridge node,

� #s0 and #s1 are respectively the number of concepts present in input spaces
0 and 1,

� the intersect column contains the number of concepts intersecting both
input spaces (and as such present in both of them),

� concepts shows the combined amount of concepts in both input spaces and
is equal to #s0 +#s1 −#(s0 ∩ s1)− 1. The reduction by one is because of
the bridge concept being present in each input space (thus twice in the sum
of their cardinality) but only once in their intersection.

After obtaining the input space pairs using the Domain Spotter, we gave each
pair to the three mappers (optimum, jMapper and EEmapper), executed each
one seven times, recording the executing time and the resulting output mappings.
The source code of the Optimum mapper and jMapper where changed to add a
time-out and to return their best result until then, instead of using their original
implementation of waiting forever and returning a result. This time-out and
EEmapper's running time was limited to 3600 seconds.

Table 2 contains the cardinality (number of concept pairs) of the mappings
obtained from the three mappers, including their standard deviation. Table 3
shows the time (in seconds) the optimum mapper and jMapper took to generate
a mapping, except in the case of EEmapper this represents the average time the
mapper needed to generate a mapping as big (in number of concept pairs) as the
best mapping extracted by one of the other mappers. This is because EEmapper
only stops its execution either when it reaches a limit of epochs or a time limit.

The two �gures (Figs. 4a and 4b) compare the real-time cardinality of the
mappings generated by all the mappers during their execution. Because we can
not output both the optimum mapper and jMapper mappings in real-time, we
terminate them after a time-out of 3600 seconds (one hour). Therefore their
graphs are shown as a linearly interpolated lines between their start at t = 0
seconds and their termination at either t = 3600 seconds or when they complete.

All the experiments and mappers were executed on a Intel Xeon X3470 with
32 GB RAM, Windows 10 x64, Java JDK 9.0.4 and with JVM settings -Xms8g
-Xmx24g. The EEmapper ran with 4 parallel threads to minimize cache ine�-
ciency (pollution and misses) and the memory bottleneck, given the dispersive
nature of the semantic graphs in computer memory [16,23].

5 Discussion

The proposed EEmapper extracted the largest mappings for 5/8 of the expe-
riments. Other than the experiments: τ = 0.1 ∧ bridge = hiram_ohio, τ =
0.25 ∧ bridge = vascularity, τ = 0.25 ∧ bridge = venography, the mapper star-
ted outputting large mappings after thirty seconds of execution or less (Figs.



Table 1: Input spaces extracted by the Domain Spotter from the processed Con-
ceptNet knowledge base.

τ bridge degree deep #s0 #s1 #intersect concepts

0.00 exercise_physiology 2 4 4841 124 0 4964
0.01 redwatch 2 3 13 17 0 29
0.01 venography 2 4 42 21 0 62
0.10 hiram_ohio 2 2 3 202368 0 202370
0.10 horror_�ction 2 4 17919 19742 1594 36066
0.25 redwatch 2 5 3379 40808 220 43966
0.25 vascularity 2 4 412593 249954 8682 653864
0.25 venography 2 6 52454 4349 701 56101

Table 2: The cardinality of the mappings for each experiment and mapper. The
values shown in bold represent the largest mappings.

τ bridge optimum jMapper EEmapper

0.00 exercise_physiology 14 ± 0 1 ± 0 28.333 ± 1.506

0.01 redwatch 10 ± 0 0 ± 0 6.000 ± 0.000
0.01 venography 11 ± 0 0 ± 0 6.000 ± 0.000
0.10 hiram_ohio 2 ± 0 0 ± 0 5.833 ± 1.329

0.10 horror_�ction 13 ± 0 3864 ± 0 1175.833 ± 10.722
0.25 redwatch 12 ± 0 398 ± 0 1410.400 ± 8.877

0.25 vascularity 2 ± 0 0 ± 0 7318.600 ± 35.529

0.25 venography 18 ± 0 1174 ± 0 2277.600 ± 8.019

4a and 4b). In the last two mentioned experiments, including the case τ =
0.25 ∧ bridge = redwatch, the EEmapper extracted from the input spaces map-
pings with far higher number of concept pairs when compared with the other
mappers and in less than 1/6 of their time. An example of a considerable large
mapping is shown in Fig. 5.

In the experiment τ = 0.01 ∧ bridge = redwatch, the optimum mapper was
able to generate the largest mapping with EEmapper reaching 60% of the op-
timum mapping. In our opinion, this experiment matches the limit where the
complexity of the problem at hand is simple enough that a stochastic solver is
not justi�ed for two reasons: 1) an exhaustive solver �nds the optimum answer
faster than a stochastic algorithm and 2) these situations are straightforward for
the optimum mapper but yet complex enough that the probabilistic nature of
the EEmapper reduces its likelihood of obtaining the perfect answer.

jMapper was unsuccessful in the second to fourth experiments shown in Ta-
ble 2, although it managed to extract one pair of concepts from the input spaces
in the experiment τ = 0.0∧bridge = exercise_physiology. This is due to the mi-
nimal intersection between the two input spaces (Table 1) with this intersection
comprised of only the bridge concept. This minimal intersection restricts the
usage of the Triangle rule, fundamental to Sapper and thus jMapper. This de-



Table 3: Time (in seconds) taken by each mapper in each experiment. The times
in bold represent the time required to obtain the largest mapping.
τ bridge optimum jMapper EEmapper

0.00 exercise_physiology 3644.666 ± 85.561 0.875 ± 0.247 13.793 ± 0.881

0.01 redwatch 0.342 ± 0.147 0.000 ± 0.000 3600.078 ± 0.016
0.01 venography 3602.435 ± 7.588 0.000 ± 0.000 33.037 ± 0.016
0.10 hiram_ohio 0.235 ± 0.181 0.379 ± 0.008 207.844 ± 15.870

0.10 horror_�ction 3631.042 ± 54.753 1836.532 ± 63.679 3602.374 ± 1.277
0.25 redwatch 3651.080 ± 52.964 228.895 ± 0.812 34.667 ± 1.562

0.25 vascularity 3633.345 ± 91.153 3612.787 ± 32.445 425.866 ± 54.790

0.25 venography 3615.587 ± 17.392 837.980 ± 12.292 56.602 ± 2.130

monstrates that jMapper has di�culties �nding analogies when the input spaces
have little to no concepts in common.

In experiment τ = 0.1∧bridge = horror_�ction jMapper managed to extract
the largest mapping. Our hypothesis is that this experiment contains a large
amount of concepts in the intersection of the two input spaces, favourable to
Sapper's Triangle rule. This allowed jMapper to further trigger the Square rule
and easily expand its mappings. We wonder if, were it given more execution
time and computational resources, jMapper would also have extracted a large
mapping in the experiment τ = 0.25 ∧ bridge = vascularity.

We �nd important to mention that the mapper is currently a stochastic me-
chanism without intricate mutation and crossover mechanisms typically expected
from evolutionary algorithms and yet it obtained larger results when compared
with the other mappers. This emphasises the complexity of the task at hand
- extracting analogies from large semantic graphs - and the importance of not
obtaining perfect results, but mappings �good enough� for their purpose. This is
observed in 5/8 of the experiments except the three following: τ = 0.01∧bridge =
redwatch, τ = 0.01 ∧ bridge = venography, τ = 0.1 ∧ bridge = horror_�ction.

Lastly, given the main purpose of the proposed EEmapper - to be used in CB
experiments - we �nd crucial that a �rst inspection of the mappings' semantic
structure is made. Although we expect a deeper examination of this subject in
a future paper, we illustrate in Fig. 6 a small region of a mapping generated in
experiment τ = 0.1∧ bridge = horror_�ction. Part of the structure of the input
spaces is present in the entire mapping, for instance anemone,atlocation,reef and
shark,atlocation,reef.

Noise from ConcepNet is visible in relations such as shark,isa,asbestos. Ho-
wever, given this noise and the association of distantly related or even unrelated
pairs of concepts in the mapping, we �nd promising the usage of our EEmapper
in the next step of our research - its implementation in a CB framework. For
example, who knows if the creative system elaborates a story of a parrot named
bug who works as a microphone in the amazon rainforest...
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Fig. 4: Number of concept pairs being extracted during the mappers real-time
execution for two experiments. The optimum mapper and jMapper are drawn
as straight lines interpolating their starting and ending times. The mappers are
represented with the following line strokes: red dashed - optimum mapper; green
dotted - jMapper; remaining line strokes - EEmapper.

6 Conclusions and future work

We have proposed a fast multi-threaded mapper for �nding analogies in real-
time. It was compared against an optimum mapper developed by us and against
jMapper, based on Sapper. EEmapper was found to outperform the other map-
pers in large semantic graphs in the order of at least half a million of intercon-
nected concepts. As far as we know, our mapper is the �rst of its kind to handle
semantic graphs in this level of proportion and to scale beyond. The mapper is
based on evolutionary principles and thus straightforward to adapt its �tness
function should the mappings have to adhere to di�erent criteria.

We �nd important to mention that the proposed mapper may appear somew-
hat elementary but we think that given the purpose of handling large semantic
networks and future real-time interaction with a conceptual blending module,
as a �rst step the mapper should be the fastest possible. Hence this requires a



Fig. 5: One of the possible mappings extracted by EEmapper from the experi-
ment τ = 0.25∧bridge = venography. It contains roughly two thousand concept
pairs. Each vertex in the graph is in the form (conceptl, conceptr).
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Fig. 6: A small region of a mapping generated by EEmapper in experiment τ =
0.1 ∧ bridge = horror_�ction.

GA with a fast evolution, swift genetic operations and quick �tness evaluations
because of existence of a blending module down the pipeline.

In the future we expect further development of our EEmapper in the form of
re�nements in its evolution algorithms, the addition of the genetic crossover ope-
rator and improvements in the mutation of mappings. Moreover, the mappings
will undergo a semantic evaluation during their evolution within the EEmapper
in order to be consistent with the CC System that we hope to realize in the
future.
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